首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have transfected a Chinese hamster ovary cell line (CHO 6) with a plasmid that inducibly expresses the Eco RI restriction endonuclease gene in the presence of cadmium sulfate (CdSO4). Expression of Eco RI results in DNA double-strand breaks, which can lead to chromosome aberrations. The new line, designated CHO 10, also has a low level of constitutive expression of Eco RI in the absence of CdSO4 without any cytogenetic effect. This suggested that these cells may be efficient at repairing low levels of DNA double-strand breaks. To test this, both cell lines were exposed to ionizing radiation, and aberration yields were analyzed with or without induction of Eco RI. CHO 10 cells showed increased radiosensitivity after G1 irradiation, but after G2 exposure, only doses greater than or equal to 0.4 Gy caused more damage in CHO 10 cells. We conclude that CHO 10 cells can tolerate constitutive expression of Eco RI, but that when the cells are subjected to additional stress, in this case ionizing radiation, they become very sensitive to DNA double-strand breaks.  相似文献   

2.
Bacterial restriction enzymes offer the unique opportunity to determine the biological and cytogenetic consequences of DNA double-strand breakage. To examine the role of various types of breaks in sister-chromatid exchange (SCE) formation, we used restriction enzymes with different recognition sequences and different cutting frequencies to generate DNA double-strand breaks in Chinese hamster ovary (CHO) cells. The restriction enzymes were introduced by electroporation into exponentially growing cells during the second replication cycle in bromodeoxyuridine, and SCEs were analyzed at mitosis. Contrary to results reported by others, we found no increase in SCE frequency in cells exposed to restriction enzymes despite the presence of numerous cells with chromatid aberrations. These data suggest that DNA double-strand breaks do not lead to SCE formation.  相似文献   

3.
Restriction enzymes can be electroporated into mammalian cells, and the induced DNA double-strand breaks can lead to aberrations in metaphase chromosomes. Chinese hamster ovary cells were electroporated with PstI, which generates 3' cohesive-end breaks, PvuII, which generates blunt-end breaks, or XbaI, which generates 5' cohesive-end breaks. Although all three restriction enzymes induced similar numbers of aberrant metaphase cells, PvuII was dramatically more effective at inducing both exchange-type and deletion-type chromosome aberrations. Our cytogenetic studies also indicated that enzymes are active within cells for only a short time. We used pulsed-field gel electrophoresis to investigate (i) how long it takes for enzymes to cleave DNA after electroporation into cells, (ii) how long enzymes are active in the cells, and (iii) how the DNA double-strand breaks induced are related to the aberrations observed in metaphase chromosomes. At the same concentrations used in the cytogenetic studies, all enzymes were active within 10 min of electroporation. PstI and PvuII showed a distinct peak in break formation at 20 min, whereas XbaI showed a gradual increase in break frequency over time. Another increase in the number of breaks observed with all three enzymes at 2 and 3 h after electroporation was probably due to nonspecific DNA degradation in a subpopulation of enzyme-damaged cells that lysed after enzyme exposure. Break frequency and chromosome aberration frequency were inversely related: The blunt-end cutter PvuII gave rise to the most aberrations but the fewest breaks, suggesting that it is the type of break rather than the break frequency that is important for chromosome aberration formation.  相似文献   

