首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The X-ray crystal structures of the adducts of human carbonic anhydrase (hCA, EC 4.2.1.1) II complexed with two aromatic sulfonamides incorporating 2-thienylacetamido moieties are reported here. Although, the two inhibitors only differ by the presence of an additional 3-fluoro substituent on the 4-amino-benzenesulfonamide scaffold, their inhibition profiles against the cytosolic isoforms hCA I, II, III, VII and XIII are quite different. These differences were rationalized based on the obtained X-ray crystal structures, and their comparison with other sulfonamide CA inhibitors with clinical applications, such as acetazolamide, methazolamide and dichlorophenamide. The conformations of the 2-thienylacetamido tails in the hCA II adducts of the two sulfonamides were highly different, although the benzenesulfonamide parts were superimposable. Specific interactions between structurally different inhibitors and amino acid residues present only in some considered isoforms have thus been evidenced. These findings can explain the high affinity of the 2-thienylacetamido benzenesulfonamides for some pharmacologically relevant CAs (i.e., isoforms II and VII) being also useful to design high affinity, more selective sulfonamide inhibitors of various CAs.  相似文献   

3.
For an animal model to predict a compound's potential for treating human disease, inhibitor interactions with the cognate enzymes of separate species must be comparable. Rabbit and human isoforms of stromelysin-1 are highly homologous, yet there are clear and significant compound-specific differences in inhibitor potencies between these two enzymes. Using crystal structures of discordant inhibitors complexed with the human enzyme, we generated a rabbit enzyme homology model that was used to identify two unmatched residues near the active site that could explain the observed disparities. To test these observations, we designed and synthesized three chimeric mutants of the human enzyme containing the single (H224N and L226F) and double (H224N/L226F) mutations. A comparison of inhibitor potencies among the mutant and wild-type enzymes shows that the mutation of a single amino acid in the human enzyme, histidine 224 to asparagine, is sufficient to change the selectivity profile of the mutant to that of the rabbit isoform. These studies emphasize the importance of considering species differences, which can result from even minor protein sequence variations, for the critical enzymes in an animal disease model. Homology modeling provides a tool to identify key differences in isoforms that can significantly affect native enzyme activity.  相似文献   

4.
Carbonic anhydrase (CA, EC 4.2.1.1) inhibitors (CAIs) started to be used in the treatment of peptic ulcers in the 1970s, and for more than two decades, a group led by Ioan Pu?ca? used them for this purpose, assuming that by inhibiting the gastric mucosa CA isoforms, hydrochloric acid secretion is decreased. Although acetazolamide and other sulfonamide CAIs are indeed effective in healing ulcers, the inhibition of CA isoforms in other organs than the stomach led to a number of serious side effects which made this treatment obsolete when the histamine H2 receptor antagonists and the proton pump inhibitors became available. Decades later, in 2002, it has been discovered that Helicobacter pylori, the bacterial pathogen responsible for gastric ulcers and cancers, encodes for two CAs, one belonging to the α-class and the other one to the β-class of these enzymes. These enzymes are crucial for the life cycle of the bacterium and its acclimation within the highly acidic environment of the stomach. Inhibition of the two bacterial CAs with sulfonamides such as acetazolamide, a low-nanomolar H. pylori CAI, is lethal for the pathogen, which explains why these compounds were clinically efficient as anti-ulcer drugs. Thus, the approach promoted by Ioan Pu?ca? for treating this disease was a good one although the rationale behind it was wrong. In this review, we present a historical overview of the sulfonamide CAIs as anti-ulcer agents, in memoriam of the scientist who was in the first line of this research trend.  相似文献   

5.
The inhibition of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1) with dithiothreitol, 2-mercaptoethanol, tris(carboxyethyl)phosphine (reducing agent frequently added to enzyme assay buffers) and threitol has been investigated. The agents were very weak inhibitors of isozymes CA II and CA IX, but unexpectedly, strongly influenced the binding of the low nanomolar sulfonamide inhibitor acetazolamide (5-acetamido-1,3,4-thiadiazole-2-sulfonamide). Acetazolamide affinity for all investigated CAs diminished orders of magnitude with increasing concentrations of these agents in the assay system. DTT and similar derivatives should not be added to the assay buffers used in monitoring CA activity/inhibition, as they lead to under-estimation of the binding constants, by a mechanism probably involving the formation of ternary complexes.  相似文献   

