首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The day‐night vertical distribution, diel feeding activity and diet of fourth instar of Chaoborus larvae were analyzed in lacustrine zone of a neotropical reservoir which shows seasonally contrasting hypolimnetic oxygen conditions. Larvae stayed in sediment and water bottom during day and ascended to surface during night. Results indicate that feeding activity is limited mainly to the plankton population. Phytoplankton, rotifers or remains of Chaoborus larvae were not found in crops. With the exception of ostracods, all crustacean prey available in the zooplankton occurred in the guts. Ceriodaphnia cornuta and Moina micrura were the most frequent food items (about 75% of occurrence frequency) and were positively selected. The remainder crustacean zooplankton taxa were negatively selected by larvae. The most intense feeding activity in larvae occurred near midnight and sunrise, in dates when the hypolimnion was anoxic. When oxygen was available on the bottom, a higher and not changing diel feeding activity was detected. Our results indicate that vertical migration may promote a spatial separation between larvae and zooplankton, and feeding activity of larvae occurred only when both overlapped. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
During the anomalously hot summer of 2010, the water temperature in the Gorky reservoir reached 27–33°C. Pronounced cyanobacterial blooms occurred in the limnetic part of the reservoir. The average values for bacterioplankton abundance (11.58 ± 1.25 × 106 cell/mL), biomass (886 ± 96 mg/m3), and production [169 ± 32 mg C/(m3 day)] were twice as high as in the year with temperatures comparable to long-term average values. These parameters were higher in the limnetic part than in the river one. The abundance (4.86 ± 0.75 × 103 cell/mL) and biomass (138 ± 9 mg/m3) of heterotrophic nanoflagellates were 2.3 and 1.7 times higher, respectively, than in years with regular temperature regimes. The average number of plank-tonic viral particles (N v) in 2010 was 48.89 ± 9.54 × 106 particles/mL, while virus-induced bacterial mortality (VMB) accounted for 26.9 ± 4.6% of the bacterial production. The N v and VMB values in the limnetic part of the reservoir were, respectively, 1.5 and 1.8 times higher than in the river one.  相似文献   

3.
The diel vertical migration of Chaoborus larvae is a well known phenomenon. In order to quantify the ability of larvae to utilize underwater light cues in their migration, we measured photoresponses of fourth-instar Chaoborus punctipennis larvae in the laboratory. The action spectrum for these larvae was characterized by a maximum in sensitivity at 400 nm, a plateau at a lower sensitivity from 480 to 560 nm, and a region of much lower sensitivity at wavelengths longer than 620 nm. Dark-adapted larvae exhibited a positive phototaxis at low light intensity which shifted to a negative phototaxix as light intensity increased. At 540 nm the threshold intensity was 1.5 × 10?9 W/m2 for positive phototaxis and about 10?6 W/m2 for negative phototaxis. Light adaptation decreased sensitivity and altered the phototactic pattern. Larvae have a clear circadian rhythm in negative phototaxis, in which greatest responsiveness occurs early in the day. We suggest that the rhythm in photoresponsiveness primarily controls the timing of the downward migration at dawn.  相似文献   