4.
The electroporation of restriction enzymes into mammalian cells results in DNA double-strand breaks that can lead to chromosome aberrations. Four chemicals known to interfere with cellular responses to DNA damage were investigated for their effects on chromosome aberrations induced by AluI and Sau3AI; in addition, the number of DNA double-strand breaks at various times after enzyme treatment was determined by pulsed-field gel electrophoresis (PFGE). The poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide (3AB) dramatically increased the yield of exchanges and deletions and caused a small but transitory increase in the yield of double-strand breaks induced by the enzymes. 1-beta-D-Arabinofuranosylcytosine, which can inhibit DNA repair either by direct action on DNA polymerases alpha and delta or by incorporation into DNA, potentiated aberration induction but to a lesser extent than 3AB and did not affect the amount of DNA double-strand breakage. Aphidicolin, which inhibits polymerases alpha and delta, had no effect on AluI-induced aberrations but did increase the aberration yield induced by Sau3AI. The postreplication repair inhibitor caffeine had no effect on aberration yields induced by either enzyme. Neither aphidicolin nor caffeine modulated the amount of DNA double-strand breakage as measured by PFGE. These data implicate poly(ADP-ribosyl)ation and polymerases alpha and delta as important components of the cellular processes required for the normal repair of DNA double-strand breaks with blunt or cohesive ends. Comparison of these data with the effect of inhibitors on the frequency of X-ray-induced aberrations leads us to the conclusion that X-ray-induced aberrations can result from the misjoining or nonrejoining of double-strand breaks, particularly breaks with cohesive ends, but that this process accounts for only a portion of the induced aberrations.  相似文献   

5.
Once electroporated into the nucleus of eukaryotic cells, restriction enzymes will bind at specific DNA sequences and cleave DNA to make double-strand breaks. These induced breaks can lead to chromosome aberrations and consequently offer one approach to determining the mechanism(s) of aberration formation. Because the higher-order structure of DNA in eukaryotic cells might influence the ability of restriction enzymes to locate their recognition sequence, bind, and cleave DNA, we have investigated whether enzymes will cut DNA during metaphase when the chromosomes are most condensed. Chinese hamster ovary cells synchronized in mitosis and treated with either AluI or Sau3AI showed few chromosome aberrations when held in mitosis for 1, 2, or 3 h after enzyme treatment. However, some disruption of chromosome morphology was seen, especially after exposure to Sau3AI. When cells were allowed to complete one cell cycle after enzyme treatment in the preceding mitosis, there was extensive chromosome damage, with the most abundant type of lesion being the interstitial deletion. It appears that restriction enzymes will cleave the highly condensed DNA in mitotic cells but that decondensation, DNA replication, and recondensation are required before the aberrations are manifested.  相似文献   

6.
Permeabilized Chinese hamster cells were treated with the restriction enzymes Pvu II and Bam H1 which generate blunt-ended with cohesive-ended double-strand breaks in the DNA respectively. Cells were then allowed to progress to the first mitosis, where chromosomal aberrations were scored. It was found that blunt-ended double-strand breaks induced both chromosome and chromatid aberrations of exchange and deletion types, including a high frequency of tri-radials. The total aberration frequency at high enzyme concentrations was more than ten times the control background frequency. Treatment with Bam H1 on the other hand did not induce aberrations above the background rate. This may indicate that the cohesive ends generated by this enzyme may be easily repaired by the cell due to the stabilization of the hydrogen bonding at the site of the double-strand break. Measurements using the unwinding method showed that the enzymes caused strand breaks in the DNA of permeabilized cells, and an approximate X-ray dose equivalent of the restriction-enzyme-induced breaks could be calculated. This indicated that restriction-induced blunt-ended double-strand breaks are relatively inefficient in causing chromosomal aberrations. This may be because of the presence of 'clean ends' at the site of a double-strand break, which may be repaired by ligation. The method of introducing restriction enzymes into cells opens up a new model approach for the study of the conversion of double-strand breaks into chromosome aberrations.  相似文献   

7.
Experimental evidence is presented for the involvement of DNA double-strand breaks in the formation of radiation-induced chromosomal aberrations. When X-irradiated cells were post-treated with single-strand specific Neurospora crassa endonuclease (NE), the frequencies of all classes of aberration increased by about a factor 2. Under these conditions, the frequencies of DNA double-strand breaks induced by X-rays (as determined by neutral sucrose-gradient centrifugation), also increased by a factor of 2. The frequency of chromosomal aberrations induced by fast neutrons (which predominantly induce DNA double-strand breaks) was not influenced by post-treatment with NE. Inhibition of poly(ADP-ribose) polymerase, an enzyme that uses DNA with double-strand breaks as an optimal template, by 3-aminobenzamide also increased the frequencies of X-ray-induced chromosomal aberrations, which supports the idea that DNA double-strand breaks are important lesions for the production of chromosomal aberrations induced by ionizing radiation.  相似文献   

