首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
树突状细胞(dendritic cell,DC)表面所表达的腺苷受体A2B亚型(ADOR-A2B)可促进DC对辅助性T淋巴细胞(T helper cell,Th)的激活,导致自身免疫性疾病的发生或加重. 本文旨在研究作为免疫反应的诱导分子Toll样受体(Toll-like receptors, TLRs)是否可调节ADOR-A2B在DC中的表达并籍此影响其功能. 体外诱导小鼠骨髓细胞分化为树突状细胞(BM-DC),以多种TLRs的配体,Pam3csk4、polyIC、LPS及CpG进行干预. 提取细胞总RNA,real-time PCR测定ador-a2a、ador-a2b的表达;放射性配体结合实验测定BM-DC对3H 腺苷结合能力的变化.以LPS及选择性ADOR-A2B激动剂BAY 60-6583协同干预BM-DC,ELISA测定培养基中IL-1、IL-6及IL-12的含量. 以干预后的BM DC刺激naive CD4细胞,ELISA测定培养基中IL-17A、IFNγ的含量,荧光抗体染色及流式细胞仪分析检测CD4细胞的分化. 结果显示, TLR 4的配体LPS可显著提高BM DC中ador-a2b的表达及对腺苷的结合能力. BAY 60-6583与LPS相协同可刺激BM DC分泌多种致炎因子,并增加其诱导CD4细胞向Th1及Th17分化的能力. 由此可见,Toll样受体可上调ador-a2b在DC中的表达,并可籍此增加DC分泌促炎因子的能力及对CD4细胞的刺激作用.  相似文献   

3.
TLR9(Toll-likereceptor9)是一种微生物病原相关分子结构模式识别受体,TLR9能够识别CpG—ODN(胞嘧啶磷酸鸟甘-寡聚脱氧核苷酸),使病原相关受体在先天性免疫细胞上表达,并激活下游炎性通路。研究表明,TLR9在先天性免疫反应中产生了重要作用,如脓毒血症、自身免疫性疾病、刀豆体球蛋白A介导肝炎性肝脏损伤、炎性泡沫细胞形成、缺血再灌注损伤等,并且与多种致病因子相关联,如肝x受体、甲酰多肽受体、线粒体DNA等。  相似文献   

4.
Interferon-inducible MxA protein plays a crucial role in cellular protection from RNA virus infection, although the protection mechanism is not completely clarified. Here, we examined effects of MxA on either uninfected or influenza virus A/PR/8/34-infected cells. Viral protein synthesis was reduced in cells expressing MxA. Under serum-starved conditions, not only viral but also cellular protein synthesis was reduced by expression of MxA. Of interest is that MxA promoted cell death induced by apoptotic stimuli as well as influenza virus infection. These results lead to a possibility that MxA suppresses multiplication of influenza virus by affecting cellular functions including the apoptotic pathway.  相似文献   

5.
Toll-like receptors and innate immunity   总被引:5,自引:0,他引:5  
Toll-like receptors (TLRs) are evolutionarily conserved innate receptors expressed in various immune and non-immune cells of the mammalian host. TLRs play a crucial role in defending against pathogenic microbial infection through the induction of inflammatory cytokines and type I interferons. Furthermore, TLRs also play roles in shaping pathogen-specific humoral and cellular adaptive immune responses. In this review, we describe the recent advances in pathogen recognition by TLRs and TLR signaling.  相似文献   

6.
Toll样受体与树突状细胞介导的天然免疫和获得性免疫   总被引:1,自引:0,他引:1  
树突状细胞(dendritic cells,DCs)作为迄今所发现的抗原提呈功能最强的一类抗原提呈细胞,是联结天然免疫和获得性免疫的桥梁。Toll样受体(Toll-like receptors,TLRs)是一类进化保守的胚系编码的模式识别受体,在DCs的抗原识别、递呈及激活T细胞等方面具有重要作用,是机体受外来抗原入侵后作出适当免疫反应的调控点。现就TLRs在不同DCs亚群中的分布、与DCs介导的天然免疫和获得性免疫的关系及DCs功能可塑性的分子基础作一综述。  相似文献   

7.
Myocardial ischemia/reperfusion (I/R) is the most common cause of myocardial inflammation, which is primarily a manifestation of the innate immune responses. Innate immunity is activated when pattern recognition receptors (PRRs) respond to molecular patterns common to microbes and to danger signals expressed by injured or infected cells, so called pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs). The expression of various PRRs in cardiomyocytes and the release of DAMPs from cardiomyocytes subjected to I/R injury, through active mechanisms as well as passive processes, enable cardiomyocytes to generate innate immune responses. Studies in isolated heart and cardiomyocytes have confirmed the inflammatory and functional effects of cardiac PRRs especially Toll-like receptors in response to I/R-derived DAMPs, such as heat shock proteins. This review addresses the active role of cardiomyocytes in mediating innate inflammatory responses to myocardial I/R. We propose that cardiomyocytes act as innate immune cells in myocardial I/R injury.  相似文献   