6.
Sulfonamide drugs mediate their main therapeutic effects through modulation of the activity of membrane and cytosolic carbonic anhydrases. How interactions of sulfonamide drugs impact structural properties and activity of carbonic anhydrases requires further study. Here the effect of acetazolamide on the structure and function of bovine carbonic anhydrase II (cytosolic form of the enzyme) was evaluated. The Far-UV CD studies indicated that carbonic anhydrase, for the most part, retains its secondary structure in the presence of acetazolamide. Fluorescence measurements using iodide ions and ANS, along with ASA calculations, revealed that in the presence of acetazolamide minimal conformational changes occurred in the carbonic anhydrase structure. These structural changes, which may involve spatial reorientation of Trp 4 and Trp 190 or some other related aminoacyl residues near the active site, considerably reduced the catalytic activity of the enzyme while its thermal stability was slightly increased. Our binding results indicated that binding of acetazolamide to the protein could occur with a 1:1 ratio, one mole of acetazolamide per one mole of the protein. However, the obtained kinetic results supported the existence of two acetazolamide binding sites on the protein structure. The occupation of each of these binding sites by acetazolamide completely inactivates the enzyme. Advanced analysis of the kinetic results revealed that there are two substrate (p-NPA) binding sites whose simultaneous occupation is required for full enzyme activity. Thus, these studies suggest that the two isoforms of CA II should exist in the medium, each of which contains one substrate binding site (catalytic site) and one acetazolamide binding site. The acetazolamide binding site is equivalent to the catalytic site, thus, inhibiting enzyme activity by a competitive mechanism.  相似文献   

7.
The high resolution crystal structure of 5-(2-thienylacetamido)-1,3,4-thiadiazole-2-sulfonamide complexed to human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoform hCA II is reported. The compound binds in a similar manner with acetazolamide when the sulfamoyl–thiadiazolyl–acetamido fragment of the two compounds is considered, but the thienyl tail was positioned in the subpocket 2, rarely observed by other investigated CA inhibitors. This positioning allows interaction with amino acid residues (such as Asn67, Ile91, Gln92 and Val121 which are variable in other isoforms of medicinal chemistry interest, such as hCA I, IX and XII. Indeed, the investigated sulfonamide was a medium potency hCA I and II inhibitor but was highly effective as a hCA IX and XII inhibitor. This different behavior with respect to acetazolamide (a promiscuous inhibitor of all these isoforms) has been explained by resolving the crystal structure, and may be used to design more isoform-selective compounds.  相似文献   

8.
The wild-type (WT) amylomaltase gene was directly isolated from soil DNA and cloned into a pET19b vector to express in E. coli BL21(DE3). The ORF of this gene consisted of 1,572 bp, encoding an enzyme of 523 amino acids. Though showing 99% sequence identity to amylomaltse from Thermus thermophilus ATCC 33923, this enzyme is unique in its alkaline optimum pH. In order to alter amylomaltase with less coupling or hydrolytic activity to enhance cycloamylose (CA) formation through cyclization reaction, site-directed mutagenesis of the second glucan binding site involving in CA production was performed at Tyr-101. The result revealed that the mutated Y101S enzyme showed a small increase in cyclization activity while significantly decreased disproportionation, coupling and hydrolytic activities. Mutation also resulted in the change in substrate specificity for disproportionation reaction. The WT enzyme preferred maltotriose, while the activity of mutated enzyme was the highest with maltopentaose substrate. Product analysis by HPAEC-PAD demonstrated that the main CAs of the WT amylomaltase were CA29-CA37. Y101S mutation did not change the product pattern, however, the amount of CAs formed by the mutated enzyme tended to increase especially at long incubation time. The article is published in the original.  相似文献   