4.
SUMMARY. The Cow Green dam was completed in the summer of 1970 and invertebrate drift was sampled below the dam and in an adjacent tributary, Maize Beck, on thirty-one occasions between July 1970 and September 1973. Drift was sampled by pumping river water through a filter. The intake was placed in Maize Beck for the first sample and in the Tees for the second, and so on alternately for the rest of the sampling period. Nets were used on ten occasions, nine of these in winter months and once when the pump broke down. A total of ninety-five taxa were recognized, of which eighty-six occurred in Maize Beck and seventy-one in the Tees. The Tees fauna was dominated numerically and in terms of biomass by a large population of micro-crustaceans originating in the reservoir. Hydra and Naididae also formed a large proportion of the Tees drift but contributed little to the biomass. Ephemeroptera were most abundant in Maize Beck samples. Diptera were abundant in drift catches in both streams with simuliid larvae most numerous in Maize Beck and chironomid larvae most numerous in the Tees. The greatest drift densities of the benthic fauna were observed between April and October; the mean number of organisms per 10 m3 were seventy-three in Maize Beck and 144 in the Tees. The mean densities in winter were very low, respectively two and seventeen per 10 m3 in the two rivers. There was no significant difference between the mean levels of the total bottom fauna (numbers and biomass) in the drift in the two rivers during the period April-October, but vrtnter biomass was significantly greater in the Tees. In July 1970 micro-crustaceans represented 29% (14 per 10 m3) of total drift numbers and 3% (0.7 mg wet-weight per 10 m3) of the biomass, whereas in 1973 they represented 99% of both the numbers (37 670 per 10 m3) and weight (2.2 g wet-weight per 10 m3). The relation between benthos and drift was examined. In the drift Plecoptera and Baetidae were more abundant in Maize Beck than in the Tees. Only Chironomidae and Nais spp. were more abundant in the Tees, In the benthos the density of Plecoptera and Baetidae was not significantly different in the two rivers, but all other groups with the exception of Simuliidae occurred at greater densities in the Tees. The proportion of baetids present in the drift was greatest in Maize Beck. No such difference was demonstrated for total fauna. Diel rhythms were observed in baetids and simuhids with densities greater in night catches. Nocturnal peaks of these organisms were less pronounced in the Tees. Chironomid larvae showed no diel changes in abundance. Significant diel changes in the mean weights of individual animals were not detected in baetid nymphs or chironomids. Micro-crustaceans showed no nocturnal peaks of abundance. Preliminary observations on the quality and quantity of seston caught in drift samples between April and October showed great differences between the rivers. In the Tees the bulk ofeach sample consisted of algal filaments derived from the river and micro-crustaceans from the reservoir. In Maize Beck algae were un-common and the sample was composed of peat and mineral particles. Data are presented on seston output at different discharges.  相似文献   

5.
In 1974, an application of the microsporidan,Nosema pyrausta (Paillot, 1927)Kotlan, 1928, with a back-pack type sprayer (22.5×107 spores/plant) to whorl stage maize infested with European corn borers,Ostrinia nubilalis (Hübner) reduced the number of larvae/plant by 48.1% and produced an infection of 15.3×104 spores/mg of larval weight in 62.1% of the collected larvae. In 1975, applications of 24.3×107 spores/plant to similar maize, in 2 separate tests, reduced the number of larvae/plant by 18.8 and 43.8% and caused an infection of 14.3 and 19.1×104 spores/mg of larval weight in 65.9 and 63.3% of the collected larvae. Also, in 1975, applications of 24.3×107 spores/plant to pollen shedding maize in 2 separate tests reduced the number of larvae/plant by 17.2 and 14.1% and caused an infection of 24.3 and 27.2×104 spores/mg of larval weight in 99.2 and 95.2% of the collected larvae.  相似文献   

6.
Turbulence can affect predator–prey interactions. The effect of turbulence on the feeding efficiency of an ambush predator was tested with laboratory experiments. The experiments were conducted in 100-L aquaria in which ten individuals of fourth instar Chaoborus flavicans larvae were placed as predators. Two prey densities (3 and 10 ind. of Daphnia pulex L?1) and two durations (30 and 120 min) were tested in a nonturbulent treatment and five different turbulence levels [average root-mean-square (RMS) velocities ranging from 0 to 7.3 cm s?1, corresponding dissipation rates from 7.2 × 10?7 to 1.3 × 10?3 m2 s?3]. We hypothesized that the feeding rate of C. flavicans would be enhanced by turbulence due to increasing encounter rates up to a turbulence level above which a disturbance in post-encounter processes would lead to reduced feeding efficiency. However, the results showed no significant increase in the feeding rate of C. flavicans at intermediate turbulence. At high turbulence we found the expected significant negative response in the feeding rate of Chaoborus larvae. The feeding rate declined below the rates at nonturbulent and intermediate turbulence conditions as the average RMS velocity exceeded 3.1 cm s?1 (dissipation rate 9.9 × 10?5 m2 s?3, respectively).  相似文献   

7.
We analyzed the effects of planktivorous Holeshestes heterodon Eigenmann (Characidae) predation on the plankton community of a small subtropical reservoir, using four enclosures (volume about 17.5 m3), open to the sediment, established in the littoral zone. Two enclosures were stocked with fish (mean TL 5.7 cm), at a density of about 4–5 fish m–3 (approx. 8 g m–3), whereas two remained fishless. The experiment lasted a little longer than one month. In the fish enclosures, most Crustacea and Chaoborus larvae remained scarce, probably as a result of visually selective fish predation. In both fishless enclosures, Chaoborus larvae became abundant. However, in only one of these did large individuals become relatively numerous; this discrepancy in the demographic structure of the Chaoborus populations between the two fishless enclosures is unexplained. Only in the fishless enclosure without appreciable numbers of large Chaoborus did densities of Crustacea increase greatly. It is suggested that in the enclosure containing large Chaoborus individuals, crustacean populations were prevented from developing due to predation pressure, while the small Chaoborus larvae of the other enclosure could not readily consume these prey. Rotifers were low in abundance in the absence of fish, probably as a consequence of Chaoborus predation. Phytoplankton density increased in all four enclosures, due probably to the lack of water flow. Only in the fishless enclosure with high densities of crustaceans did phytoplankton abundance decrease markedly at the end of the experiment, perhaps because of grazing losses.  相似文献   