8.
The effect of caffeine (CAF) pretreatment (during the first cell cycle) on the frequency of sister-chromatid exchanges (SCE) and chromosome aberrations induced by bifunctional(MC)- and monofunctional(M-MC)-mitomycin C, 4-nitroquinoline N-oxide (4NQO) and ethyl methanesulphonate (EMS) were examined by using a BrdU—Hoechst staining technique. When CAF was added to the cultures during the first cell cycle in the presence of BrdU and then the cultures treated with MC, M-MC, 4NQO or EMS during the second cell cycle, the effect of the CAF was synergistic, i.e., the SCE level achieved was much higher than that expected from a simple additive effect of the agents and CAF. These results do not support the concept that the process of SCE is a manifestation of CAF-sensitive post-replication repair of DNA damage (single-strand exchanges), but, instead, point to exchanges between the double-strands of the DNA duplex present in each chromatid. CAF at certain concentrations is known to significantly slow down the rate of DNA-chain growth, but not appreciably induce strand breaks. Inasmuch as CAF alone induced only a small increase in SCE rates, possible mechanisms which may induce SCE are not only related to the slowing down of the rate of DNA-chain growth, but may also involve breaks in the template strand permitting double-strand exchanges to occur. The mechanisms responsible for chemically induced SCE are also discussed.  相似文献   

9.
Chromosome aberrations induced by UV-light or X-rays were suppressed by the post-treatment with antimutagenic flavorings, such as anisaldehyde, cinnamaldehyde, coumarin, and vanillin. UV- or X-ray-irradiated surviving cells increased in the presence of each flavoring. X-ray-induced breakage-type and exchange-type chromosome aberrations were suppressed by the vanillin treatment in the G1 phase of the cell cycle and a greater decrease in the number of X-ray-induced chromosome aberrations during G1 holding was observed in the presence of vanillin. Furthermore, a greater decrease in the number of X-ray-induced DNA single-strand breaks was observed in the presence of vanillin. Treatment with vanillin in the G2 phase suppressed UV- and X-ray-induced breakage-type but not exchange-type chromosome aberrations. The suppression of breakage-type aberrations was assumed to be due to a modification of the capability of the post-replicational repair of DNA double-strand breaks. These G1- and G2-dependent anticlastogenic effects were not observed in the presence of 2',3'-dideoxythymidine, an inhibitor of DNA polymerase beta. Based on these results, the anticlastogenic effect of vanillin was considered to be due to the promotion of the DNA rejoining process in which DNA polymerase beta acts.  相似文献   

10.
Elevated levels of DnaA cause excessive initiation, which leads to an increased level of double-strand breaks that are proposed to arise when newly formed replication forks collide from behind with stalled or collapsed forks. These double-strand breaks are toxic in mutants that are unable to repair them. Using a multicopy suppressor assay to identify genes that suppress this toxicity, we isolated a plasmid carrying a gene whose function had been unknown. This gene, carried by the cryptic rac prophage, has been named rcbA for its ability to reduce the frequency of chromosome breaks. Our study shows that the colony formation of strains bearing mutations in rep, recG, and rcbA, like recA and recB mutants, is inhibited by an oversupply of DnaA and that a multicopy plasmid carrying rcbA neutralizes this inhibition. These and other results suggest that rcbA helps to maintain the integrity of the bacterial chromosome by lowering the steady-state level of double-strand breaks.  相似文献   

11.
Human lymphocytes in the quiescent stage were UVC-irradiated and then incubated for 90 min in the presence of the DNA-repair inhibitor ara-C. The cells were then cultured and analyzed for chromosome aberrations. A single treatment with UVC or ara-C gives rise to a very low yield of dicentrics, whereas the combined treatment can induce a high frequency of these chromosome-type aberrations. The yield in the combined treatment is approximately proportional to the square of the UVC fluence in the range 1-3 J/m2. In addition, the experiments demonstrate that synergistic effects arise when cells are treated with UVC + ara-C and then exposed to X-rays. The results can be explained on the assumption that the UVC + ara-C treatment induces DNA double-strand breaks which, to the first approximation, are randomly distributed over the chromosomes. These breaks are able to interact with each other as well as with X-ray-induced DNA double-strand breaks to form a chromosome-type exchange aberration.  相似文献   

