首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A key question in cytokinesis is how the plane of cell division is positioned within the cell. Although a number of cytokinesis factors involved in formation of the actomyosin contractile ring have been identified, little is known about how these factors are localized and assembled at the cell-division site. Cells of the fission yeast Schizosaccharomyces pombe divide using a medial actomyosin ring that assembles in early mitosis [1]. The S. pombe cdc12 gene encodes a formin, a member of a family of proteins that have functions in cytokinesis and cell polarity and that may bind Rho/Cdc42 GTPases, profilin and other actin-associated proteins [1] [2] [3] [4]. The cdc12 protein (cdc12p) is required specifically for medial-ring assembly during cytokinesis and is a component of this ring [2] [5]. In this study, cdc12p was found, during interphase, in a discrete, motile cytoplasmic spot that moved to the future site of cell division at the onset of mitosis. Three lines of evidence indicated that this cdc12p spot moved on both actin and microtubule networks: movement required either actin or microtubules; the spot was associated with actin and microtubule structures; and individual spots were seen to move along both microtubule and non-microtubule tracks. These findings demonstrate that a cytokinesis factor may travel on both microtubule and actin networks to the future site of cell division.  相似文献   

2.
Schizosaccharomyces pombe cells divide by medial fission. One class of cell division mutants (cdc), the late septation mutants, defines four genes: cdc3, cdc4, cdc8, and cdc12 (Nurse, P., P. Thuriaux, and K. Nasmyth. 1976. Mol. & Gen. Genet. 146:167-178). We have cloned and characterized the cdc4 gene and show that the predicted gene product. Cdc4p, is a 141-amino acid polypeptide that is similar in sequence to EF-hand proteins including myosin light chains, calmodulin, and troponin C. Two temperature-sensitive lethal alleles, cdc4-8 and cdc4- 31, accumulate multiple nuclei and multiple improper F-actin rings and septa but fail to complete cytokinesis. Deletion of cdc4 also results in a lethal terminal phenotype characterized by multinucleate, elongated cells that fail to complete cytokinesis. Sequence comparisons suggest that Cdc4p may be a member of a new class of EF-hand proteins. Cdc4p localizes to a ringlike structure in the medial region of cells undergoing cytokinesis. Thus, Cdc4p appears to be an essential component of the F-actin contractile ring. We find that Cdc4 protein forms a complex with a 200-kD protein which can be cross-linked to UTP, a property common to myosin heavy chains. Together these results suggest that Cdc4p may be a novel myosin light chain.  相似文献   

3.
Schizosaccharomyces pombe is an excellent organism in which to study cytokinesis as it divides by medial fission using an F-actin contractile ring. To enhance our understanding of the cell division process, a large genetic screen was carried out in which 17 genetic loci essential for cytokinesis were identified, 5 of which are novel. Mutants identifying three genes, rng3(+), rng4(+), and rng5(+), were defective in organizing an actin contractile ring. Four mutants defective in septum deposition, septum initiation defective (sid)1, sid2, sid3, and sid4, were also identified and characterized. Genetic analyses revealed that the sid mutants display strong negative interactions with the previously described septation mutants cdc7-24, cdc11-123, and cdc14-118. The rng5(+), sid2(+), and sid3(+) genes were cloned and shown to encode Myo2p (a myosin heavy chain), a protein kinase related to budding yeast Dbf2p, and Spg1p, a GTP binding protein that is a member of the ras superfamily of GTPases, respectively. The ability of Spg1p to promote septum formation from any point in the cell cycle depends on the activity of Sid4p. In addition, we have characterized a phenotype that has not been described previously in cytokinesis mutants, namely the failure to reorganize actin patches to the medial region of the cell in preparation for septum formation.  相似文献   