8.
动脉粥样硬化是一种慢性免疫炎症性疾病,它与自身的先天性免疫和适应性免疫密切相关。Toll样受体(Toll-like receptors,TLR)作为激活非特异性免疫的重要受体蛋白,可以识别病原微生物,激活免疫反应。Toll样受体9是TLR家族中的重要一员,是先天免疫系统中识别细菌和病毒Cp G DNA的重要受体,其与动脉粥样硬化(atherosclerosis,AS)的发生发展紧密相关。研究发现,TLR9与动脉粥样硬化的发生、发展(内皮受损和泡沫化细胞形成)密切相关,但也有研究发现TLR9在AS进程中具有潜在的保护效应。本文对Toll样受体9与动脉粥硬化疾病之间关系做一个简要的阐述,简明的总结了TLR9与树突细胞及自噬之间的联系,并为其作为靶点治疗动脉粥样硬化提供新的思路。  相似文献   

9.
We aimed to identify key genes and pathways associated with different immune statuses of hepatitis B virus (HBV) infection. The gene expression and DNA methylation profiles were analysed in different immune statuses of HBV infection. Differentially expressed genes (DEGs) and differentially methylated genes (DMGs) were identified, followed by their functional and integrative analyses. The differential expression of IgG Fc receptors (FcγRs) in chronic HBV‐infected patients and immune cells during different stages of HBV infection was investigated. Toll‐like receptor (TLR) signalling pathway (including TLR6) and leucocyte transendothelial migration pathway (including integrin subunit beta 1) were enriched during acute infection. Key DEGs, such as FcγR Ib and FcγR Ia, and interferon‐alpha inducible protein 27 showed correlation with alanine aminotransferase levels, and they were differentially expressed between acute and immune‐tolerant phases and between immune‐tolerant and immune‐clearance phases. The integrative analysis of DNA methylation profile showed that lowly methylated and highly expressed genes, including cytotoxic T lymphocyte‐associated protein 4 and mitogen‐activated protein kinase 3 were enriched in T cell receptor signalling pathway during acute infection. Highly methylated and lowly expressed genes, such as Ras association domain family member 1 and cyclin‐dependent kinase inhibitor 2A were identified in chronic infection. Furthermore, differentially expressed FcγR Ia, FcγR IIa and FcγR IIb, CD3?CD56+CD16+ natural killer cells and CD14highCD16+ monocytes were identified between immune‐tolerant and immune‐clearance phases by experimental validation. The above genes and pathways may be used to distinguish different immune statuses of HBV infection.  相似文献   

10.
C-type lectin receptors (CLRs) are an emerging family of pattern recognition receptors that recognizes pathogens or damaged tissue to trigger innate immune responses. However, endogenous ligands for CLRs are not fully understood. In this study, we sought to identify an endogenous ligand(s) for human macrophage-inducible C-type lectin (hMincle). A particular fraction of lipid extracts from liver selectively activated reporter cells expressing hMincle. MS analysis determined the chemical structure of the active component as cholesterol. Purified cholesterol in plate-coated and crystalized forms activates reporter cells expressing hMincle but not murine Mincle (mMincle). Cholesterol crystals are known to activate immune cells and induce inflammatory responses through lysosomal damage. However, direct innate immune receptors for cholesterol crystals have not been identified. Murine macrophages transfected with hMincle responded to cholesterol crystals by producing pro-inflammatory cytokines. Human dendritic cells expressed a set of inflammatory genes in response to cholesterol crystals, and this was inhibited by anti-human Mincle. Importantly, other related CLRs did not bind cholesterol crystals, whereas other steroids were not recognized by hMincle. These results suggest that cholesterol crystals are an endogenous ligand for hMincle and that they activate innate immune responses.  相似文献   

