首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fate map has been constructed for Phoronis vancouverensis. The animal pole of the egg gives rise to the apical plate in the hood of the actinotroch larva. The vegetal pole of the egg marks the site of gastrulation. During the initiation of gastrulation the cells of the animal pole of the embryo are directly opposite those at the vegetal pole of the embryo. The plane of the first cleavage always goes through the animal-vegetal pole of the egg. In about 70% of the cases the plane of the first cleavage is perpendicular to the future anterior-posterior axis of the actinotroch larva; in the remaining cases the plane of the first cleavage is either oblique with reference to, or occurs along, the future anterior-posterior axis of the larva. Following gastrulation catecholamine-containing cells first make their appearance in the apical plate and gut cells first produce esterase. The timing of regional specification in these embryos has been examined by isolating animal or vegetal, anterior or posterior, or lateral regions at different time periods between the initiation of cleavage and gastrulation and examining their ability to differentiate. Animal halves isolated from early cleavage through late blastula stages do not gastrulate and do not form catecholamine-containing cells. When animal halves are isolated with endoderm during gastrulation, they differentiate catecholamine-containing cells. Vegetal halves isolated at the 8- to 16-cell stage gastrulate and form normal actinotroch larvae with esterase-positive gut and catecholamine-containing apical plate cells. When this same region is isolated at blastula stages it does not gastrulate and does not differentiate these cell types. Vegetal halves isolated during gastrulation subsequently form esterase-positive gut cells, but they do not form catecholamine-containing apical plate cells. When presumptive anterior, posterior, or lateral halves are isolated from early cleavage through blastula stages, each half forms a normal actinotroch larva. Lateral halves isolated during gastrulation also form normal larvae. Anterior halves isolated during late gastrulation differentiate only the anterior end of the actinotroch larva. These isolates have a hood with catecholamine-containing apical plate cells and the first part of an esterase-positive gut but lack the anlagen of the intestine and protonephridia. Posterior halves isolated during late gastrulation differentiate only the posterior end of the actinotroch which lacks a hood with catecholamine-containing cells but has an esterase-positive gut, protonephridia, and the anlagen of the intestine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The embryonic development of the flatworm Mesostoma lingua was studied using a combination of life observation and histological analysis of wholemount preparations and sections (viewed by both light and electron microscopy.) We introduce a series of stages defined by easily recognizable morphological criteria. These stages are also applicable to other platyhelminth taxa that are currently under investigation in our laboratory. During cleavage (stages 1 and 2), the embryo is located in the center of the egg, surrounded by a layer of yolk cells. After cleavage, the embryo forms a solid, disc-shaped cell cluster. During stage 3, the embryo migrates to the periphery of the egg and acquires bilateral symmetry. The side where it contacts the egg surface corresponds to the future ventral surface of the embryo. Stage 4 is the emergence of the first organ primordia, the brain and pharynx. Gastrulation, as usually defined by the appearance of germ layers, does not exist in Mesos-toma; instead, organ primordia emerge ”in situ” from a mesenchymal mass of cells. Organogenesis takes place during stages 5 and 6. Cells at the ventral surface form the epidermal epithelium; inner cells differentiate into neurons, somatic and pharyngeal muscle cells, as well as the pharyngeal and protonephridial (excretory) epithelium. A junctional complex, consisting initially of small septate junctions, followed later by a more apically located zonula adherens, is formed in all epithelial tissues at stage 6. Beginning towards the end of stage 6 and continuing throughout stages 7 and 8, cytodifferentiation of the different organ systems takes place. Stage 7 is characterized by the appearance of eye pigmentation, brain condensation and spindle-shaped myocytes. Stage 8 describes the fully dorsally closed and differentiated embryo. Muscular contraction moves the body in the egg shell. We discuss Mesostoma embryogenesis in comparison to other animal phyla. Particular attention is given to the apparent absence of gastrulation and the formation of the epithelial junctional complex. Received: 10 February 2000 / Accepted: 10 April 2000  相似文献   