8.
Drifting invertebrates and suspended sediments were collected at monthly intervals from June 1977 to May 1978. The numbers and biomass of drifting organisms reflected the seasonal cycles of aquatic insects. Some aquatic organisms showed behavioral drift either during a sample day or during some portion of their life cycle. Parapsyche cardis Ross and Diplectrona modesta Banks (Trichoptera: Hydropsychidae) dispersed as first instar larvae; few later instars of these two net-spinning caddisflies drifted. The drift of nymphal Peltoperla maria Needham et Smith (Plecoptera: Peltoperlidae) was apparently related more to detritus transport than to benthic densities or discharge alone. Power law relations between the magnitude of daily invertebrate drift and discharge or sediment variables are demonstrated for some taxa in Hugh White Creek. The general level of stream invertebrate drift appears to be related to detritus transport, and drift during storms is also related to detritus transport. During storms, terrestrial invertebrate drift was related to rainfall intensity, canopy washing, and channel expansion. Drift density of aquatic invertebrates in Hugh White Creek was within the range of previously reported values for other streams, but the estimate of yearly export (aquatic invertebrates = 134 g · y?1; terrestrial invertebrates = 23 g · y?1) is lower reflecting the smaller size of Hugh White Creek in comparison with those other streams.  相似文献   

9.
A purified granulosis virus isolated fromPieris brassicae (L.) was tested in the field against an introduced population ofPieris rapae (L.) larvae on cabbage (cv January King) in small experimental plots at Littlehampton, Sussex. Experiments were designed to compare the relative efficacy of single and multiple applications of virus (2.1×1012 and 3.7×1012 or 2.1×1014 and 3.7×1014 virus capsules/ha) in reducing numbers ofP. rapae larvae. An experiment was carried out in June 1978 and repeated in August to coincide approximately with the 2 natural generations ofP. rapae in southern England. Larval populations were monitored by regularin situ assessment of plants and by destructive sampling. Within 10 days of spraying virus there was a significant reduction in the mean larval population on all virus-treated plots compared with untreated controls. Sprays of 2.1×1014 and 3.7×1014 capsules/ha reduced larval numbers more quickly than 2.1×1012 and 3.7×1012/ha treatments. In the 1st experiment, three sprays of virus at either 2.1×1012 or 2.1×1014 capsules/ha gave no increase over the final level of control achieved by a single spray. However, in the 2nd experiment, a single spray of 3.7×1012 capsules/ha did not significantly reduce the numbers of larvae. It is likely that this failure could be accounted for by a combination of the larger “natural” population ofP. rapae recorded midway through the 2nd experiment and the rapid inactivation of virus deposits which left little infectious virus to infect these larvae. Virus inactivation was so rapid that only 7–33 % of the initial virus deposits remained 1 day after application. These results suggest that further understanding of virus formulation, persistence and dosage rates are needed before such a virus can be used in a rational manner.  相似文献   

10.
Bioassay of a nucleopolyhedrosis virus of the gypsy moth, Porthetria dispar   总被引:1,自引:0,他引:1  
The pathogenicity of an American isolate of the nucleopolyhedrosis virus of Porthetria dispar was studied. Laboratory data on third-instar larvae showed that mortality was directly related to virus concentration. The computed LD50 was 1,729 PIBs/larva or 72 PIBs/mg larval body weight. The LT50's for 2.5 × 106, 2.5 × 105, 2.5 × 104, 5 × 103, and 2.5 × 103 PIBs/larva were 8.1, 9.9, 11.3, 12.2, and 13.1 days, respectively. Approximately 37 and 60% of the total larval mortality occurred during the third- and fourth-instar, respectively. The periods to pupation and the pupal weights of survivors apparently were not affected by virus concentration. Moth emergence from surviving pupae was not reduced.  相似文献   

