首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Deficiency of the sulfide metabolizing protein ETHE1 is the cause of ethylmalonic encephalopathy (EE), an inherited and severe metabolic disorder. To study the molecular effects of EE, we performed a proteomics study on mitochondria from cultured patient fibroblast cells. Samples from six patients were analyzed and revealed seven differentially regulated proteins compared with healthy controls. Two proteins involved in pathways of detoxification and oxidative/reductive stress were underrepresented in EE patient samples: mitochondrial superoxide dismutase (SOD2) and aldehyde dehydrogenase X (ALDH1B). Sulfide:quinone oxidoreductase (SQRDL), which takes part in the same sulfide pathway as ETHE1, was also underrepresented in EE patients. The other differentially regulated proteins were apoptosis inducing factor (AIFM1), lactate dehydrogenase (LDHB), chloride intracellular channel (CLIC4) and dimethylarginine dimethylaminohydrolase 1 (DDAH1). These proteins have been reported to be involved in encephalopathy, energy metabolism, ion transport, and nitric oxide regulation, respectively. Interestingly, oxidoreductase activity was overrepresented among the regulated proteins indicating that redox perturbation plays an important role in the molecular mechanism of EE. This observation may explain the wide range of symptoms associated with the disease, and highlights the potency of the novel gaseous mediator sulfide.  相似文献   

2.
Deficiency of mitochondrial sulfur dioxygenase (ETHE1) causes the severe metabolic disorder ethylmalonic encephalopathy, which is characterized by early‐onset encephalopathy and defective cytochrome C oxidase because of hydrogen sulfide accumulation. Although the severe systemic consequences of the disorder are becoming clear, the molecular effects are not well defined. Therefore, for further elucidating the effects of ETHE1‐deficiency, we performed a large scale quantitative proteomics study on liver tissue from ETHE1‐deficient mice. Our results demonstrated a clear link between ETHE1‐deficiency and redox active proteins, as reflected by downregulation of several proteins related to oxidation‐reduction, such as different dehydrogenases and cytochrome P450 (CYP450) members. Furthermore, the protein data indicated impact of the ETHE1‐deficiency on metabolic reprogramming through upregulation of glycolytic enzymes and by altering several heterogeneous ribonucleoproteins, indicating novel link between ETHE1 and gene expression regulation. We also found increase in total protein acetylation level, pointing out the link between ETHE1 and acetylation, which is likely controlled by both redox state and cellular metabolites. These findings are relevant for understanding the complexity of the disease and may shed light on important functions influenced by ETHE1 deficiency and by the concomitant increase in the gaseous mediator hydrogen sulfide. All MS data have been deposited in the ProteomeXchange with the dataset identifiers PXD002741 ( http://proteomecentral.proteomexchange.org/dataset/PXD002741 ) and PXD002742 ( http://proteomecentral.proteomexchange.org/dataset/PXD002741 ).  相似文献   

3.
ETHE1 is an iron-containing protein from the metallo β-lactamase family involved in the mitochondrial sulfide oxidation pathway. Mutations in ETHE1 causing loss of function result in sulfide toxicity and in the rare fatal disease Ethylmalonic Encephalopathy (EE). Frequently mutations resulting in depletion of ETHE1 in patient cells are due to severe structural and folding defects. However, some ETHE1 mutations yield nearly normal protein levels and in these cases disease mechanism was suspected to lie in compromised catalytic activity. To address this issue and to elicit how ETHE1 dysfunction results in EE, we have investigated two such pathological mutations, ETHE1-p.Arg163Gln and p.Arg163Trp. In addition, we report a number of benchmark properties of wild type human ETHE1, including for the first time the redox properties of the mononuclear iron centre. We show that loss of function in these variants results from a combination of decreased protein stability and activity. Although structural assessment revealed that the protein fold is not perturbed by mutations, both variants have decreased thermal stabilities and higher proteolytic susceptibilities. ETHE1 wild type and variants bind 1±0.2 mol iron/protein and no zinc; however, the variants exhibited only ≈10% of wild-type catalytically activity. Analysis of the redox properties of ETHE1 mononuclear iron centre revealed that the variants have lowered reduction potentials with respect to that of the wild type. This illustrates how point mutation-induced loss of function may arise via very discrete subtle conformational effects on the protein fold and active site chemistry, without extensive disruption of the protein structure or protein-cofactor association.  相似文献   