3.
The lancelet (amphioxus) embryo develops from a miolecithal egg and starts gastrulation when it is approximately 400 cells in size, in a fashion similar to that of some non-chordate deuterostomes. Throughout this type of gastrulation, the embryo develops characteristics such as the notochord and hollow nerve cord that commonly appear in chordates. beta-Catenin is an important factor in initiating body patterning. The behavior and developmental pattern of this protein in early lancelet development was examined in this study. Cytoplasmic beta-catenin was localized to the animal pole after fertilization and then was incorporated asymmetrically into the blastomeres during the first cleavage. Asymmetric distribution was observed at least until the 32-cell stage. The first nuclear localization was at the 64-cell stage, and involved all of the cells. At the initial gastrula stage, however, concentrated beta-catenin was found on the dorsal side. LiCl treatment affected the asymmetric pattern of beta-catenin during the first cleavage. LiCl also changed distribution of nuclear beta-catenin at the initial gastrula stage: distribution extended to cells on the animal side. Apparently associated with this change, expression domains of goosecoid, lhx3 and otx also changed to a radially symmetric pattern centered at the animal pole. However, LiCl-treated embryos were able to establish embryonic polarity. The present study suggests that in the lancelet embryo, polarity determination is independent of dorsal morphogenesis.  相似文献   

4.
The chordates include vertebrates plus two groups of invertebrates(the cephalochordates and tunicates). Previous embryonic fatemaps of the cephalochordate amphioxus (Branchiostoma) were influencedby preconceptions that early development in amphioxus and ascidiantunicates should be fundamentally the same and that the earlyamphioxus embryo, like that of amphibians, should have ventralmesoderm. Although detailed cell lineage tracing in amphioxushas not been done because of limited availability of the embryosand because cleavage is radial and holoblastic with the blastomeresnearly equal in size and not tightly adherent until the mid-blastulastage, a compilation of data from gene expression and function,blastomere isolation and dye labeling allows a more realisticfate map to be drawn. The revised fate map is substantiallydifferent from that of ascidians. It shows (1) that the anteriorpole of the amphioxus embryo is offset dorsally from the animalpole only by about 20°, (2) that the ectoderm/mesendodermboundary (the future rim of the blastopore) is at the equatorof the blastula, which approximately coincides with the 3rdcleavage plane, and (3) that there is no ventral mesoderm duringthe gastrula stage. Involution or ingression of cells over theblastopore lip is negligible, and the blastopore, which is posterior,closes centripetally as if by a purse string. During the gastrulastage, the animal pole shifts ventrally, coming to lie about20° ventral to the anterior tip of the late gastrula/earlyneurula. Comparisons of the embryos of amphioxus and vertebratesindicate that in spite of large differences in the mechanicsof cleavage and gastrulation, anterior/posterior and dorsal/ventralpatterning occur by homologous genetic mechanisms. Therefore,the small, nonyolky embryo of amphioxus is probably a reasonableapproximation of the basal chordate embryo before the evolutionof determinate cleavage in the tunicates and the evolution largeamounts of yolk in basal vertebrates.  相似文献   

5.
 The teleost dorsoventral axis cannot be distinguished morphologically before gastrulation. In order to examine whether the yolk cell affects axis determination, we bisect early cleavage embryos of the goldfish, Carassius auratus. When the vegetal yolk hemisphere is removed by bisection along the equatorial plane at the 2-cell stage, the embryos develop abnormally and exhibit a symmetrical morphology. No dorsal structures, such as notochord, somites and neural tube, differentiate and no embryonic shield is formed during gastrulation. In addition, no goosecoid mRNA is expressed before gastrulation. The frequency of abnormality decreases as the age at which the vegetal yolk hemisphere is removed increases. Most embryos removed at the 32-cell stage develop normally. Their morphological phenotype is similar to that of a Xenopus ventralized embryo generated by ultraviolet irradiation on the vegetal hemisphere soon after fertilization. We also observed that, when the embryos were bisected along the first cleavage plane at the 2-cell stage, the proportion of pairs of embryos of which one embryo developed normally was 44.8%. These results indicate that the vegetal yolk hemisphere of the early cleavage embryo of the goldfish contains axis determination factor(s), which are necessary for generation of dorsal structures. Furthermore, it is suggested that these determinant(s) are distributed asymmetrically within the vegetal yolk hemisphere. Received: 25 May 1996 / Accepted: 19 September 1996  相似文献   

