首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Sexual dimorphism often arises as a response to selection on traits that improve a male's ability to physically compete for access to mates. In primates, sexual dimorphism in body mass and canine size is more common in species with intense male–male competition. However, in addition to these traits, other musculoskeletal adaptations may improve male fighting performance. Postcranial traits that increase strength, agility, and maneuverability may also be under selection. To test the hypothesis that males, as compared to females, are more specialized for physical competition in their postcranial anatomy, we compared sex-specific skeletal shape using a set of functional indices predicted to improve fighting performance. Across species, we found significant sexual dimorphism in a subset of these indices, indicating the presence of skeletal shape sexual dimorphism in our sample of anthropoid primates. Mean skeletal shape sexual dimorphism was positively correlated with sexual dimorphism in body size, an indicator of the intensity of male–male competition, even when controlling for both body mass and phylogenetic relatedness. These results suggest that selection on male fighting ability has played a role in the evolution of postcranial sexual dimorphism in primates.  相似文献   

2.
Sexual dimorphisms in weaponry and aggression are common in species in which one sex (usually males) competes for access to mates or resources necessary for reproduction – sexually dimorphic weaponry and aggression, in other words, are frequently the result of intrasexual selection. In snapping shrimp, the major chela (snapping claw) can be a deadly weapon, and males of many species have larger chelae than females, a pattern readily interpreted as resulting from intrasexual selection. Thus, males might be expected to show more sex‐specific aggression than females, and be more aggressive overall. We tested these predictions in two species of snapping shrimp in a territorial defense context. Neither of these predictions was supported: in both species, females, but not males, engaged in sex‐specific aggression and females were more aggressive than males overall. These contrasting sexual dimorphisms – larger weaponry in males but higher aggression in females – highlight the importance of considering the function of weaponry and aggression in contexts other than direct competitions over mates. In addition, species differences in the degree of sexual dimorphism in chela size were due to differences in female, not male, chela size, and the species with greater sexual dimorphism in weaponry was significantly less aggressive overall; also, while paired and solitary males did not differ in residual chela size, for the species with greater sexual dimorphism, females carrying embryos had smaller residual chela sizes. These results suggest that understanding the sexual dimorphisms in weaponry and aggression in snapping shrimp requires understanding the relative costs and benefits of both in females as well as males.  相似文献   

3.
Sex-specific plasticity, the differential response that the genome of males and females may have to different environments, is a mechanism that can affect the degree of sexual dimorphism. Two adaptive hypotheses have been proposed to explain how sex-specific plasticity affects the evolution of sexual size dimorphism. The adaptive canalization hypothesis states that the larger sex exhibits lesser plasticity compared to the smaller sex due to strong directional selection for a large body size, which penalizes individuals attaining sub-optimal body sizes. The condition-dependence hypothesis states that the larger sex exhibits greater plasticity than the smaller sex due to strong directional selection for a large body size favoring a greater sensitivity as an opportunistic mechanism for growth enhancement under favorable conditions. While the relationship between sex-specific plasticity and sexual dimorphism has been studied mainly in invertebrates, its role in long-lived vertebrates has received little attention. In this study we tested the predictions derived from these two hypotheses by comparing the plastic responses of body size and shape of males and females of the snapping turtle (Chelydra serpentina) raised under common garden conditions. Body size was plastic, sexually dimorphic, and the plasticity was also sex-specific, with males exhibiting greater body size plasticity relative to females. Because snapping turtle males are larger than females, sexual size dimorphism in this species appears to be driven by an increased plasticity of the larger sex over the smaller sex as predicted by the condition-dependent hypothesis. However, male body size was enhanced under relatively limited resources, in contrast to expectations from this model. Body shape was also plastic and sexually dimorphic, however no sex by environment interaction was found in this case. Instead, plasticity of sexual shape dimorphism seems to evolve in parallel for males and females as both sexes responded similarly to different environments.  相似文献   