4.
Many proteins of the secretory pathway contain disulfide bonds that are essential for structure and function. In the endoplasmic reticulum (ER), Ero1 alpha and Ero1 beta oxidize protein disulfide isomerase (PDI), which in turn transfers oxidative equivalents to newly synthesized cargo proteins. However, oxidation must be limited, as some reduced PDI is necessary for disulfide isomerization and ER-associated degradation. Here we show that in semipermeable cells, PDI is more oxidized, disulfide bonds are formed faster, and high molecular mass covalent protein aggregates accumulate in the absence of cytosol. Addition of reduced glutathione (GSH) reduces PDI and restores normal disulfide formation rates. A higher GSH concentration is needed to balance oxidative folding in semipermeable cells overexpressing Ero1 alpha, indicating that cytosolic GSH and lumenal Ero1 alpha play antagonistic roles in controlling the ER redox. Moreover, the overexpression of Ero1 alpha significantly increases the GSH content in HeLa cells. Our data demonstrate tight connections between ER and cytosol to guarantee redox exchange across compartments: a reducing cytosol is important to ensure disulfide isomerization in secretory proteins.  相似文献   

5.
Disturbances in intraluminal endoplasmic reticulum (ER) Ca2+ concentration leads to the accumulation of unfolded proteins and perturbation of intracellular Ca2+ homeostasis, which has a huge impact on mitochondrial functioning under normal and stress conditions and can trigger cell death. Thapsigargin (TG) is widely used to model cellular ER stress as it is a selective and powerful inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+ ATPases. Here we provide a representative proteome-wide picture of ER stress induced by TG in N2a neuroblastoma cells. Our proteomics study revealed numerous significant protein expression changes in TG-treated N2a cell lysates analysed by two-dimensional electrophoresis followed by mass spectrometric protein identification. The proteomic signature supports the evidence of increased bioenergetic activity of mitochondria as several mitochondrial enzymes with roles in ATP-production, tricarboxylic acid cycle and other mitochondrial metabolic processes were upregulated. In addition, the upregulation of the main ER resident proteins confirmed the onset of ER stress during TG treatment. It has become widely accepted that metabolic activity of mitochondria is induced in the early phases in ER stress, which can trigger mitochondrial collapse and subsequent cell death. Further investigations of this cellular stress response in different neuronal model systems like N2a cells could help to elucidate several neurodegenerative disorders in which ER stress is implicated.  相似文献   

6.
The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein–protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER.  相似文献   

7.
Oxidative protein folding can exceed the cellular secretion machinery, inducing the unfolded protein response (UPR). Sustained endoplasmic reticulum (ER) stress leads to cell stress and disease, as described for Alzheimer, Parkinson, and diabetes mellitus, among others. It is currently assumed that the redox state of the ER is optimally balanced for formation of disulfide bonds using glutathione as the main redox buffer and that UPR causes a reduction of this organelle. The direct effect of oxidative protein folding in the ER, however, has not yet been dissected from UPR regulation. To measure in vivo redox conditions in the ER and cytosol of the yeast model organism Pichia pastoris we targeted redox-sensitive roGFP variants to the respective organelles. Thereby, we clearly demonstrate that induction of the UPR causes reduction of the cytosol in addition to ER reduction. Similarly, a more reduced redox state of the cytosol, but not of the ER, is observed during oxidative protein folding in the ER without UPR induction, as demonstrated by overexpressing genes of disulfide bond-rich secretory proteins such as porcine trypsinogen or protein disulfide isomerase (PDI1) and ER oxidase (ERO1). Cytosolic reduction seems not to be caused by the action of glutathione reductase (GLR1) and could not be compensated for by overexpression of cytosolic glutathione peroxidase (GPX1). Overexpression of GPX1 and PDI1 oxidizes the ER and increases the secretion of correctly folded proteins, demonstrating that oxidative protein folding per se is enhanced by a more oxidized ER and is counterbalanced by a more reduced cytosol. As the total glutathione concentration of these strains does not change significantly, but the ratio of GSH to GSSG is altered, either transport or redox signaling between the glutathione pools of ER and cytosol is assumed. These data clearly demonstrate that protein folding and ER stress have a severe impact on the cytosolic redox balance, which may be a major factor during development of folding-related diseases.  相似文献   