12.
Bloom syndrome (BS) lymphocytes, which are characterized by a high incidence (75.4 per cell) of SCE, were treated with caffeine (CAF) during the first cell cycle and with monofunctional-(M-MC) and bifunctional-(MC)mitomycin C during the second cycle. The effect on the SCE level was synergistic. The CAF-pretreated cells in combination with M-MC and MC post-treatments, had significantly higher (SCE values 152.5 and 167.9 SCE per cell, resp.) than those treated with M-MC or MC alone during the second cycle (101.1 and 116.4 SCE per cell, resp.). M-MC and MC in the presence of BrdU (without CAF) for 2 cell cycles increased SCE to 157.6 and 169.4 per cell (about twice the control level). M-MC + CAF and MC + CAF treatments for 2 cell cycles did not produce a synergistic effect on the SCE frequency in BS cells; the SCE level was not significantly greater than that with M-MC or MC alone. Normal cells treated with MC and CAF for 2 cycles had a maximum SCE frequency of 156 per cell. This suggests that cells with SCE frequencies above this level may not be able to survive, i.e., this is the “saturation” level of SCE. However, CAF alone had almost no effect on SCE in either BS or normal cells and did not produce multiple chromosome aberrations. The lack of CAF effect on BS cells suggests that the lesions in DNA strands of BS cells which lead to SCE are double-strand lesions. In normal cells CAF is known to significantly slow down DNA-chain growth; the reduced rate of DNA-chain growth in BS is an inherent defect of the cells. Therefore, though CAF enhanced SCE and chromosome aberrations (shattered chromosomes) in combination with alkylating agents, CAF alone did not significantly increase the SCE rate in either BS cells or in normal cells. Thus, processes which may induce SCE are not only related to retarded rate of DNA-chain growth, but also to breaks in the template strand permitting double-strand exchanges to occur.  相似文献   

13.
The BrdU-Hoechst staining technique has been used in analyzing the effect of caffeine (CAF) on chromosome aberrations and sister-chromatid exchanges (SCEs) induced by mitomycin C (MC). CAF increased the frequency of SCE in MC-treated chromosomes in all specimens. The combination of MC and CAF caused a remarkable increase in all types of chromosome aberrations, but the most startling effect was the appearance of many cells with multiple aberrations (shattered chromosomes). The BrdU-Hoechst technique showed that the shattered chromosomes did not appear in cells that had replicated only once, but did occur in cells which replicated twice in the presence of MC and CAF. The large majority of chromatid breaks observed did not involve areas common to SCE; and the SCE frequency significantly increased in spite of the existence of multiple breaks. This indicates that very few of the breaks are incomplete exchanges and that the mechanism for formation of SCE might be different from that of chromosome breaks. In another experiment, monofunctional-MC (M-MC) had a small effect on SCE rates, though it induced shattered chromosomes with CAF post-treatment. Possible differences in the mechanisms leading to SCE and chromosome breaks are discussed.  相似文献   