4.
M. A. Elgar    N. Ghaffar    A. F. Read 《Journal of Zoology》1990,222(3):455-470
The degree and direction of sexual dimorphism across different species is commonly attributed to differences in the selection pressures acting on males and females. The extent of these differences is especially apparent in species that practise sexual cannibalism, where the female attempts to capture and eat a courting male. Here, we investigate the relationship between sexual dimorphism in size and leg length, sexual cannibalism and courtship behaviour in three taxonomic groups of orb-weaving spiders, using morphological data from 249 species in 36 genera. Females are larger than males in all three taxonomic groups, and males have relatively longer legs than females in both the Araneinae and Tetragnathidae. Across genera within each taxonomic group, male body size is positively correlated with both female body size and male leg length, and female body size is positively correlated with female leg length. Sexual size dimorphism is negatively correlated with relative male leg length within the Araneinae, but not within either the Tetragnathidae or the Gasteracanthinae. There was no negative correlation between sexual size dimorphism and relative female leg length in any taxonomic group. We argue that the relationship between sexual size dimorphism and relative male leg length within the Araneinae may be the result of selection imposed by sexual cannibalism by females.  相似文献   

5.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that, overall, body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the lab, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to, and to pair with a receptive female compared with males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

6.
In crustacean species with precopulatory mate-guarding, sexual size dimorphism has most often been regarded as the consequence of a large male advantage in contest competition for access to females. However, large body size in males may also be favoured indirectly through scramble competition. This might partly be the case if the actual target of selection is a morphological character, closely correlated with body size, involved in the detection of receptive females. We studied sexual selection on body size and antennae length in natural populations of Asellus aquaticus, an isopod species with precopulatory mate guarding. In this species, males are larger than females and male pairing success is positively related to body size. However, males also have longer antennae, relative to body size, than females, suggesting that this character may also be favoured by sexual selection. We used multivariate analysis of selection to assess the relative influences of body size and antennae length in five different populations in the field. Selection gradients indicated that overall body size was a better predictor of male pairing success than antennae length, although some variation was observed between sites. We then manipulated male antennae length in a series of experiments conducted in the laboratory, and compared the pairing ability of males with short or long antennae. Males with short antennae were less likely to detect, orient to and to pair with a receptive female compared to males with long antennae. We discuss the implications of our results for studies of male body size and sexual dimorphism in relation to sexual selection in crustaceans.  相似文献   

7.
Although sexual selection is widely accepted as a primary functional cause of sexual size dimorphism in birds and mammals, results from some comparative studies have cast doubt on this conclusion. Chief among these contradictory results is the widespread association between body size and size dimorphism—large species tend to be more dimorphic than small species. This correlation is not directly predicted by the normal sexual selection scenario, and many hypotheses have been advanced to explain it. This paper reviews these hypotheses and evaluates them using data for the New World blackbirds (Icterinae). In this avian subfamily, (1) body size correlates with the intensity of sexual selection (as measured by mean harem size), and (2) size does not correlate with dimorphism if the effects of mating system are removed. Similar results are obtained when controlling for the confounding influence of phylogeny. Further, body size and mating system are associated with nesting dispersion. These results strongly argue that sexual dimorphism is a product of sexual selection in this subfamily, and suggest that either: (1) large body size itself, or the ecology of large species, promotes the development of coloniality and a polygynous mating system; or (2) polygyny and/or coloniality lead to the evolution of large size in both males and females. None of the other hypotheses examined predict an association between size and mating system, and all predict that size will correlate with dimorphism after the effects of mating system are removed. Thus, none of the other hypotheses seem applicable in this case. These results are compared to those obtained for other avian and mammalian taxa. Difficulties of analysis present in previous studies are discussed. I argue that it is inappropriate to assume that associations between a trait and body size or phylogeny are evidence of nonadaptive evolutionary “constraints.”  相似文献   