9.
The cytosolic isoform XIII is a recently discovered member of the human carbonic anhydrase (hCA, EC 4.2.1.1) family. It is selectively expressed among other tissues in the reproductive organs, where it may control pH and ion balance regulation, ensuring thus proper fertilization conditions. The authors report here the X-ray crystallographic structure of this isozyme in the unbound state and in complex with a classical sulfonamide inhibitor, namely acetazolamide. A detailed comparison of the obtained structural data with those already reported for other CA isozymes provides novel insights into the catalytic properties of the members of this protein family. On the basis of the inhibitory properties of acetazolamide against various cytosolic/transmembrane isoforms and the structural differences detected within the active site of the various CA isoforms, further prospects for the design of isozyme-specific CA inhibitors are here proposed.  相似文献   

10.
Intracellular carbonic anhydrase of Chlamydomonas reinhardtii.   总被引:3,自引:1,他引:2       下载免费PDF全文
An intracellular carbonic anhydrase (CA; EC 4.2.1.1) was purified to homogeneity from a mutant strain of Chlamydomonas reinhardtii (CW 92) lacking a cell wall. Intact cells were washed to remove periplasmic CA and were lysed and fractionated into soluble and membrane fractions by sedimentation. All of the CA activity sedimented with the membrane fraction and was dissociated by treatment with a buffer containing 200 mM KCI. Solubilized proteins were fractionated by ammonium sulfate precipitation, anionic exchange chromatography, and hydrophobic interaction chromatography. The resulting fraction had a specific activity of 1260 Wilbur-Anderson units/mg protein and was inhibited by acetazolamide (50% inhibition concentration, 12 nM). Final purification was accomplished by the specific absorption of the enzyme to a Centricon-10 microconcentrator filter. A single, 29.5-kD polypeptide was eluted from the filter with sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer, and a 1.5 M ammonium sulfate eluate contained CA activity. In comparison with human CA isoenzyme II, the N-terminal and internal amino acid sequences from the 29.5-kD polypeptide were 40% identical with the N-terminal region and 67% identical with an internal conserved region. Based on this evidence, we postulate that the 29.5-kD polypeptide is an internal CA in C. reinhardtii and that the enzyme is closely related to the alpha-type CAs observed in animal species.  相似文献   

11.
Five conserved histidine residues are found in the human endothelial nitric-oxide synthase (NOS) heme domain: His-420, His-421, and His-461 are close to the heme, whereas His-146 and His-214 are some distance away. To investigate whether the histidines form a non-heme iron-binding site, we have expressed the H146A, H214A, H420A, H421A, and H461A mutants. The H420A mutant could not be isolated, and the H146A and H421A mutants were inactive. The H214A mutant resembled the wild-type enzyme in all respects. The H461A mutant had a low-spin heme, but high concentrations of L-Arg and tetrahydrobiopterin led to partial recovery of activity. Laser atomic emission showed that the only significant metal in NOS other than calcium and iron is zinc. The activities of the NOS isoforms were not increased by incubation with Fe(2+), but were inhibited by high Fe(2+) or Zn(2+) concentrations. The histidine mutations altered the ability of the protein to dimerize and to bind heme. However, the protein metal content, the inability of exogenous Fe(2+) to increase catalytic activity, and the absence of evidence that the conserved histidines form a metal site provide no support for a catalytic role for a non-heme redox-active metal.  相似文献   

12.
The catalytic activity and the inhibition of a new coral carbonic anhydrase (CA, EC 4.2.1.1), from the scleractinian coral Stylophora pistillata, STPCA-2, has been investigated. STPCA-2 has high catalytic activity for the physiological reaction being less sensitive to anion and sulfonamide inhibitors compared to STPCA, a coral enzyme previously described. The best STPCA-2 anion inhibitors were sulfamide, sulfamic acid, phenylboronic acid, and phenylarsonic acid (KIs of 5.7-67.2 μM) whereas the best sulfonamide inhibitors were acetazolamide and dichlorophenamide (KIs of 74-79 nM). Because this discriminatory effect between these two coral CAs, sulfonamides may be useful to better understand the physiological role of STPCA and STPCA-2 in corals and biomineralization processes.  相似文献   