14.
Background levels of chromosomal aberrations and sister-chromatid exchanges (SCEs) were determined in CHO-99 cells, an oxygen-tolerant variant substrain of Chinese hamster ovary (CHO-20) cells capable of stable proliferation under an atmosphere of 99% O2/1% CO2, a level of hyperoxia at which cultured mammalian cells normally cannot survive. The mean chromosomal aberration frequency in CHO-99 cells was as high as 1 aberration per cell (mainly chromatid and chromosome gaps and breaks) versus 0.05 aberration/cell in CHO-20 cells, while the SCE frequency was 1.7- to 2.1-fold increased. While most aberrations were apparently distributed at random over the chromosomes, up to 31% of the aberrations appeared to be involved in site-specific fragility at a homologous site in chromosomes Z3 and Z4. Immediately upon shifting CHO-99 cells to air-equilibrated conditions their SCE frequency decreased to the control level, whereas the aberration rate persisted at a still elevated level of 0.16-0.31 aberration per cell, even after a culture period of 14 weeks under normoxia. This indicates that at least part of the chromosomal instability is a constitutional property of the variant cells, i.e., not directly dependent upon hyperoxic stress. In CHO-99 X CHO-20 hybrids the occurrence of chromatid-type aberrations and fragile site but not that of chromosome-type aberrations was suppressed under normoxic conditions, suggesting that chromatid-type aberrations and fragile site expression on the one hand and chromosome-type aberrations on the other hand are mediated by different constitutional defects in CHO-99 cells. No gross alterations in (deoxy)ribonucleoside triphosphate pools were detected in CHO-99 cells that could be held responsible for their chromosomal instability. In addition, no increased level of DNA damage was detected by the technique of alkaline elution. The excessive chromosomal instability in CHO-99 cells, as observed under hyperoxic conditions, may originate from reactive intermediates giving rise to DNA double-strand breaks and/or a type of DNA lesion that is resistant to the conditions of the alkaline elution technique. However, alternative mechanisms based upon reactive species interfering with DNA replication/repair processes cannot be excluded.  相似文献   

15.
Studies of classical chromosome aberrations and sister-chromatid exchanges (SCES) suggest independent mechanisms for the two events despite some common features. Examination of chromosome breakage caused by X-rays, visible light, and viruses has shown that few chromatid breaks are accompanied by SCEs at the sites of breaks. No similar observations were available for chemically induced breaks, but it has been reported that rat chromosomes exposed to dimethylbenzanthracene (DMBA) contained a preponderance of both aberrations and SCEs in certain specific regions, implicating a common process in their formation. These conclusions were drawn from a comparison of breaks induced in vivo with SCEs induced in vitro. However, we used 7 chemical mutagens to induce both chromatid breaks and SCEs in "harlequin" chromosomes of cultured rat and Chinese hamster ovary (CHO) cells and found that 25% of the 914 breaks scored were associated with SCEs. The proportion of breaks accompanied by SCEs is related to the overall SCE frequency and falls into the range predicted on the basis that breaks and SCEs occur independently. The reported association between sites for SCEs and aberrations also reflects secondary factors, such as induction of SCEs and aberrations during DNA synthesis in late replicating regions of the chromosomes.  相似文献   

16.
Radiation-induced chromosome aberrations, particularly exchange-type aberrations, are thought to result from misrepair of DNA double-strand breaks. The relationship between individual pathways of break repair and aberration formation is not clear. By electrophoretic karyotyping of single-cell clones derived from irradiated cells, we have analyzed the induction of stable aberrations in haploid yeast cells mutated for the RAD52 gene, the RAD54 gene, the HDF1(= YKU70) gene, or combinations thereof. We found low and comparable frequencies of aberrational events in wildtype and hdf1 mutants, and assume that in these strains most of the survivors descended from cells that were in G2 phase during irradiation and therefore able to repair breaks by homologous recombination between sister chromatids. In the rad52 and the rad54 strains, enhanced formation of aberrations, mostly exchange-type aberrations, was detected, demonstrating the misrepair activity of a rejoining mechanism other than homologous recombination. No aberration was found in the rad52 hdf1 double mutant, and the frequency in the rad54 hdf1 mutant was very low. Hence, misrepair resulting in exchange-type aberrations depends largely on the presence of Hdf1, a component of the nonhomologous end-joining pathway in yeast.  相似文献   