8.
Ethylmalonic encephalopathy (EE) is a devastating infantile metabolic disorder affecting the brain, gastrointestinal tract, and peripheral vessels. High levels of ethylmalonic acid are detected in the body fluids, and cytochrome c oxidase activity is decreased in skeletal muscle. By use of a combination of homozygosity mapping, integration of physical and functional genomic data sets, and mutational screening, we identified GenBank D83198 as the gene responsible for EE. We also demonstrated that the D83198 protein product is targeted to mitochondria and internalized into the matrix after energy-dependent cleavage of a short leader peptide. The gene had previously been known as "HSCO" (for hepatoma subtracted clone one). However, given its role in EE, the name of the gene has been changed to "ETHE1." The severe consequences of its malfunctioning indicate an important role of the ETHE1 gene product in mitochondrial homeostasis and energy metabolism.  相似文献   

9.
Here, we describe a proteomics approach to study protein expression changes in differentiating Caco-2 cells. Caco-2 is a colorectal carcinoma cell line, which upon differentiation loses its tumorigenic phenotype and displays characteristics of mature enterocytes, including brush borders with microvilli. Cells were grown in culture flasks and harvested at different stages of differentiation (days post-confluence: -3, 0, 3, 7, 10, 14, and 18). Two-dimensional gel electrophoresis was used to analyse proteome changes. Approximately 1400 protein spots were detected within the Caco-2 proteome, within the pH 4-7 range. Two-dimensional gel electrophoresis allowed for the detection of 18 proteins from which the levels of expression were found to be associated with differentiation. Of these proteins, 11 were identified by means of MALDI-TOF or NANO-ESI-MS/MS mass spectrometry and include liver fatty acid binding protein (FABL), three forms of alpha-enolase (ENOA), nucleoside diphosphate kinase A (NDKA), cofilin-1 (COF1), translationally controlled tumour protein (TCTP), mitochondrial 60-kDa heat shock protein (CH60), probable protein disulfide isomerase (ER60), creatine kinase B (KCRB), and glutathione S-transferase alpha (GTA1). Thus, proteomics revealed that the differentiation-related change in phenotype of Caco-2 involves changes in a variety of distinct biochemical pathways. Some of these proteins have not been shown before to be associated with Caco-2 differentiation (ER60; COF1; CH60; NDKA; TCTP and ENOA). Therefore, processes related to protein folding and disulfide bridge formation, cytoskeleton formation and maintenance, nucleotide metabolism, glycolysis as well as tumorigenesis-associated proteins may be involved in Caco-2 differentiation. Changes in the expression of CH60, TCTP, GTA1, NDKA, and FABL have also been reported to be associated with in vivo colon carcinogenesis. These findings illustrate that a combination of proteomics and cell culture is a useful approach to find markers for Caco-2 differentiation, which could contribute to the comprehension of the process of colon carcinogenesis.  相似文献   

10.
Both in prokaryotic and eukaryotic cells, disulfide bond formation (oxidation and isomerization steps) are catalyzed exclusively in extracytoplasmic compartments. In eukaryotes, protein folding and disulfide bond formation are coupled processes that occur both co- and posttranslationally in the endoplasmic reticulum (ER), which is the main site of the synthesis and posttranslational modification of secretory and membrane proteins. The formation of a disulfide bond from the thiol groups of two cysteine residues requires the removal of two electrons, consequently, these bonds cannot form spontaneously; an oxidant is needed to accept the electrons. In aerobic conditions the ultimate electron acceptor is usually oxygen; however, oxygen itself is not effective in protein thiol oxidation. Therefore, a small molecular weight membrane permeable compound should be supposed for the transfer of electrons from the ER lumen. The aim of the present study was the investigation of the role of ascorbate/dehydroascorbate redox couple in oxidative folding of proteins. We demonstrated that ascorbate addition or its in situ synthesis from gulonolactone results in protein thiol (and/or glutathione; GSH) oxidation in rat liver microsomes. Since microsomal membrane is hardly permeable to ascorbate, the existence of a transport metabolon was hypothesized. Three components of the system have been described and partially characterized: (i) A microsomal metalloenzyme is responsible for ascorbate oxidation on the outer surface of the ER. Ascorbate oxidation results in ascorbate free radical and dehydroascorbate production. (ii) Facilitated diffusion of dehydroascorbate is present in microsomal vesicles. The transport is presumably mediated by a GLUT-type transporter. On the contrary, the previously hypothesized glutathione disulfide (GSSG) transport is practically absent, while GSH is transported with a moderate velocity. (iii) Protein disulfide isomerase catalyzes the reduction of dehydroascorbate in the ER lumen. Both GSH and protein thiols can be electron donors in the process. Intraluminal dehydroascorbate reduction and the consequent ascorbate accumulation strictly correlate with protein disulfide isomerase activity and protein thiol concentration. The concerted action of the three components of the system results in the intraluminal accumulation of ascorbate, protein disulfide and GSSG. In fact, intraluminal ascorbate and GSSG accumulation could be observed upon dehydroascorbate and GSH uptake. In conclusion, ascorbate is able to promote protein disulfide formation in an in vitro system. Further work is needed to justify its role in intact cellular and in vivo systems, as well as to explore the participation of other antioxidants (e.g. tocopherol, ubiquinone, and vitamin K) in the electron transfer chain responsible for oxidative protein folding in the ER.  相似文献   