4.
The Rho-family GTPase Cdc42p regulates many aspects of cell polarity and growth in eukaryotic cells, including the organization of the actin cytoskeleton. To further examine Cdc42p function in the fission yeast Schizosaccharomyces pombe, a functional green fluorescent protein (GFP)-Cdc42p fusion protein was generated. GFP-Cdc42p was observed at the medial region of the cell at the cell-division site early in cytokinesis and remained there through cell separation, and was also localized to the periphery of the cell and to internal membranes. Unexpectedly, treatment with the actin-depolymerizing drug latrunculin-A disrupted the medial region targeting pattern, and cells deficient in the actin-binding proteins tropomyosin and profilin also did not exhibit medial GFP-Cdc42p staining. In addition, medial GFP-Cdc42p localization was eliminated in a number of cytokinesis mutants, including strains defective in assembling the medial actinomyosin ring, medial ring contraction, and septum assembly. GFP-Cdc42p targeting was less affected in mutants that formed misplaced or multiple septa. These results suggest that the localization of Cdc42p at the cell-division site was dependent upon the actin cytoskeleton and that Cdc42p may function in the interdependent processes of cytokinesis and septation.  相似文献   

5.
As in many other eukaryotic cells, cell division in fission yeast depends on the assembly of an actin ring that circumscribes the middle of the cell. Schizosaccharomyces pombe cdc12 is an essential gene necessary for actin ring assembly and septum formation. Here we show that cdc12p is a member of a family of proteins including Drosophila diaphanous, Saccharomyces cerevisiae BNI1, and S. pombe fus1, which are involved in cytokinesis or other actin-mediated processes. Using indirect immunofluorescence, we show that cdc12p is located in the cell division ring and not in other actin structures. When overexpressed, cdc12p is located at a medial spot in interphase that anticipates the future ring site. cdc12p localization is altered in actin ring mutants. cdc8 (tropomyosin homologue), cdc3 (profilin homologue), and cdc15 mutants exhibit no specific cdc12p staining during mitosis. cdc4 mutant cells exhibit a medial cortical cdc12p spot in place of a ring. mid1 mutant cells generally exhibit a cdc12p spot with a single cdc12p strand extending in a random direction. Based on these patterns, we present a model in which ring assembly originates from a single point on the cortex and in which a molecular pathway for the functions of cytokinesis proteins is suggested. Finally, we found that cdc12 and cdc3 mutants show a syntheticlethal genetic interaction, and a proline-rich domain of cdc12p binds directly to profilin cdc3p in vitro, suggesting that one function of cdc12p in ring assembly is to bind profilin.  相似文献   

6.
Cytokinesis in most eukaryotes requires the assembly and contraction of a ring of actin filaments and myosin II. The fission yeast Schizosaccharomyces pombe requires the formin Cdc12p and profilin (Cdc3p) early in the assembly of the contractile ring. The proline-rich formin homology (FH) 1 domain binds profilin, and the FH2 domain binds actin. Expression of a construct consisting of the Cdc12 FH1 and FH2 domains complements a conditional mutant of Cdc12 at the restrictive temperature, but arrests cells at the permissive temperature. Cells overexpressing Cdc12(FH1FH2)p stop growing with excessive actin cables but no contractile rings. Like capping protein, purified Cdc12(FH1FH2)p caps the barbed end of actin filaments, preventing subunit addition and dissociation, inhibits end to end annealing of filaments, and nucleates filaments that grow exclusively from their pointed ends. The maximum yield is one filament pointed end per six formin polypeptides. Profilins that bind both actin and poly-l-proline inhibit nucleation by Cdc12(FH1FH2)p, but polymerization of monomeric actin is faster, because the filaments grow from their barbed ends at the same rate as uncapped filaments. On the other hand, Cdc12(FH1FH2)p blocks annealing even in the presence of profilin. Thus, formins are profilin-gated barbed end capping proteins with the ability to initiate actin filaments from actin monomers bound to profilin. These properties explain why contractile ring assembly requires both formin and profilin and why viability depends on the ability of profilin to bind both actin and poly-l-proline.  相似文献   