17.
The role of UV-induced DNA lesions and their repair in the formation of chromosomal aberrations in the xrs mutant cell lines xrs 5 and xrs 6 and their wild-type counterpart, CHO-K1 cells, were studied. The extent of induction of DNA single-strand breaks (SSBs) and DNA double-strand breaks (DSBs) due to UV irradiation in the presence or absence of 1-beta-D-arabinofuranosylcytosine (ara-C) and hydroxyurea (HU) was determined using the alkaline and neutral elution methods. Results of these experiments were compared with the frequencies of induced chromosomal aberrations in UV-irradiated G1 cells treated under similar conditions. Xrs 6 cells showed a defect in their ability to perform the incision step of nucleotide repair after UV irradiation. Accumulation of breaks 2 h after UV irradiation in xrs 6 cells in the presence of HU and ara-C remained at the level of incision breaks estimated after 20 min, which was about 35% of that found in wild-type CHO-K1 cells. In UV-irradiated CHO-K1 and xrs 5 cells, more incision breaks were present after 2 h compared with 20 min post-treatment with ara-C, a further increase was evident when HU was added to the combined treatment. The level of incision breaks induced under these conditions in xrs 5 was about 80% of that observed in CHO-K1 cells. UV irradiation itself did not induce any detectable DNA strand breaks. Accumulation of SSBs in UV-irradiated cells post-treated with ara-C and HU coincides with the increase in the frequency of chromosomal aberrations. These data suggest that accumulated SSBs when converted to DSBs in G1 give rise to chromosome-type aberrations, whereas strand breaks persisting until S-phase result in chromatid-type aberrations. Xrs 6 appeared to be the first ionizing-radiation-sensitive mutant with a partial defect in the incision step of DNA repair of UV-induced damage.  相似文献   

18.
We report that the bacterial transposon Tn7 can preferentially transpose into regions where chromosomal DNA replication terminates. DNA double-strand breaks are associated with the termination of chromosomal replication; therefore, we directly tested the effect of DNA breaks on Tn7 transposition. When DNA double-strand breaks are induced at specific sites in the chromosome, Tn7 transposition is stimulated and insertions are directed proximal to the induced break. The targeting preference for the terminus of replication and DNA double-strand breaks is dependent on the Tn7-encoded protein TnsE. The results presented in this study could also explain the previous observation that Tn7 is attracted to events associated with conjugal DNA replication during plasmid DNA transfer.  相似文献   

19.
Mammalian cell mutagenicity and metabolism of heterocyclic aromatic amines   总被引:5,自引:0,他引:5  
Heterocyclic aromatic amines are bacterial mutagens which also induce DNA damage in mammalian cells. Damage has been demonstrated using a number of endpoints, including gene mutation, chromosome aberrations, sister-chromatid exchange, DNA-strand breaks, DNA repair and oncogene activation. Although the responses in mammalian cells are weak when compared to bacterial mutagenicity, heterocyclic aromatic amines are rodent carcinogens. Metabolic N-oxidation by cytochrome P450 is an initial activation step with subsequent transformation of the N-hydroxy metabolites to the ultimate mutagenic species by O-acetyltransferase or sulfotransferase. Major routes of detoxification include cytochrome P450-mediated ring oxidation followed by conjugation to glucuronic or sulfuric acid. Direct conjugation to the exocyclic amine group also occurs. Major reactions include N-glucuronidation and sulfamate formation.  相似文献   

20.
DNA double-strand breaks (DSBs) are arguably the most important lesions induced by ionizing radiation (IR) since unrepaired or mis-repaired DSBs can lead to chromosomal aberrations and cell death. The two major pathways to repair IR-induced DSBs are non-homologous end-joining (NHEJ) and homologous recombination (HR). Perhaps surprisingly, NHEJ represents the predominant pathway in the G1 and G2 phases of the cell cycle, but HR also contributes and repairs a subset of IR-induced DSBs in G2. Following S-phase-dependent genotoxins, HR events give rise to sister chromatid exchanges (SCEs), which can be detected cytogenetically in mitosis. Here, we describe that HR occurring in G2-irradiated cells also generates SCEs in ~50% of HR events. Since HR of IR-induced DSBs in G2 is a slow process, SCE formation in G2-irradiated cells requires several hours. During this time, irradiated S-phase cells can also reach mitosis, which has contributed to the widely held belief that SCEs form only during S phase. We describe procedures to measure SCEs exclusively in G2-irradiated cells and provide evidence that following IR cells do not need to progress through S phase in order to form SCEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号