8.
Larger male Caribbean fruit flies are more likely to be chosen as mates and defeat rivals in territorial contests. Yet males are smaller than females. Adaptive explanations for relatively small male size include (1) acceleration of male development to maximize female encounter rates, (2) selection for greater female size to increase fecundity, and (3) selection for body sizes most suitable for sexually dimorphic degrees of mobility, speed, and distance flight. None of these unambiguously accounts for the degree of sexual dimorphism. Male development is not accelerated relative to that of females. On average, males remain inside fruit longer than females and those males with extended development periods are smaller than more rapidly developing individuals. There is no evidence that female enlargement alone, presumably for greater fecundity, has generated the degree of dimorphism in the Caribbean fruit fly or other fruit flies. The relationship between dimorphism and mean female body size in 27 species of Tephritidae is the opposite of what would be predicted if differences in dimorphism were due to differences in unilateral female enlargement. Larger size in a species or in one sex of a species may be an adaptation for extensive flight. In general, among 32 species of fruit flies, as body size increases, wing shape becomes progressively more suited for distance flight. However, there are important exceptions to this correlation. Both sexual selection and nonadaptive allometries may contribute to the range of dimorphisms within the family.  相似文献   

9.
Sexual dimorphism can result from sexual or ecological selective pressures, but the importance of alternative reproductive roles and trait compensation in generating phenotypic differences between the sexes is poorly understood. We evaluated morphological and behavioral sexual dimorphism in striped bark scorpions (Centruroides vittatus). We propose that reproductive roles have driven sexually dimorphic body mass in this species which produces sex differences in locomotor performance. Poor locomotor performance in the females (due to the burden of being gravid) favors compensatory aggression as part of an alternative defensive strategy, while male morphology is coadapted to support a sprinting-based defensive strategy. We tested the effects of sex and morphology on stinging and sprinting performance and characterized overall differences between the sexes in aggressiveness towards simulated threats. Greater body mass was associated with higher sting rates and slower sprinting within sexes, which explained the greater aggression of females (the heavier sex) and, along with longer legs in males, the improved sprint performance in males. These findings suggest females are aggressive to compensate for locomotor costs of reproduction while males possess longer legs to enhance sprinting for predator evasion and mate finding. Sexual dimorphism in the metasoma (“tail”) was unrelated to stinging and sprinting performance and may best be explained by sexual selection.  相似文献   

10.
The relationship between sexual size dimorphism, body-weight and different reproductive traits (e.g. clutch size, egg weight and incubation period) in relation to mating system and forms of parental care was studied in waders. Two hypotheses were examined. (1) Sexual size dimorphism is correlated with the intensity of sexual selection. (2) The degree of sexual size dimorphism is the result of an interrelationship between the reproductive strategy of the female and her body size. In the polygynous species the male was significantly larger than the female. This is consistent with the sexual selection hypothesis. However, among waders, a positive correlation exists between egg weight, clutch mass and body-weight. Selection for small eggs or a short incubation period may therefore have an influence on female body-weight. If the lack of paternal care reduces the female's possibility for producing large eggs or incubating a large clutch mass, we would expect a selection pressure for small female size among polygynous species. Thus, large sexual size dimorphism among polygynous waders may be a result of selection for small female size to lack of paternal care, or selection for large male size due to intramale competition or a female preference for large-sized males. In multiple-clutch species (viz. species in which the female regularly lays more than one clutch during the season) egg weight was low both for a given female and male body-weight. The low egg weight of multiple-clutch species is assumed to be a result of the constraints placed on the female from producing several clutches during a single breeding season.  相似文献   