11.
From 1972 to 1974, estimates of the natural larval mortality (> second instar) of elm bark beetles caused by pathogenic organisms were always below 7'5 % of the beetle population. The pathogenic fungus Verticillium lecanii was frequently isolated from field-collected dead larvae, and in the laboratory all larvae were killed in 5 days when exposed to spore concentrations of 4·5 × 106 spores/ml. V. lecanii begins to lose its pathogenicity after prolonged culture on artificial media. The time taken for V. lecanii to kill Scolytus scolytus larvae when exposed to a logarithmic series of spore dilutions from 9·1 × 107/ml to 9·1 × 103/ml increased with decreasing amounts of inoculum. Even at spore concentrations as low as 9·1 × 103/ml the mortality of treated larvae was greater than that of untreated individuals. At 100% r.h. all treated larvae were killed over a temperature range of 5–30 °C; those maintained at 25 °C were killed most rapidly and those kept at 5 °C the slowest.  相似文献   

12.
Understanding the drift dynamics of pallid sturgeon (Scaphirhynchus albus) early life intervals is critical to evaluating damming effects on sturgeons. However, studying dispersal behavior is difficult in rivers. In stream tanks, we studied the effect of velocity on dispersal and holding ability, estimated swimming height, and used the data to estimate drift distance of pallid sturgeon. Dispersal was by days 0–10 embryos until fish developed into larvae on day 11 after 200 CTU (daily cumulative temperature units). Embryos in tanks with a mean channel velocity of 30.1 cm s−1 and a side eddy could not hold position in the eddy, so current controlled dispersal. Late embryos (days 6–10 fish) dispersed more passes per hour than early embryos (days 0–5 fish) and held position in side eddies when channel velocities were 17.3 cm s−1 or 21.1 cm s−1. Day and night swim‐up and drift by embryos is an effective adaptation to disperse fish in channel flow and return fish from side eddies to the channel. Early embryos swam <0.50 cm above the bottom and late embryos swam higher (mean, 90 cm). A passive drift model using a near bottom velocity of 32 cm s−1 predicted that embryos dispersing for 11 days in channel flow would travel 304 km. Embryos spawned at Fort Peck Dam, Missouri River, must stop dispersal in <330 km or enter Lake Sakakawea, where survival is likely poor. The model suggests there may be a mismatch between embryo dispersal distance and location of suitable rearing habitat. This situation may be common for pallid sturgeon in dammed rivers.  相似文献   

13.
Tests were conducted with neonate Cadra cautella larvae to determine the pathogenicity of a nuclear polyhedrosis virus. A bioassay on an agar base diet showed that concentrations of 0.25, 0.50, 2.00, and 4.00 polyhedra/mm2 killed 27, 55, 87, and 92% of the test larvae, respectively. A study of the time of death showed that most larvae died on the 9th or 10th day after exposure to 4 polyhedra/mm2 at 27°C. When larvae were exposed to 8, 16, 32, and 64 × 103 polyhedra/g of bran diet, recorded mortalities were 18, 22, 48, and 80%, respectively. All the samples of virus in bran diet which were incubated at various temperatures for 7, 14, and 28 days remained stable at all test conditions except the sample incubated at 42°C for 14 days, and those held at 37° and 42° for 28 days. Larvae of C. cautella, Plodia interpunctella, Ephestia elutella, and Paramyelois transitella placed on a diet with 40 × 103 polyhedra/g had mortalities of 75, 59, 16, and 4%, respectively. Light and electron microscopical examination of P. interpunctella cadavers showed that they were infected with a multiply occluded nuclear polyhedrosis virus.  相似文献   