11.
DCs (dendritic cells) are the strongest professional APCs (antigen-presenting cells) to initiate immune responses against pathogens, but they are usually incompetent in initiating efficient immune responses in the progress of solid tumours. We have shown that Notch signalling plays a pivotal role in DC-dependent anti-tumour immunity. Compared with the control DCs, OP9-DL1 (Delta-like1) cell co-cultured DCs gained increased tumour suppression activity when inoculated together with tumour cells. This was probably due to the activation of Notch signalling in DCs enhancing their ability to evoke anti-tumour immune responses in solid tumours. Indeed, the OP9-DL1 cell co-cultured DCs expressed higher levels of MHC I, MHC II, CXCR4 (CXC chemokine receptor 4), CCR7 (CC chemokine receptor 7), IL-6 (interleukin 6), IL-12 and TNFα (tumour necrosis factor α), and a lower level of IL-10 than control DCs, resulting in more efficient DC migration and T-cell activation in vivo and in vitro. T-cells stimulated by OP9-DL1 cells co-cultured DCs more efficiently; and were cytotoxic against tumour cells, in contrast with control DCs. These results indicated that up-regulation of Notch signalling in DCs by co-culturing with OP9-DL1 cells enhances DC-dependent anti-tumour immune reactions, making the Notch signalling pathway a target for the establishment of the DC-based anti-tumour immunotherapies.  相似文献   

12.
Avian infectious bronchitis virus(IBV) is a Gammacoronavirus in the family Coronaviridae and causes highly contagious respiratory disease in chickens. Innate immunity plays significant roles in host defense against IBV. Here, we explored the interaction between IBV and the host innate immune system. Severe histopathological lesions were observed in the tracheal mucosa at 3–5days post inoculation(dpi) and in the kidney at 8 dpi, with heavy viral loads at 1–11 and 1–28 dpi,respectively. The expression of m RNAs encoding Toll-like receptor(TLR) 3 and TLR7 were upregulated at 3–8 dpi, and that of TIR-domain-containing adapter-inducing interferon(IFN) β(TRIF) was upregulated at 21 dpi in the trachea and kidney. Myeloid differentiation primary response protein 88(My D88) was upregulated in the trachea during early infection. Tumor necrosis factor receptor-associated factor(TRAF) 3 and TRAF6 were upregulated expression in both tissues.Moreover, melanoma differentiation-associated protein 5(MDA5), laboratory of genetics and physiology 2(LGP2), stimulator of IFN genes(STING), and mitochondrial antiviral signaling protein(MAVS), as well as TANK binding kinase 1(TBK1), inhibitor of kappa B kinase(IKK) ?, IKKα, IKKβ,IFN regulatory factor(IRF) 7, nuclear factor of kappa B(NF-κB), IFN-α, IFN-β, various interleukins(ILs), and macrophage inflammatory protein-1β(MIP-1β) were significantly upregulated in the trachea and downregulated in the kidney. These results suggested that the TLR and MDA5 signaling pathways and innate immune cytokine were induced after IBV infection. Additionally,consistent responses to IBV infection were observed during early infection, with differential and complicated responses in the kidney.  相似文献   

13.
IFN和PDS合剂体内抗流感病毒的作用   总被引:2,自引:0,他引:2  
观察了IFN与PDS合剂的体内抗病毒效果。首先排除IFN和PDS对动物的毒性作用 ,再以不同剂量的单剂和合剂给小鼠用药。用流感强毒株对小鼠进行攻击 ,同时以利巴韦林和正常小鼠作为对照。通过对动物死亡率、肺部病变的病理组织学检查结果进行比较 ,合剂组效果明显好于单剂组 ,且有剂量效应关系。上述结果表明 ,IFN和PDS合剂可明显减轻流感病毒感染过程中的肺组织病变 ,可用于流行性感冒的治疗。  相似文献   

14.
用流感病毒攻击小鼠建立动物模型,观察了重组干扰素α2b抗流感病毒的作用。小鼠采用滴鼻和腹腔注射途径分别给予40μL干扰素α2b,取40μL致死剂量(LD50)流感病毒攻击小鼠,观察IFNα2b抗流感病毒的效果。结果显示,干扰素可提高小鼠生存率。可见干扰素具有抗流感病毒的作用。  相似文献   

15.
The immune response is the result of the interplay between innate and adaptive immunity, yet the impact of aging on this interaction is unclear. Addressing this fundamental question will be critical for the development of effective vaccines for the rapidly rising older subpopulation that manifests increased prevalence of malignancies and infections. Therefore, we undertook the current study to investigate whether aging impairs toll-like receptor (TLR) function in myeloid dendritic cells and whether this leads to reduced T-cell priming. Our results demonstrate that innate TLR immune priming function of myeloid bone marrow derived and splenic dendritic cells (DC) is preserved with aging using both allogeneic and infectious murine experimental systems. In contrast, aging impairs in vitro and in vivo intrinsic T-cell function. Therefore, our results demonstrate that myeloid DCs manifest preserved TLR-mediated immune responses with aging. However, aging critically impairs intrinsic adaptive T-cell function.  相似文献   