11.
The goals of this study were to analyze the origin and function of sex differences in the size of canine teeth among Malagasy lemurs and other strepsirhine primates. These analyses allowed me to illuminate interactions between different mechanisms of sexual selection and to elucidate constraints on this sexually-selected trait. In contrast to central predictions of sexual selection theory, polygynous lemurs lack both sexual dimorphism in body size and male social dominance, but the degree of sexual dimorphism in the size of their canines is not known. A comparison of male and female canine size in 31 species of lemurs and lorises revealed significant male-biased canine dimorphism in only 6 of 13 polygynous lemur species. This result is in contrast to predictions of a hypothesis that would explain the lack of size dimorphism in lemurs as a result of high viability costs because canine teeth presumably have low maintenance costs and because they are used as weapons in male-male combat. Moreover, because females had significantly larger maxillary canines than males in only one lemur species, female dominance is not generally based on female physical superiority and selective forces favoring female dominance do not constrain sexual canine dimorphism in the sense of a pleiotropic effect. Contrary to predictions of sexual selection theory, species differences in canine dimorphism across strepsirhines were neither associated with differences in mating system, nor with the potential frequency of aggression. Variation in canine dimorphism was also unrelated to differences in body size, but there were significant differences among families, pointing to strong phylogenetic constraints. This study demonstrated that polygynous lemurs are at most subject to weak intrasexual selection on dental traits used in male combat and that traits thought to be under intense sexual selection are strongly influenced by phylogenetic factors.  相似文献   

12.
In most snake species, males have longer tails than females of the same body length. The adaptive significance of this widespread dimorphism has attracted much speculation, but few tests. We took advantage of huge mating aggregations of red-sided gartersnakes (Thamnophis sirtalis parietalis) in southern Manitoba to test two (non-exclusive) hypotheses about the selective forces responsible for this dimorphism. Our data support both hypotheses. First, relative tail length affects the size of the male copulatory organs (hemipenes). Males with longer tails relative to body length have longer hemipenes, presumably because of the additional space available (the hemipenes are housed inside the tail base). Second, relative tail length affects male mating success. Males with partial tail loss (due to predation or misadventure) experienced a threefold reduction in mating success. Among males with intact tails, we detected strong stabilizing selection on relative tail length in one of the two years of our study. Thus, our data support the notion that sex divergence in tail length relative to body length in snakes reflects the action of sexual selection for male mating success.  相似文献   

13.
Dimorphic sexual differences in shape and body size are called sexual dimorphism and sexual size dimorphism, respectively. The degrees of both dimorphisms are considered to increase with sexual selection, represented by male–male competition. However, the degrees of the two dimorphisms often differ within a species. In some dung beetles, typical sexual shape dimorphisms are seen in male horns and other exaggerated traits, although sexual size dimorphism looks rare. We hypothesized that the evolution of this sexual shape dimorphism without sexual size dimorphism is caused by male–male competition and their crucial and sex-indiscriminate provisioning behaviors, in which parents provide the equivalent size of brood ball with each of both sons and daughters indiscriminately. As a result of individual-based model simulations, we show that parents evolve to provide each of sons and daughters with the optimal amount of resource for a son when parents do not distinguish the sex of offspring and males compete for mates. This result explains why crucial and sex-indiscriminate parental provisioning does not prevent the evolution of sexual shape dimorphism. The model result was supported by empirical data of Scarabaeidae beetles. In some dung beetles, sexual size dimorphism is absent, compared with significant sexual size dimorphism in other horned beetles, although both groups exhibit similar degrees of sexual shape dimorphism in male horns and other exaggerated traits.  相似文献   

14.
Differences in the strength of sexual selection between males and females can lead to sexual dimorphism. Extra-pair paternity (EPP) can increase the variance in male reproductive success and hence the opportunity for sexual selection. Previous research on birds suggests that EPP drives the evolution of dimorphism in plumage colour and in body size. Because EPP increases the intensity of sexual selection in males, it should lead to increased dimorphism in species with larger or more colourful males, but decreased dimorphism in species with larger or more colourful females. We explored the covariation between EPP and sexual dimorphism in wing length and plumage colouration in 401 bird species, while controlling for other, potentially confounding variables. Wing length dimorphism was associated positively with the frequency of EPP, but also with social polygamy, sex bias in parental behaviour and body size and negatively with migration distance. The frequency of EPP was the only predictor of plumage colour dimorphism. In support of our prediction, high EPP levels were associated with sexual dichromatism, positively in species in which males are more colourful and negatively in those in which females are more colourful. Contrary to our prediction, high EPP rates were associated with increased wing length dimorphism in species with both male- and female-biased dimorphism. The results support a role for EPP in the evolution of both size and plumage colour dimorphism. The two forms of dimorphism were weakly correlated and predicted by different reproductive, social and life-history traits, suggesting an independent evolution.  相似文献   