11.
12.
Lipoprotein lipase (LPL) is a secreted lipase that clears triglycerides from the blood. Proper LPL folding and exit from the endoplasmic reticulum (ER) require lipase maturation factor 1 (LMF1), an ER‐resident transmembrane protein, but the mechanism involved is unknown. We used proteomics to identify LMF1‐binding partners necessary for LPL secretion in HEK293 cells and found these to include oxidoreductases and lectin chaperones, suggesting that LMF1 facilitates the formation of LPL's five disulfide bonds. In accordance with this role, we found that LPL aggregates in LMF1‐deficient cells due to the formation of incorrect intermolecular disulfide bonds. Cells lacking LMF1 were hypersensitive to depletion of glutathione, but not DTT treatment, suggesting that LMF1 helps reduce the ER. Accordingly, we found that loss of LMF1 results in a more oxidized ER. Our data show that LMF1 has a broader role than simply folding lipases, and we identified fibronectin and the low‐density lipoprotein receptor (LDLR) as novel LMF1 clients that contain multiple, non‐sequential disulfide bonds. We conclude that LMF1 is needed for secretion of some ER client proteins that require reduction of non‐native disulfides during their folding.  相似文献   

13.
14.
Reduced glutathione (GSH) is critical for many cellular processes, and both its intracellular and extracellular concentrations are tightly regulated. Intracellular GSH levels are regulated by two main mechanisms: by adjusting the rates of synthesis and of export from cells. Some of the proteins responsible for GSH export from mammalian cells have recently been identified, and there is increasing evidence that these GSH exporters are multispecific and multifunctional, regulating a number of key biological processes. In particular, some of the multidrug resistance-associated proteins (Mrp/Abcc) appear to mediate GSH export and homeostasis. The Mrp proteins mediate not only GSH efflux, but they also export oxidized glutathione derivatives (e.g., glutathione disulfide (GSSG), S-nitrosoglutathione (GS-NO), and glutathione-metal complexes), as well as other glutathione S-conjugates. The ability to export both GSH and oxidized derivatives of GSH, endows these transporters with the capacity to directly regulate the cellular thiol-redox status, and therefore the ability to influence many key signaling and biochemical pathways. Among the many processes that are influenced by the GSH transporters are apoptosis, cell proliferation, and cell differentiation. This report summarizes the evidence that Mrps contribute to the regulation of cellular GSH levels and the thiol-redox state, and thus to the many biochemical processes that are influenced by this tripeptide.  相似文献   

15.
Ero1 and redox homeostasis in the endoplasmic reticulum   总被引:2,自引:0,他引:2  
  相似文献   

16.
17.
Glutathione (GSH) is a linchpin of cellular defences in plants and animals with physiologically-important roles in the protection of cells from biotic and abiotic stresses. Moreover, glutathione participates in numerous metabolic and cell signalling processes including protein synthesis and amino acid transport, DNA repair and the control of cell division and cell suicide programmes. While it is has long been appreciated that cellular glutathione homeostasis is regulated by factors such as synthesis, degradation, transport, and redox turnover, relatively little attention has been paid to the influence of the intracellular partitioning on glutathione and its implications for the regulation of cell functions and signalling. We focus here on the functions of glutathione in the nucleus, particularly in relation to physiological processes such as the cell cycle and cell death. The sequestration of GSH in the nucleus of proliferating animal and plant cells suggests that common redox mechanisms exist for DNA regulation in G1 and mitosis in all eukaryotes. We propose that glutathione acts as “redox sensor” at the onset of DNA synthesis with roles in maintaining the nuclear architecture by providing the appropriate redox environment for the DNA replication and safeguarding DNA integrity. In addition, nuclear GSH may be involved in epigenetic phenomena and in the control of nuclear protein degradation by nuclear proteasome. Moreover, by increasing the nuclear GSH pool and reducing disulfide bonds on nuclear proteins at the onset of cell proliferation, an appropriate redox environment is generated for the stimulation of chromatin decompaction. This article is part of a Special Issue entitled Cellular functions of glutathione.  相似文献   