7.
The evolutionarily conserved small actin-monomer binding protein profilin is believed to be a housekeeping factor that maintains a general pool of unassembled actin. However, despite similar primary sequences, structural folds, and affinities for G-actin and poly-l-proline, budding yeast profilin ScPFY fails to complement fission yeast profilin SpPRF temperature-sensitive mutant cdc3-124 cells. To identify profilin''s essential properties, we built a combinatorial library of ScPFY variants containing either WT or SpPRF residues at multiple positions and carried out a genetic selection to isolate variants that support life in fission yeast. We subsequently engineered ScPFY(9-Mut), a variant containing nine substitutions in the actin-binding region, which complements cdc3-124 cells. ScPFY(9-Mut), but not WT ScPFY, suppresses severe cytokinesis defects in cdc3-124 cells. Furthermore, the major activity rescued by ScPFY(9-Mut) is the ability to enhance cytokinesis formin Cdc12-mediated actin assembly in vitro, which allows cells to assemble functional contractile rings. Therefore an essential role of profilin is to specifically facilitate formin-mediated actin assembly for cytokinesis in fission yeast.  相似文献   

8.
Regulation and targeting of the fission yeast formin cdc12p in cytokinesis   总被引:3,自引:1,他引:2  
Formins are conserved actin nucleators which promote the assembly of actin filaments for the formation of diverse actin structures. In fission yeast Schizosaccharomyces pombe, the formin cdc12p is required specifically in assembly of the actin-based contractile ring during cytokinesis. Here, using a mutational analysis of cdc12p, we identify regions of cdc12p responsible for ring assembly and localization. Profilin-binding residues of the FH1 domain regulate actin assembly and processive barbed-end capping by the FH2 domain. Studies using photobleaching (FRAP) and sensitivity to latrunculin A treatment show that profilin binding modulates the rapid dynamics of actin and cdc12p within the ring in vivo. Visualized by functional GFP-fusion constructs expressed from the endogenous promoter, cdc12p appears in a small number of cytoplasmic motile spot structures that deliver the formin to the ring assembly site, without detectable formation of an intermediate band of "nodes." The FH3/DID region directs interphase spot localization, while an N-terminal region and the FH1-FH2 domains of cdc12p can target its localization to the ring. Mutations in putative DID and DAD regions do not alter regulation, suggesting that cdc12p is not regulated by a canonical autoinhibition mechanism. Our findings provide insights into the regulation of formin activity and the mechanisms of contractile ring dynamics and assembly.  相似文献   

9.
The septation initiation network (SIN) triggers the onset of cytokinesis in the fission yeast Schizosaccharomyces pombe by promoting contraction of the medially placed F-actin ring. SIN signaling is regulated by the polo-like kinase plo1p and by cdc2p, the initiator of mitosis, and its activation is co-ordinated with other events in mitosis to ensure that cytokinesis does not begin until chromosomes have been separated. Though the SIN controls the contractile ring, the signal originates from the poles of the mitotic spindle. Recent studies suggest that the spindle pole body may act as a dynamic assembly site for active SIN signaling complexes. In the budding yeast Saccharomyces cerevisiae the counterpart of the SIN, called the MEN, mediates both mitotic exit and cytokinesis, in part through regulating activation of the phosphoprotein phosphatase Cdc14p. Flp1p, the S. pombe ortholog of Cdc14p, is not essential for mitotic exit, but may contribute to an orderly mitosis-G1 transition by regulating the destruction of the mitotic inducer cdc25p.  相似文献   