15.
The evolution of sexual dimorphism is an important topic of evolutionary biology, but few studies have investigated the determinants of sexual dimorphism over broad phylogenetic scales. The number of vertebrae is a discrete character influencing multiple traits of individuals, and is particularly suitable to analyze processes determining morphological variation. We evaluated the support of multiple hypotheses concerning evolutionary processes that may cause sexual dimorphism in the number of caudal vertebrae in Urodela (tailed amphibians). We obtained counts of caudal vertebrae from >2,000 individuals representing 27 species of salamanders and newts from Europe and the Near East, and integrated these data with a molecular phylogeny and multiple information on species natural history. Per each species, we estimated sexual dimorphism in caudal vertebrae number. We then used phylogenetic least squares to relate this sexual dimorphism to natural history features (courtship complexity, body size dimorphism, sexual ornamentation, aquatic phenology) representing alternative hypotheses on processes that may explain sexual dimorphism. In 18 % of species, males had significantly more caudal vertebrae than females, while in no species did females have significantly more caudal vertebrae. Dimorphism was highest in species where males have more complex courtship behaviours, while the support of other candidate mechanisms was weak. In many species, males use the tail during courtship displays, and sexual selection probably favours tails with more vertebrae. Dimorphism for the number of tail vertebrae was unrelated to other forms of dimorphism, such as sexual ornamentation or body size differences. Multiple sexually dimorphic features may evolve independently because of the interplay between sexual selection, fecundity and natural selection.  相似文献   

16.
Sexual size dimorphism is assumed to be adaptive and is expected to evolve in response to a difference in the net selection pressures on the sexes. Although a demonstration of sexual selection is neither necessary nor sufficient to explain the evolution of sexual size dimorphism, sexual selection is generally assumed to be a major evolutionary force. If contemporary sexual selection is important in the evolution and maintenance of sexual size dimorphism then we expect to see concordance between patterns of sexual selection and patterns of sexual dimorphism. We examined sexual selection in the wild, acting on male body size, and components of body size, in the waterstrider Aquarius remigis, as part of a long term study examining net selection pressures on the two sexes in this species. Selection was estimated on both a daily and annual basis. Since our measure of fitness (mating success) was behavioral, we estimated reliabilities to determine if males perform consistently. Reliabilities were measured as ? statistics and range from fair to perfect agreement with substantial agreement overall. We found significant univariate sexual selection favoring larger total length in the first year of our study but not in the second. Multivariate analysis of components of body size revealed that sexual selection for larger males was not acting directly on total length but on genital length. Sexual selection for larger male body size was opposed by direct selection favoring smaller midfemoral lengths. While males of this species are smaller than females, they have longer genital segments and wider forefemora. Patterns of contemporary sexual selection and sexual size dimorphism agree only for genital length. For total length, and all other components of body size examined, contemporary sexual selection was either nonsignificant or opposed the pattern of size dimporhism. Thus, while the net pressures of contemporary selection for the species may still act to maintain sexual size dimorphism, sexual selection alone does not.  相似文献   

17.
Many animal species exhibit size dimorphism between sexes. Sexual selection, whereby male–male competition favors larger body sizes, has been considered a likely cause of sexual size dimorphism. Habitat features in breeding areas could affect the outcome of male–male competition, yet few attempts have been made to relate breeding habitat features with interpopulation variation in sexual size dimorphism. In this study, we examined interpopulation variation in sexual size dimorphism by studying the landlocked amago salmon (Oncorhynchus masou ishikawae) at a microgeographic scale. We found that female body size was independent of stream size but that male body size decreased with smaller stream sizes. A likely explanation is that the relationship between reproductive success and the size of males is influenced by the availability of refuges that are only available to small-bodied males. Sexual differences in body size increased with decreasing stream sizes, supporting the hypothesis that the reproductive success of larger males is reduced in smaller streams. In contrast, the maturation-length threshold increased with stream size for both sexes. The stream-size-based interpopulation variation in sexual size dimorphism and size at maturity in landlocked amago salmon may therefore have arisen through a combination of sexual and natural selection.  相似文献   