13.
14.
Vaccinia virus encodes an enzyme with DNA modifying activity that cleaves and inefficiently cross-links cruciformic DNA. This enzyme is contained within the virion, expressed at late times postinfection, and processes DNA in an energy-independent, Mg2+ ion-independent manner. Viral nuclease activity was measured in extracts from cells infected with well-defined viral mutants. Since some viral extracts lacked nuclease activity, the gene encoding the activity was postulated to be one of the open reading frames absent in the viruses lacking activity. Inducible expression of each candidate open reading frame revealed that only the gene VACWR035, or K4L, was required for nuclease activity. A recombinant virus missing only the open reading frame for K4L lacked nuclease activity. Extracts from a recombinant virus expressing K4L linked to a FLAG polypeptide were able to cleave and cross-link cruciformic DNA. There were no significant differences between the virus lacking K4L and wild-type vaccinia virus WR with respect to infectivity, growth characteristics, or processing of viral replicative intermediate DNA, including both telomeric and cross-linked forms. Purification of the K4L FLAG polypeptide expressed in bacteria yielded protein containing nicking-joining activity, implying that K4L is the only vaccinia virus protein required for the nicking-joining enzymatic activity.  相似文献   

15.
A series of aromatic and heterocyclic sulfonamides incorporating R- and S-camphorsulfonyl moieties were synthesized and investigated for the inhibition of several mammalian isoforms of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The new sulfonamides selectively inhibited the mitochondrial isozymes hCA VA and VB (h = human isoform) over the cytosolic, off-target ones hCA I and II, with inhibition constants in the low nanomolar range. The chirality and position of the groups substituting the sulfonamide scaffold greatly influenced CA inhibitory properties. These compounds are excellent leads for designing isoform-selective enzyme inhibitors targeting mitochondrial CAs involved in lipogenesis and obesity.  相似文献   

16.
A series of sulfonamide derivatives incorporating substituted 3-formylchromone moieties were investigated for the inhibition of three human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms, hCA I, II, and VI. All these compounds, together with the clinically used sulfonamide acetazolamide, were investigated as inhibitors of the physiologically relevant isozymes I, II (cytosolic), and VI (secreted isoform). These sulfonamides showed effective inhibition against all these isoforms with K(I)'s in the range of 0.228 to 118 μM. Such molecules can be used as leads for discovery of novel effective CA inhibitors against other isoforms with medicinal chemistry applications.  相似文献   

17.
A carbonic anhydrase (CA, EC 4.2.1.1) from red blood cells of pigeons (Columba livia var. domestica), clCA, was purified to homogeneity. Its kinetic parameters for the CO(2) hydration reaction were measured. With a k(cat)/K(m) of 1.1?×?10(8) M(-1) s(-1), and a k(cat) of 1.3?×?10(6) s(-1), clCA has a high activity, similar to that of the human isoform hCA II. A group of 25 aromatic/heterocyclic sulfonamides incorporating the sulfanilamide, homosulfanilamide, benzene-1,3-disulfonamide, and acetazolamide scaffolds showed variable inhibitory activity against the pigeon enzyme, with K(I)s in the range of 1.9-3460?nM. Red blood cells of pigeons, like those of ostriches, contain thus just one CA isoform, unlike the blood of mammals, which normally contain two isoforms, one of low (CA I-like) and one of very high activity (CA II-like). However, from the sulfonamide inhibition viewpoint, the pigeon enzyme was more similar to hCA II than to the ostrich enzyme.  相似文献   