16.
Respiratory syncytial virus (RSV) is the leading cause of respiratory infection in infants and young children. Severe clinical manifestation of RSV infection is a bronchiolitis, which is common in infants under six months of age. Recently, RSV has been recognized as an important cause of respiratory infection in older populations with cardiovascular morbidity or immunocompromised patients. However, neither a vaccine nor an effective antiviral therapy is currently available. Moreover, the interaction between the host immune system and the RSV pathogen during an infection is not well understood. The innate immune system recognizes RSV through multiple mechanisms. The first innate immune RSV detectors are the pattern recognition receptors (PRRs), including toll-like receptors (TLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), and nucleotide-biding oligomerization domain (NOD)-like receptors (NLRs). The following is a review of studies associated with various PRRs that are responsible for RSV virion recognition and subsequent induction of the antiviral immune response during RSV infection. [BMB Reports 2014; 47(4): 184-191]  相似文献   

17.
Toll-like receptors (TLRs) are key components of the innate immune system that detects microbial infection and triggers host defensive responses. To determine the roles of TLR2 and TLR4 in corneal epithelial cells in mediating innate responses against Aspergillus fumigatus , telomerase-immortalized human corneal epithelial cells (THCE) were challenged by TLR2 ligand zymosan, TLR4 ligand lipopolysaccharide and A. fumigatus hyphae, respectively. Culture media were collected at different time points and enzyme-linked immunosorbent assay was performed to detect the levels of inflammatory cytokines interleukin-1β (IL-1β) and IL-6. We found that THCE responded to the challenge of TLR2 or TLR4 ligand by expressing and secreting inflammatory cytokines into the culture media. And exposure of THCE to A. fumigatus hyphae resulted in the upregulation of IL-1β and IL-6. Treatment with TLR2- or TLR4-siRNA plasmid reduced TLR2 or TLR4 expression level in THCE when compared with controls, and caused a significant decrease in A. fumigatus -induced IL-1β and IL-6 production. Our results suggested that THCE can respond to TLR2 and TLR4 ligand challenge by secreting IL-1β and IL-6. They recognize A. fumigatus hyphae via TLR2 and TLR4 and initiate innate immune responses. Corneal epithelial cells play a role in innate defense against fungal infection through the mediation of inflammatory cytokines production.  相似文献   

18.
Gout is a common autoinflammatory disease characterized with elevated serum urate and recurrent attacks of intra-articular crystal deposition of monosodium urate. Accumulating evidence has demonstrated that MSU crystal-induced inflammation is a paradigm of innate immunity and the TLRs, NALP3 inflammasome and IL1R pathways are involved in gout development. Innate immunity components containing TLR2, TLR4, CD14, NALP3, ASC, Caspase-1 and CARD-8 are essential in the development of gouty inflammation. Recent studies suggest that innate immunity component gene functional mutations contribute to the development of autoinflammatory diseases including hereditary periodic fever syndrome, arthritis as well as inflammatory bowel disease. Taking into account these genetic findings, we would like to propose a novel hypothesis that the gene functional mutations might make innate immunity components as attractive susceptibility candidates and genetic markers for gout. Further clinical genetic studies need to be performed to confirm the role of innate immunity in the etiology of gout.  相似文献   

19.
流感病毒引起人类和动物的呼吸道感染已是全世界严重的经济和公共卫生问题。在感染早期,流感病毒会导致机体的先天免疫信号被激活,起到防御、清除病毒以及辅助适应性免疫应答的作用。但在与宿主共进化的过程中,流感病毒形成了多种逃逸策略,主要是通过病毒自身蛋白质阻断宿主天然免疫通路,抑制干扰素和炎性因子的生成。基于现有的研究成果,本文针对流感病毒先天免疫应答和先天免疫逃逸的机制做一扼要综述,这有助于加强流感病毒抗原进化的监测、探索疫苗和抗病毒药物的合理靶标,为更好地预防和控制该病提供有效的策略。  相似文献   

20.
彭俊  晏俊  张音音  冯浩  肖军 《激光生物学报》2019,28(4):314-322,329
在鱼类中关于转化生长因子β-激活激酶1(TAK1)在天然免疫反应中的功能研究较少。为了探究TAK1在斑马鱼天然免疫中的功能,本文克隆并获得了一种斑马鱼tak1剪接异构体(Drtak1),其开放阅读框含有1737个核苷酸,编码578个氨基酸,其中包括N端的丝氨酸/苏氨酸蛋白激酶结构域和C端的卷曲螺旋结构部。通过免疫荧光试验,证实DrTAK1是一种胞质蛋白。双荧光素酶报告试验显现在EPC细胞中单转DrTAK1不能诱导IFN的产生,但与IRF7共转时能显著提高其诱导干扰素启动子表达的能力。本文研究结果首次在斑马鱼中发现TAK1能正向调控IRF7介导的天然免疫反应,为后续DrTAK1功能研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号