6.
The appendicularian, Oikopleura dioica is a chordate. Its life cycle is extremely short—approximately 5 days—and its tadpole shape with a beating tail is retained throughout entire life. The tadpole hatches after 3 h of development at 20°C. Here, we describe the cleavage pattern and morphogenetic cell movements during gastrulation and neurulation. Cleavage showed an invariant pattern. It is basically bilateral but also shows various minor left–right asymmetries starting from the four-cell stage. We observed two rounds of unequal cleavage of the posterior-vegetal B-line cells at the posterior pole. The nature of the unequal cleavages is reminiscent of those in ascidian embryos and suggests the presence of a centrosome-attracting body, a special subcellular structure at the posterior pole. The representation of the cell division pattern in this report will aid the identification of each cell, a prerequisite for clarifying the gene expression patterns in early embryos. Gastrulation started as early as the 32-cell stage and progressed in three phases. By the end of the second phase at the 64-cell stage, every vegetal cell had ingressed into the embryo, and animal cells had covered the entire embryo by epiboly. There was no archenteron formation. In the anterior region, eight A-line cells were aligned as a 2 × 4 array along the anterior–posterior axis and become internalized during the 64-cell stage. This process was considered to correspond to neurulation. The simple and accelerated development of Oikopleura, nevertheless giving rise to a conserved chordate body plan, is advantageous for studying developmental mechanisms using molecular and genetic approaches and makes this animal the simplest model organism in the phylum Chordata. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
We describe a set of observations on developing zebrafish embryos and discuss the main conclusions they allow:(1) the embryonic dorso-ventral polarity axis is morphologically distinguishable prior to the onset of gastrulation; and (2) the involution of deep layer cells starts on the prospective dorsal side of the embryo. An asymmetry can be distinguished in the organization of the blastomeres in the zebrafish blastula at the 30% epiboly stage, in that one sector of the blastoderm is thicker than the other. Dye-labelling experiments with DiI and DiO and histological analysis allow us to conclude that the embryonic shield will form on the thinner side of the blastoderm. Therefore, this side corresponds to the prospective dorsal side of the embryo. Simultaneous injections of dyes on the thinner side of the blastoderm and on the opposite side show that involution of deep layer cells during gastrulation starts at the site at which the embryonic shield will form and extends from here to the prospective ventral regions of the germ ring.  相似文献   

9.
During mouse gastrulation, cells in the primitive streak undergo epithelial–mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8–Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.  相似文献   

10.
The embryonic ectoderm, or epiblast, is the source of the three primary germ layers that form during gastrulation in the mouse embryo. Previous studies have investigated the fate of epiblast cells in early gastrulation stages using clonal analysis of cell lineage and in late gastrulation stages using transplantation of labeled grafts. In this study, we studied the fate of late gastrulation stage epiblast using a clonal analysis based on a retroviral vector encoding the Escherichia coli lacZ gene. We found that by reducing the volume of viral suspension injected into each embryo, it was possible to achieve single infectious events. Our analysis of 20 embryos singly infected at the late streak stage and 21 at the head fold stage revealed clonal descendants in only a single germ layer in each embryo. These results indicate that allocation of epiblast progenitors to a single germ layer fate has occurred by late gastrulation in mouse embryos. © 1995 Wiley-Liss, Inc.  相似文献   

11.
In the direct-developing sea urchin Heliocidaris erythrogramma the first cleavage division bisects the dorsoventral axis of the developing embryo along a frontal plane. In the two-celled embryo one of the blastomeres, the ventral cell (V), gives rise to all pigmented mesenchyme, as well as to the vestibule of the echinus rudiment. Upon isolation, however, the dorsal blastomere (D) displays some regulation, and is able to form a small number of pigmented mesenchyme cells and even a vestibule. We have examined the spatial and temporal determination of cell fates along the dorsoventral axis during subsequent development. We demonstrate that the dorsoventral axis is resident within both cells of the two-celled embryo, but only the ventral pole of this axis has a rigidly fixed identity this early in development. The polarity of this axis remains the same in half-embryos developing from isolated ventral (V) blastomeres, but it can flip 180° in half-embryos developing from isolated dorsal (D) blastomeres. We find that cell fates are progressively determined along the dorsoventral axis up to the time of gastrulation. The ability of dorsal half-embryos to differentiate ventral cell fates diminishes as they are isolated at progressively later stages of development. These results suggest that the determination of cell fates along the dorsoventral axis in H. erythrogramma is regulated via inductive interactions organized by cells within the ventral half of the embryo.  相似文献   