10.
cdc1+ is required for cell cycle progression in Schizosaccharomyces pombe. Cells carrying temperature-sensitive cdc1 mutants undergo cell cycle arrest when shifted to the restrictive temperature, becoming highly elongated. Here we describe the cloning and sequencing of cdc1+, which is shown to encode a 462 residue protein that displays significant sequence similarity to the small subunit of mammalian DNA polymerase delta. cdc1+ interacts genetically with pol3+, which encodes the large subunit of DNA polymerase delta in fission yeast, and the Cdc1 protein binds to Pol3 in vitro, strongly suggesting that Cdc1 is likely to be the small subunit of Pol delta. In addition, we show that cdc1+ overexpression is sufficient to rescue cells carrying temperature-sensitive cdc27 alleles and that the Cdc1 and Cdc27 proteins interact in vivo and in vitro. Deletion of either cdc1+ or cdc27+ results in cell cycle arrest with the arrested cells having a single nucleus with 2C DNA content. No evidence was obtained for a cut phenotype, indicating that neither cdc1+ nor cdc27+ is required for checkpoint function. cdc1 mutant cells are supersensitive to the DNA synthesis inhibitor hydroxyurea and to the DNA damaging agent MMS, display increased frequency of mini-chromosome loss and have an extended S phase.  相似文献   

11.
We observed live fission yeast expressing pairs of functional fluorescent fusion proteins to test the popular model that the cytokinetic contractile ring assembles from a single myosin II progenitor or a Cdc12p-Cdc15p spot. Under our conditions, the anillin-like protein Mid1p establishes a broad band of small dots or nodes in the cortex near the nucleus. These nodes mature by the addition of conventional myosin II (Myo2p, Cdc4p, and Rlc1p), IQGAP (Rng2p), pombe Cdc15 homology protein (Cdc15p), and formin (Cdc12p). The nodes coalesce laterally into a compact ring when Cdc12p and profilin Cdc3p stimulate actin polymerization. We did not observe assembly of contractile rings by extension of a leading cable from a single spot or progenitor. Arp2/3 complex and its activators accumulate in patches near the contractile ring early in anaphase B, but are not concentrated in the contractile ring and are not required for assembly of the contractile ring. Their absence delays late steps in cytokinesis, including septum formation and cell separation.  相似文献   

12.
Both de novo–assembled actin filaments at the division site and existing filaments recruited by directional cortical transport contribute to contractile ring formation during cytokinesis. However, it is unknown which source is more important. Here, we show that fission yeast formin For3 is responsible for node condensation into clumps in the absence of formin Cdc12. For3 localization at the division site depended on the F-BAR protein Cdc15, and for3 deletion was synthetic lethal with mutations that cause defects in contractile ring formation. For3 became essential in cells expressing N-terminal truncations of Cdc12, which were more active in actin assembly but depended on actin filaments for localization to the division site. In tetrad fluorescence microscopy, double mutants of for3 deletion and cdc12 truncations were severely defective in contractile ring assembly and constriction, although cortical transport of actin filaments was normal. Together, these data indicate that different formins cooperate in cytokinesis and that de novo actin assembly at the division site is predominant for contractile ring formation.  相似文献   

13.
Cytokinesis separates cells by contraction of a ring composed of filamentous actin (F-actin) and type II myosin. Iqg1, an IQGAP family member, is an essential protein in Saccharomyces cerevisiae required for assembly and contraction of the actomyosin ring. Localization of F-actin to the ring occurs only after anaphase and is mediated by the calponin homology domain (CHD) of Iqg1, but the regulatory mechanisms that temporally restrict actin ring assembly are not well defined. We tested the hypothesis that dephosphorylation of four perfect cyclin-dependent kinase (Cdk) sites flanking the CHD promotes actin ring formation, using site-specific alanine mutants. Cells expressing the nonphosphorylatable iqg1-4A allele formed actin rings before anaphase and exhibited defects in myosin contraction and cytokinesis. The Cdc14 phosphatase is required for normal cytokinesis and acts on specific Cdk phosphorylation sites. Overexpression of Cdc14 resulted in premature actin ring assembly, whereas inhibition of Cdc14 function prevented actin ring formation. Cdc14 associated with Iqg1, dependent on several CHD-flanking Cdk sites, and efficiently dephosphorylated these sites in vitro. Of importance, the iqg1-4A mutant rescued the inability of cdc14-1 cells to form actin rings. Our data support a model in which dephosphorylation of Cdk sites around the Iqg1 CHD by Cdc14 is both necessary and sufficient to promote actin ring formation. Temporal control of actin ring assembly by Cdk and Cdc14 may help to ensure that cytokinesis onset occurs after nuclear division is complete.  相似文献   