18.
Sexual size dimorphism is a common phenomenon in the animal kingdom, and its seasonal change has been reported in some species that possess traits dimorphic only in males and specialized for male mating success. However, few studies have examined seasonal change in sexual dimorphism of traits possessed by both sexes. Here, we examined the reproductive biology of the hermit crab Pagurus minutus, at a sandflat in the Waka River estuary, Japan, with special reference to seasonal changes in sexual dimorphism of the large claw (major cheliped) size by conducting population and precopulatory guarding-pair sampling. Previous investigation demonstrated that the major cheliped is used as a weapon, and its size, more than body size, determines the winner in male–male contests of this species. We found ovigerous females from November to April, peaking in January, when 80% of females were ovigerous. Sexual size dimorphism of the major cheliped was observed; the degree of dimorphism increased in the reproductive season, when only males possessed an enlarged major cheliped. In addition, in the reproductive season, precopulatory guarding males had a larger body and larger relative size of the major cheliped than did solitary males, although the major cheliped size in guarding males seemed to reach an upper limit. These results suggest that seasonal change in sexual dimorphism of the major cheliped size in P. minutus strongly reflects sexual selection favoring the development of this natural weaponry, and that the degree of the dimorphism might be limited through natural selection.  相似文献   

19.
Male snakes typically have longer tails relative to body length than females, but the extent of this dimorphism varies among species. Three hypotheses have been suggested to explain tail dimorphism. The Morphological Constraint Hypothesis proposes that males have relatively longer tails to accommodate hemipenes and retractor muscles. The Female Reproductive Output Hypothesis proposes that females have relatively shorter tails as a secondary result of natural selection for increased reproductive capacity. The Male Mating Ability Hypothesis proposes that sexual selection favours relatively longer tails in males during courtship. These hypotheses make different predictions about the relationships among tail length, body size, male reproductive morphology, female reproductive output, mode of reproduction, and male mating behaviour among and within taxa. Predictions were tested using published data for 56 genera in the family Colubridae and original data for the water snake, Nerodia sipedon. Tail length dimorphism was more male-biased in tam having relatively short tails (r=–0.52, P < 0.001), hemipenes and retractor muscles occupied a greater proportion of the tail in taxa having relatively short tails (r=– 0.71, P < 0.00l and r=– 0.66, P = 0.001, respectively), and tail length dimorphism was more male-biased in taxa in which body size dimorphism was more female-biased (r=– 0.60, P < 0.001). These results support both the Morphological Constraint Hypotheses and the Female Reproductive Output Hypothesis. However, tests of other predictions, including those regarding patterns within N. sipedon , failed to support any of the three hypotheses. Comparisons among taxa suggest several species in which further tests of these hypotheses would be especially appropriate.  相似文献   

20.
《Zoology (Jena, Germany)》2015,118(4):248-254
Sexual dimorphism in shape and size is widespread across animal taxa and arises when natural or sexual selection operates differently on the sexes. Male and female common geckos (Woodworthia maculatus; formerly Hoplodactylus maculatus) in New Zealand do not appear to experience different viability selection pressure, nor do males appear to be under intense pre-copulatory sexual selection. It was therefore predicted that this species would be sexually monomorphic with regard to body size and the size and shape of the head. In line with the prediction, there was no sexual difference in head width, depth, or length or in lateral head shape. However, contrary to prediction, males had a larger body and lateral head size than females. This study suggests that males, at least on Maud Island, NZ, might be under stronger pre-copulatory sexual selection than previously recognized and thus have evolved larger heads (i.e. lateral head size) for use in male combat for females. Allometric scaling patterns do not differ between the sexes and suggest that head width and depth are under directional selection whereas lateral head size is under stabilizing selection. Diet ecology – an agent of natural selection common to both sexes – is likely largely responsible for the observed patterns of head size and shape and the lack of sexual dimorphism in them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号