12.
13.
We examined the spatial relationships between the meridian of sperm entry the plane of first cleavage, and the embryonic axis (defined by the neural groove) in eggs of Xenopus laevis. Direct measurement of the angular separations between these embryonic structures in gelatin-embedded eggs confirmed the classical conclusion that the sperm entry point and neural groove tend to form on opposite sides of the egg, and also revealed that the first cleavage plane has a nearly random orientation with respect to the neural groove. We next examined the distortion of the first cleavage plane that results from the normal processes of convergence and extension during gastrulation and neurulation. We permanently marked the first cleavage plane by injecting one blastomere of the two-cell embryo with a fluorescent lineage marker. At the start of gastrulation, the interface between the labeled and unlabeled regions was almost randomly oriented relative to the dorsal blastopore lip, confirming our first set of observations. In embryos with the interface less than 60 degrees to the plane passing through the midline of the dorsal lip, convergent movements of cells produced a confrontation of labeled and unlabeled cells along much of the dorsal midline. Thus, although the first cleavage plane and the bilateral plane were frequently not congruent, the morphogenetic movements of gastrulation and neurulation brought about an apparent congruence in many half-labeled embryos.  相似文献   

14.
15.
Mutations at the short gastrulation locus affect the timing of certain early morphogenetic events occurring during gastrulation in Drosophila melanogaster. Specifically, the invagination and subsequent closing of the posterior midgut and the anterior midgut appear to be delayed in these embryos. In addition, their germbands do not extent the full distance anteriorly on the dorsal side of the embryo. The dorsal cells are abnormally thick and fall into extremely deep dorsal folds as the germband extends. sog embryos continue development, but form disorganized first instar larvae. Normal sog expression is required in the zygote, but not in the mother for normal embryonic development and viability. Analysis of adult and larval gynandromorphs indicates that sog expression is required only in the ventral and/or anterior and posterior ends of the embryo, arguing that the dorsal abnormalities caused by the mutation are secondary consequences of defects elsewhere in mutant embryos.  相似文献   

16.
Gastrulation in the maximum direct developing ascidian Molgula pacifica is highly modified compared with commonly studied "model" ascidians in that endoderm cells situated in the vegetal pole region do not undergo typical invagination and due to the absence of a typical blastopore the involution of mesoderm cells is highly modified. At the gastrula stage, embryos are comprised of a central cluster of large yolky cells that are surrounded by a single layer of ectoderm cells in which there is only a slight indication of an inward movement of cells at the vegetal pole. As a consequence, these embryos do not form an archenteron. In the present study, ultraviolet (UV) irradiation of fertilized eggs tested the possibility that cortical cytoplasmic factors are required for gastrulation, and blastomere isolation experiments tested the possibility that cell signaling beginning at the two-cell stage may be required for the development of the gastrula. Irradiation of unoriented fertilized eggs with UV light resulted in late cleavage stage embryos that failed to undergo gastrulation. When blastomeres were isolated from two-cell embryos, they developed into late cleavage stage embryos; however, they did not undergo gastrulation and subsequently develop into juveniles. These results suggest that cytoplasmic factors required for gastrulation are localized in the egg cortex, but in contrast to previously studied indirect developers, these factors are not exclusively localized in the vegetal pole region at the first stage of ooplasmic segregation. Furthermore, the inability of embryos derived from blastomeres isolated at the two-cell stage to undergo gastrulation and develop into juveniles suggests that important cell signaling begins as early as the two-cell stage in M. pacifica. These results are discussed in terms of the evolution of maximum direct development in ascidians.  相似文献   

17.
Summary

The mosaic behavior of blastomeres isolated from ascidian embryos has been taken as evidence that localized ooplasmic factors (cytoplasmic determinants) specify tissue precursor cells during embryogenesis. Experiments involving the transfer of egg cytoplasm have revealed the presence and localization of various kinds of cytoplasmic determinants in eggs of Halocynthia roretzi. Three cell fates, epidermis, muscle and endoderm, are fixed by cytoplasmic determinants. The three kinds of tissue determinants move in different directions during ooplasmic segregation. Prior to the onset of the first cleavage the three kinds of determinants reside in egg regions that correspond to the future fate map of the embryo and then they are differentially partitioned into specific blastomeres. In addition to tissue-specific determinants, there is evidence suggesting that ascidian eggs contain localized cytoplasmic factors that are responsible for controlling the cleavage pattern and morphogenetic movements. Transplantation of posterior-vegetal egg cytoplasm to an anterior-vegetal position causes a reversal of the anterior-posterior polarity of the cleavage pattern. Localized cytoplasmic factors in the posterior-vegetal region are involved in the generation of a unique cleavage pattern. When vegetal pole cytoplasm is transplanted to the animal pole or equatorial position of the egg, ectopic gastrulation occurs at the site of transplantation. This finding supports the idea that vegetal pole cytoplasm specifies the site of gastrulation. Recently, we started a cDNA project to analyze maternal mRNAs. An arrayed cDNA library of fertilized eggs of H. roretzi was constructed, and more than 2000 clones have been partially sequenced so far. To estimate the proportion of the maternal mRNAs that are localized in the egg and embryo, 150 randomly selected clones were examined by in situ hybridization. We found eight mRNAs that are localized in the eight-cell embryo, of which three were localized to the myoplasm (a specific region of the egg cytoplasm that is partitioned into muscle-lineage blastomeres) of the egg, and then to the postplasm of cleavage-stage embryos. These results indicate that the proportion of localized messages is much higher than we expected. These localized maternal messages may be involved in the regulation of various developmental processes.  相似文献   