14.
Many membrane processes occur in discrete membrane domains containing lipid rafts, but little is known about how these domains are organized and positioned. In the fission yeast Schizosaccharomyces pombe, a sterol-rich membrane domain forms at the cell-division site. Here, we show that formation of this membrane domain is independent of the contractile actin ring, septation, mid1p and the septins, and also requires cdc15p, an essential contractile ring protein that associates with lipid rafts. cdc15 mutants have membrane domains in the shape of spirals. Overexpression of cdc15p in interphase cells induces abnormal membrane domain formation in an actin-independent manner. We propose that cdc15p functions to organize lipid rafts at the cleavage site for cytokinesis.  相似文献   

15.
Schizosaccharomyces pombe Rho GTPases regulate actin cytoskeleton organization and cell integrity. We studied the fission yeast gene SPBC4F6.12 based on its ability to suppress the thermosensitivity of cdc42-1625 mutant strain. This gene, named pxl1(+), encodes a protein with three LIM domains that is similar to paxillin. Pxl1 does not interact with Cdc42 but it interacts with Rho1, and it negatively regulates this GTPase. Fission yeast Pxl1 forms a contractile ring in the cell division region and deletion of pxl1(+) causes a delay in cell-cell separation, suggesting that it has a function in cytokinesis. Pxl1 N-terminal region is required and sufficient for its localization to the medial ring, whereas the LIM domains are necessary for its function. Pxl1 localization requires actin polymerization and the actomyosin ring, but it is independent of the septation initiation network (SIN) function. Moreover, Pxl1 colocalizes and interacts with Myo2, and Cdc15, suggesting that it is part of the actomyosin ring. Here, we show that in cells lacking Pxl1, the myosin ring is not correctly assembled and that actomyosin ring contraction is delayed. Together, these data suggest that Pxl1 modulates Rho1 GTPase signaling and plays a role in the formation and contraction of the actomyosin ring during cytokinesis.  相似文献   

16.
Cell division in a number of eukaryotes, including the fission yeast Schizosaccharomyces pombe, is achieved through a medially placed actomyosin-based contractile ring. Although several components of the actomyosin ring have been identified, the mechanisms regulating ring assembly are still not understood. Here, we show by biochemical and mutational studies that the S.pombe actomyosin ring component Cdc4p is a light chain associated with Myo2p, a myosin II heavy chain. Localization of Myo2p to the medial ring depended on Cdc4p function, whereas localization of Cdc4p at the division site was independent of Myo2p. Interestingly, the actin-binding and motor domains of Myo2p are not required for its accumulation at the division site although the motor activity of Myo2p is essential for assembly of a normal actomyosin ring. The initial assembly of Myo2p and Cdc4p at the division site requires a functional F-actin cytoskeleton. Once established, however, F-actin is not required for the maintenance of Cdc4p and Myo2p medial rings, suggesting that the attachment of Cdc4p and Myo2p to the division site involves proteins other than actin itself.  相似文献   

17.
Nakano K  Bunai F  Numata O 《FEBS letters》2005,579(28):6311-6316
We identified a novel actin-modulating protein Stg 1 in the fission yeast Schizosaccharomyces pombe. Stg 1 is similar to mammalian SM22/transgelin, and biochemical experiments showed that Stg 1 crosslinked F-actin. Microscopic observation suggested that Stg 1 was a component of actin patch. Overexpression of Stg 1 caused a defect in cytokinesis by suppressing the formation of a contractile ring and formation of abnormal aggregates of F-actin in the ends and mid-region of cells. Although distribution of the actin cytoskeleton was not affected by disrupting Stg 1(+), genetic interaction suggested that Stg 1 was likely involved in controlling the organization of the actin cytoskeleton in cell morphogenesis and cytokinesis in fission yeast.  相似文献   