18.
Virtually all of the eukaryotic low-molecular weight protein tyrosine phosphatases (LMW PTPases) studied to date contain a conserved, high-pK(a) histidine residue that is hydrogen bonded to a conserved active site asparagine residue of the phosphate binding loop. However, in the putative enzyme encoded by the genome of the trichomonad parasite Tritrichomonas foetus, this otherwise highly conserved histidine is replaced with a glutamine residue. We have cloned the gene, expressed the enzyme, demonstrated its catalytic activity, and examined the structural and functional roles of the glutamine residue using site-directed mutagenesis, kinetic measurements, and NMR spectroscopy. Titration studies of the two native histidine residues in the T. foetus enzyme as monitored by (1)H NMR revealed that H44 has a pK(a) of 6.4 and H143 has a pK(a) of 5.3. When a histidine residue was introduced in place of the native glutamine at position 67, a pK(a) of 8.2 was measured for this residue. Steady state kinetic methods were employed to study how mutation of the native glutamine to alanine, asparagine, and histidine affected the catalytic activity of the enzyme. Examination of k(cat)/K(m) showed that Q67H exhibits a substrate selectivity comparable to that of the wild-type (WT) enzyme, while Q67N and Q67A show reduced activity. The effect of pH on the reaction rate was examined. Importantly, the pH-rate profile of the WT TPTP enzyme revealed a much more clearly defined acidic limb than that which can be observed for other wild-type LMW PTPases. The pH-rate curve of the Q67H mutant shows a shift to a lower pH optimum relative to that seen for the wild-type enzyme. The Q67N and Q67A mutants showed curves that were shifted to higher pH optima. Although the active site of this enzyme is likely to be similar to that of other LMW PTPases, the hydrogen bonding and electrostatic changes afford new insight into factors affecting the pH dependence and catalysis by this family of enzymes.  相似文献   

19.
Inhibition of 13 mammalian isoforms of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1), CA I–XV, with thioxolone (6-hydroxy-1,3-benzoxathiol-2-one) and two sulfonamides was investigated. Thioxolone was inefficient for generating isozyme-selective inhibitors, since except for CA I which is inhibited in the nanomolar range (KI of 91 nM), the remaining 12 isoforms were inhibited with a very flat profile (KIs in the range of only 4.93–9.04 μM). In contrast to thioxolone, 3,5-dichloro-4-hydroxybenzenesulfonamide as well as the clinically used heterocyclic sulfonamide acetazolamide showed KIs in the range of 58 nM–78.6 μM and 2.5 nM–200 μM, respectively, against the 13 investigated mammalian CAs. The sulfonamide zinc-binding group is thus superior to the thiol one for generating CA inhibitors with a varied and sometimes isozyme-selective inhibition profile against the mammalian enzymes.  相似文献   

20.
N-Acetylneuraminic acid is the most common naturally occurring sialic acid, as well as being the biosynthetic precursor of this group of compounds. UDP-GlcNAc 2-epimerase/N-acetylmannosamine kinase has been shown to be the key enzyme of N-acetylneuraminic acid biosynthesis in rat liver, and it is a regulator of cell surface sialylation. The N-terminal region of this bifunctional enzyme displays sequence similarities with prokaryotic UDP-GlcNAc 2-epimerases, whereas the sequence of its C-terminal region is similar to sequences of members of the sugar kinase superfamily. High level overexpression of active enzyme was established by using the baculovirus/Sf9 system. For functional characterization, site-directed mutagenesis was performed on different conserved amino acid residues. The histidine mutants H45A, H110A, H132A, H155A, and H157A showed a drastic loss of epimerase activity with almost unchanged kinase activity. Conversely, the mutants D413N, D413K, and R420M in the putative kinase active site lost their kinase activity but retained their epimerase activity. To estimate the structural perturbation effect due to site-directed mutagenesis, the oligomeric state of all mutants was determined by gel filtration analysis. The mutants D413N, D413K, and R420M as well as H45A were shown to form a hexamer like the wild-type enzyme, indicating little influence of mutation on protein folding. Histidine mutants H155A and H157A formed mainly trimeric enzyme with small amounts of hexamer. Oligomerization of mutants H110A and H132A was also significantly different from that of the wild-type enzyme. Therefore the loss of epimerase activity in mutants H110A, H132A, H155A, and H157A can largely be attributed to incorrect protein folding. In contrast, the mutation site of mutant H45A seems to be involved directly in the epimerization process, and the amino acids Asp-413 and Arg-420 of UDP-GlcNAc 2-epimerase/N-acetylmannosamine kinase are essential for the phosphorylation process. The fact that either epimerase or kinase activity are lost selectively provides evidence for the existence of two active sites working quite independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号