14.
Receptors for luteinizing hormone/human chorionic gonadotropin (LH/hCG) have been identified in porcine, rabbit, rat, and human myometrium. To determine the estrous cycle and pregnancy related changes in the receptor capacity and affinity, radioreceptor assays were performed with membrane homogenates of porcine uterine tissues. Cycling gilts were divided into four experimental groups: I (n=6), day 1–2; II (n=5), day 6–7; III (n=5), day 11–12; and IV (n=6), day 18–20 of the estrous cycle. Pregnant pigs were divided into three experimental groups: I (n=5), day 35–40; II (n=5), day 65–70; and III (n=4), day 95–105 of pregnancy. The concentrations [femtomoles/mg protein (fmol/mg protein)] and affinities of unoccupied LH/hCG binding sites were characterized in all samples of myometrium. Receptor concentrations were highest (P<0.01) in groups II and III (19.3±2.5 and 35.8±2.1 fmol/mg protein, respectively), and was lowest in groups I and IV (5.3±1.4 and 7.5±0.7 fmol/mg protein, respectively). Receptor affinity constants (Ka) were consistent (P>0.05) throughout the estrous cycle [I, (5.1±1.5)×109; II, (3.0±0.8)×109; III, (3.2±0.9)×109; IV, 5.5±0.7×109 lm−1]. Plasma hormone concentrations of progesterone, estrogen and LH were typical of values noted at these times. During pregnancy, receptor concentrations were greatest (P<0.05) in group II (85.4±18.5 fmol/mg protein). In groups I and III receptor numbers were 10.8±2.3 and 26.7±6.6 fmol/mg protein, respectively. The Ka in group I was 10 times greater (P<0.05) than Ka in groups II and III, (I, 3.1±0.9×1010 lm−1; II, 3.4±0.3×109 lm−1; III, 3.3±1.1×109 lm−1). Plasma hormone concentrations typically found during pregnancy were noted. The function of these LH/hCG binding sites remains unknown; however, changes in receptor capacity during the estrous cycle and pregnancy support a role for modulation of the receptor by hormonal factors.  相似文献   

15.
Chaoborus, the phantom midge (Insecta, Diptera, Chaoboridae), has a widespread distribution, commonly occurring in lakes and ponds all over the world. In the great lakes region of East Africa Chaoborus is present in Lakes Victoria, Albert, Edward, Malawi and George, but absent from Lakes Tanganyika, Kivu and Turkana. Tropical lakes typically have water temperatures in the range of 22–26 °C year round. Lakes Tanganyika and Kivu have only 20% of their bottom sediments oxygenated during full circulation, contrary to 95–100% in all of the other lakes, excluding Lake Malawi (45%) (Hecky & Kling, 1987). Planktivorous fish are present in all lakes (Lehman, 1995). We hypothesized that the absence of Chaoborus larvae from some lakes of East Africa may be the result of interaction among high temperatures, low oxygen levels, and fish predation.We developed a model to estimate energetic costs for Chaoborus larvae at temperatures greater than 14 °C. We hoped to shed light on the bioenergetics of Chaoborus populations, and the possibility that extant distributions of Chaoborus larvae are the result of energetic constraints.We found that relative respiratory and growth costs of Chaoborus larvae are highest in the early stages of development. We estimated that non-feeding instar I larvae living in 25 °C water will starve to death in less than one day. It is possible that Chaoborus populations are prevented from establishing in certain areas because high energetic costs condemn young larvae to death by either predation or starvation.  相似文献   

16.
The diel vertical migration of Chaoborus larvae varies with larval instar. Although light is involved in the control of vertical migration the contribution of larval photoresponses is unknown. In order to describe ontogenetic changes in larval photoresponses we measured photoresponses of second-instar Chaoborus punctipennis larvae in the laboratory. The response spectrum of these larvae had peaks in sensitivity at 420 and 620 nm with a wide plateau of lower sensitivity from 460 to 600 and 640 to 680 nm. Dark adapted larvae were positively phototactic at intensities from 10?7 to 101 Wm?2 at 420 nm. The level of response decreased somewhat above 10?4 Wm?2, and above 10?2 Wm?2 a small proportion of larvae shifted to a negative phototaxis. At 420 nm the threshold intensity was about 10?7 Wm?2 for positive phototaxis and 10?2 Wm?2 for negative phototaxis. Light adaptation increased the threshold intensity for positive phototaxis. The differences in larval photoresponses between second- and fourth-instar larvae suggests that the young instars are adapted to the photoenvironment of the water column and older larvae are adapted to avoid the water column except at very low light intensities. These predictions match the diel distribution of these larvae.  相似文献   

17.
Dermal exposure to volatile compounds (VC) in municipal water while showering is typically estimated using a steady-state condition between VC in water impacting on skin and skin exposed to water. The lag times to achieve steady-state between VC and skin can vary in the range of 7.5–218.3 min, while shower duration is often less than these values. Estimates of dermal exposure to VC using steady-state while showering may misinterpret exposure. This study developed models and estimated exposure to some disinfection byproducts (DBPs) through dermal pathway by considering lag times while showering. Dermal uptakes of VC were compared using different approaches. In the proposed approach, uptakes of trihalomethanes were estimated between 9.55 × 10?10–1.43 × 10?8 mg/cm2 of skin during the lag times from exposure to water with trihalomethanes of 50 μg/L. These values were higher than the steady-state estimates (1.37 × 10?10–4.34 × 10?9 mg/cm2), and lower than the average exposure analysis (4.12 × 10-8–1.93 × 10?6 mg/cm2). Using the Drinking Water Surveillance Program data in Ontario, chronic daily intakes of trihalomethanes were estimated to be 9.40 × 10?7 (1.85 × 10?7–1.65 × 10?6), 3.89 × 10?6 (7.11 × 10?7–2.33 × 10?5), and 1.40 × 10?6 (4.0 × 10?7–1.77 × 10?6) mg/kg/day in Toronto, Ottawa, and Hamilton, respectively. The findings can be useful in understanding THMs exposure and risk through dermal pathway.  相似文献   