18.
Cells contain multiple formin isoforms that drive the assembly of profilin-actin for diverse processes. Given that many organisms also contain several profilin isoforms, specific formin/profilin pairs might be matched to optimally stimulate actin polymerization. We utilized a combination of bulk actin polymerization and single filament total internal reflection fluorescence microscopy assays to measure the effect of different profilin isoforms on the actin assembly properties of the cytokinesis formins from fission yeast (Cdc12p) and the nematode worm (CYK-1). We discovered that Cdc12p only effectively utilizes the single fission yeast profilin isoform SpPRF. Conversely, CYK-1 prefers the essential worm cytokinesis profilin CePFN-1 to the two non-essential worm profilin isoforms (SpPRF = CePFN-1 > CePFN-2 > CePFN-3). Chimeras containing the profilin-binding formin homology 1 (FH1) domain from one formin and the barbed-end associated FH2 domain from the other formin, revealed that both the FH1 and FH2 domains help confer profilin isoform specialization. Although the Cdc12p and CYK-1 FH1 domains cannot differentiate between profilin isoforms in the absence of actin, formin FH1 domains appear to preferentially select specific isoforms of profilin-actin. Surprisingly, analysis of profilin point mutants revealed that differences in highly conserved residues in both the poly-L-proline and actin binding regions of profilin do not explain their differential utilization by formin. Therefore, rapid formin-mediated elongation of profilin-actin depends upon favorable interactions of profilin-actin with the FH1 domain as well as the barbed-end associated FH2 domain. Specific formin FH1FH2 domains are tailored to optimally utilize actin bound to particular profilin isoforms.  相似文献   

19.
We tested the ability of 87 profilin point mutations to complement temperature-sensitive and null mutations of the single profilin gene of the fission yeast Schizosaccharomyces pombe. We compared the biochemical properties of 13 stable noncomplementing profilins with an equal number of complementing profilin mutants. A large quantitative database revealed the following: 1) in a profilin null background fission yeast grow normally with profilin mutations having >10% of wild-type affinity for actin or poly-L-proline, but lower affinity for either ligand is incompatible with life; 2) in the cdc3-124 profilin ts background, fission yeast function with profilin having only 2-5% wild-type affinity for actin or poly-L-proline; and 3) special mutations show that the ability of profilin to catalyze nucleotide exchange by actin is an essential function. Thus, poly-L-proline binding, actin binding, and actin nucleotide exchange are each independent requirements for profilin function in fission yeast.  相似文献   

20.
Fission yeast capping protein SpCP is a heterodimer of two subunits (Acp1p and Acp2p) that binds actin filament barbed ends. Neither acp1 nor acp2 is required for viability, but cells lacking either or both subunits have cytokinesis defects under stressful conditions, including elevated temperature, osmotic stress, or in combination with numerous mild mutations in genes important for cytokinesis. Defects arise as the contractile ring constricts and disassembles, resulting in delays in cell separation. Genetic and biochemical interactions show that the cytokinesis formin Cdc12p competes with capping protein for actin filament barbed ends in cells. Deletion of acp2 partly suppresses cytokinesis defects in temperature-sensitive cdc12-112 cells and mild overexpression of capping protein kills cdc12-112 cells. Biochemically, profilin has opposite effects on filaments capped with Cdc12p and capping protein. Profilin depolymerizes actin filaments capped by capping protein but allows filaments capped by Cdc12p to grow at their barbed ends. Once associated with a barbed end, either Cdc12p or capping protein prevents the other from influencing polymerization at that end. Given that capping protein arrives at the division site 20 min later than Cdc12p, capping protein may slowly replace Cdc12p on filament barbed ends in preparation for filament disassembly during ring constriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号