18.
S-glutathionylation in protein redox regulation   总被引:5,自引:0,他引:5  
Protein S-glutathionylation, the reversible formation of mixed disulfides between glutathione and low-pKa cysteinyl residues, not only is a cellular response to mild oxidative/nitrosative stress, but also occurs under basal (physiological) conditions. S-glutathionylation has now emerged as a potential mechanism for dynamic, posttranslational regulation of a variety of regulatory, structural, and metabolic proteins. Moreover, substantial recent studies have implicated S-glutathionylation in the regulation of signaling and metabolic pathways in intact cellular systems. The growing list of S-glutathionylated proteins, in both animal and plant cells, attests to the occurrence of S-glutathionylation in cellular response pathways. The existence of antioxidant enzymes that specifically regulate S-glutathionylation would emphasize its importance in modulating protein function, suggesting that this protein modification too might have a role in cell signaling. The continued development of proteomic and analytical methods for disulfide analysis will help us better understand the full extent of the roles these modifications play in the regulation of cell function. In this review, we describe recent breakthroughs in our understanding of the potential role of protein S-glutathionylation in the redox regulation of signal transduction.  相似文献   

19.
The behavior of glucose-6-phosphate dehydrogenase (G6PD)-deficient red cell membrane proteins upon treatment with diamide, the thiol-oxidizing agent (Kosower, N.S. et al. (1969) Biochem. Biophys. Res. Commun. 37, 593–596), was studied with the aid of monobromobimane, a fluorescent labeling agent (Kosower, N.S., Kosower, E.M., Newton, G.L. and Ranney, H.M. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 3382–3386) convenient for following membrane thiol group status. In diamide-treated G6PD-deficient red cells (and in glucose deprived normal cells), glutathione (GSH) is oxidized to glutathione disulfide (GSSG). When cellular GSH is absent, membrane protein thiols are oxidized with the formation of intrachain and interchain disulfides. Differences in sensitivity to oxidation are found among membrane thiols. In diamidetreated normal red cells, GSH is regenerated in the presence of glucose and membrane disulfides reduced. In G6PD-deficient cells, GSSG is not reduced, and the oxidative damage (disulfide formation) in the membrane not repaired. Reduction of membrane disulfides does occur after the addition of GSH to these membranes. A direct link between the thiol status of the cell membrane and cellular GSH is thereby established. GSH serves as a reductant of membrane protein disulfides, in addition to averting membrane thiol oxidation.  相似文献   

20.
The present investigation reports embryo-induced modifications in the epithelial cells of the endometrium in a primate species. In vivo, epithelial cell response to the embryonic signals was assessed at the embryo attachment stage in the gestational uterus of bonnet monkeys (Macaca radiata) and in vitro response was investigated by treating human endometrial epithelial cell line (Ishikawa) with human embryo conditioned media (CM). Endometrial epithelial (EE) cells at the embryo attachment stage in bonnet monkeys revealed higher proliferation accompanied by significant up regulation (p < 0.05) in the expression of estrogen receptor (ER)α and down regulation (p < 0.05) in ERβ expression. Further gestational EE cells showed higher (p < 0.001) expression of mucin-1, except in the embryo attachment site. Also, observed were significantly higher expression (p < 0.05) and altered cytoplasmic distribution of α(v) and β(3) integrins, when compared to non-pregnant animals. In pregnant animals, the embryo attachment zone showed differential expression of immunoreactive integrins as compared to the non-attachment zone. This suggested the role of embryo secreted factors in modulation of the epithelial cell profile. In vitro studies partially supported this assumption. Significantly higher proliferation (p < 0.05), as well as increased expression of ERα, integrin β(3) and mucin-1 (p < 0.05) were observed in Ishikawa cells, on stimulation with CM. Taken together, these results indicated the proliferation and modulation in the expression of estrogen receptors and cell adhesion molecules in the EE cells; at the embryo attachment stage in bonnet monkeys. Further it is likely that embryo secreted factors contribute to some of these modifications in EE cells. This report is the first account of discrete cellular events, which occur in the uterine epithelium, at the embryo attachment stage in a primate species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号