18.
This study examined the physiological effects of joint and separate parasitism and infection by the endoparasitoid Microplitis pallidipes Szépligeti and the nucleopolyhedrovirus (NPV), respectively, on haemolymph 20‐hydroxyecdysone (20‐E) titre in Spodoptera exigua (Hübner) larvae. The results indicated that in parasitized larvae, virus‐infected larvae (5.7 × 103 and 5.7 × 105 OB/ml) and parasitized larvae infected with virus at 5.7 × 105 OB/ml, compared to healthy larvae, the 20‐E all declined during the first 3 days but began to increase from day 4 after treatment, while in jointly parasitized and infected larvae (5.7 × 103 OB/ml), the 20‐E declined during the first 4 days but began to increase on day 5 after treatment. Meanwhile, compared to parasitized larvae, the 20‐E declined during the first 4 days but significantly increased on day 5 in jointly parasitized and infected larvae (5.7 × 103 OB/ml), while significantly increased during the first 2 days but began to decrease from day 3 after treatment in jointly parasitized and infected larvae (5.7 × 105 OB/ml). Finally, in larvae that were both parasitized and virus infected (5.7 × 103 OB/ml), compared to just virus‐infected larvae (5.7 × 103 OB/ml), the 20‐E was lower on days 3 and 4 but higher on other days after treatment; in larvae that were both parasitized and virus infected (5.7 × 105 OB/ml), compared to just virus‐infected larvae (5.7 × 105 OB/ml), the 20‐E was significantly higher at the first 2 days but lower from day 3 after treatment. Our results revealed that 2nd instar larval M. pallidipes in host bodies may release 20‐E into the haemolymph of S. exigua larvae and that NPV infection may stimulate S. exigua to release more 20‐E during its third to fourth instar larval moulting. We found that this stimulatory effect was greater with higher virus concentrations.  相似文献   

19.
Spores of Pleistophora schubergi, when applied to oak trees in the field at 2 × 108 spores/ml with a uv protectant, “Shade,” infected 88% of Anisota senatoria larvae at 4 days after spray application. Spores without the uv protectant infected only 10% of the larvae at 4 days after application. When the spores were applied at the rate of 2 × 108 and 2 × 107 spores/ml in the field, 96 and 72% of the A. senatoria larvae and 100 and 100% of the Symmerista canicosta larvae were infected 14 days after spray application.  相似文献   

20.
Mass production and storage methods were evaluated for maximization of spores of Vairimorpha necatrix, a promising protozoan for microbial control due to its virulence and prolificity in lepidopterous pests. In vivo spore production was at a maximum when 3rd instar Heliothis zea were exposed to 6.6 spores/mm2 of artificial diet surface and reared for 15 days. Approximately 1.67 × 1010 spores/larva were produced, or ca. 1 × 1010 spores/larva after partial purification of the spores by homogenization of the larvae in water, filtration, and centrifugation. The spores were inactivated by relatively short exposures to several chemicals which were tested to counteract contamination of the diet surface by fungi in the spore inoculum. Spores of V. necatrix were stored at refrigerated and freezing temperatures for up to 2 years and bioassayed periodically with 2nd instar H. zea. Spores lost little infectivity after 23 months at 6°C if they were stored in a purified water suspension plus antibiotic, but they were noninfective after 18 months at 6°C if stored in host tissue. Storage at ?15°C caused little loss of infectivity whether the spores were stored in water and glycerine, in host tissue, or after lyophilization. The spores withstood lyophilization in host cadavers better than in purified water suspension. Samples of a dry V. necatrix-corn meal formulation, which was prepared for field efficacy tests and stored at ?15° and 6°C, were highly infective after 9 months. Large numbers of V. necatrix spores can thus be produced and later made available for microbial control field trials with little loss of infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号