18.
Investigation of the developmental fates of cells in the endodermal layer of the early bud stage mouse embryo revealed a regionalized pattern of distribution of the progenitor cells of the yolk sac endoderm and the embryonic gut. By tracing the site of origin of cells that are allocated to specific regions of the embryonic gut, it was found that by late gastrulation, the respective endodermal progenitors are already spatially organized in anticipation of the prospective mediolateral and anterior-posterior destinations. The fate-mapping data further showed that the endoderm in the embryonic compartment of the early bud stage gastrula still contains cells that will colonize the anterior and lateral parts of the extraembryonic yolk sac. In the Lhx1(Lim1)-null mutant embryo, the progenitors of the embryonic gut are confined to the posterior part of the endoderm. In particular, the prospective anterior endoderm was sequestered to a much smaller distal domain, suggesting that there may be fewer progenitor cells for the anterior gut that is poorly formed in the mutant embryo. The deficiency of gut endoderm is not caused by any restriction in endodermal potency of the mutant epiblast cells but more likely the inadequate allocation of the definitive endoderm. The inefficient movement of the anterior endoderm, and the abnormal differentiation highlighted by the lack of Sox17 and Foxa2 expression, may underpin the malformation of the head of Lhx1 mutant embryos.  相似文献   

19.
We investigated the development of Aurelia (Cnidaria, Scyphozoa) during embryogenesis and metamorphosis into a polyp, using antibody markers combined with confocal and transmission electron microscopy. Early embryos form actively proliferating coeloblastulae. Invagination is observed during gastrulation. In the planula, (1) the ectoderm is pseudostratified with densely packed nuclei arranged in a superficial and a deep stratum, (2) the aboral pole consists of elongated ectodermal cells with basally located nuclei forming an apical organ, which is previously only known from anthozoan planulae, (3) endodermal cells are large and highly vacuolated, and (4) FMRFamide-immunoreactive nerve cells are found exclusively in the ectoderm of the aboral region. During metamorphosis into a polyp, cells in the planula endoderm, but not in the ectoderm, become strongly caspase 3 immunoreactive, suggesting that the planula endoderm, in part or in its entirety, undergoes apoptosis during metamorphosis. The polyp endoderm seems to be derived from the planula ectoderm in Aurelia, implicating the occurrence of “secondary” gastrulation during early metamorphosis.  相似文献   

20.
Summary These experiments were done in order to define the role that polarity plays during embryogenesis in hydrozoans.Parts of hydrozoan embryos isolated at different developmental stages from early cleavage to postgastrula will regulate to form normal planulae. During this process, the original anterior-posterior axis of the part is conserved. In normal embryos the posterior pole of the anterior-posterior axis is congruent with the site where the polar bodies are given off and with the site where the first cleavage is initiated. By centrifuging fertilized eggs, it is possible to create embryos in which the first cleavage initiation site does not correspond to the site where the polar bodies are given off. In these embryos the posterior pole of the anterior-posterior axis corresponds to the first cleavage initiation site. When parts of these embryos are isolated at different stages they also regulate to form normal planulae. The axial properties of these planulae are determined by the site of first cleavage initiation.The interactions between regions of the embryo with different axial properties were studied by grafting together parts in such a way as to create embryos with abnormal axial arrangements. Following gastrulation interactions take place between the grafted parts leading to the formation of normal planulae with a new set of axial properties.Blastula stage embryos can be dissociated into single cells and the cells can be reaggregated. These reaggregates form normal planulae. Polarity can be entrained in the reaggregates by grafting a small piece of tissue from any part of an intact blastula to the reaggregate. These cells organize the formation of an axis of symmetry with an appropriate orientation with respect to the graft.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号