首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Treatment with the probiotic bacterium Lactobacillus reuteri has been shown to prevent dextran sodium sulfate (DSS)-induced colitis in rats. This is partly due to reduced P-selectin-dependent leukocyte- and platelet-endothelial cell interactions, however, the mechanism behind this protective effect is still unknown. In the present study a combination of culture dependent and molecular based T-RFLP profiling was used to investigate the influence of L. reuteri on the colonic mucosal barrier of DSS treated rats. It was first demonstrated that the two colonic mucus layers of control animals had different bacterial community composition and that fewer bacteria resided in the firmly adherent layer. During DSS induced colitis, the number of bacteria in the inner firmly adherent mucus layer increased and bacterial composition of the two layers no longer differed. In addition, induction of colitis dramatically altered the microbial composition in both firmly and loosely adherent mucus layers. Despite protecting against colitis, treatment with L. reuteri did not improve the integrity of the mucus layer or prevent distortion of the mucus microbiota caused by DSS. However, L. reuteri decreased the bacterial translocation from the intestine to mesenteric lymph nodes during DSS treatment, which might be an important part of the mechanisms by which L. reuteri ameliorates DSS induced colitis.  相似文献   

2.
The mucus layer continuously covering the gastric mucosa consists of a loosely adherent layer that can be easily removed by suction, leaving a firmly adherent mucus layer attached to the epithelium. These two layers exhibit different gastroprotective roles; therefore, individual regulation of thickness and mucin composition were studied. Mucus thickness was measured in vivo with micropipettes in anesthetized mice [isoflurane; C57BL/6, Muc1-/-, inducible nitric oxide synthase (iNOS)-/-, and neuronal NOS (nNOS)-/-] and rats (inactin) after surgical exposure of the gastric mucosa. The two mucus layers covering the gastric mucosa were differently regulated. Luminal administration of PGE(2) increased the thickness of both layers, whereas luminal NO stimulated only firmly adherent mucus accumulation. A new gastroprotective role for iNOS was indicated since iNOS-deficient mice had thinner firmly adherent mucus layers and a lower mucus accumulation rate, whereas nNOS did not appear to be involved in mucus secretion. Downregulation of gastric mucus accumulation was observed in Muc1-/- mice. Both the firmly and loosely adherent mucus layers consisted of Muc5ac mucins. In conclusion, this study showed that, even though both the two mucus layers covering the gastric mucosa consist of Muc5ac, they are differently regulated by luminal PGE(2) and NO. A new gastroprotective role for iNOS was indicated since iNOS-/- mice had a thinner firmly adherent mucus layer. In addition, a regulatory role of Muc1 was demonstrated since downregulation of gastric mucus accumulation was observed in Muc1-/- mice.  相似文献   

3.
Dharmani P  Leung P  Chadee K 《PloS one》2011,6(9):e25058
The sequential events and the inflammatory mediators that characterize disease onset and progression of ulcerative colitis (UC) are not well known. In this study, we evaluated the early pathologic events in the pathogenesis of colonic ulcers in rats treated with dextran sodium sulfate (DSS). Following a lag phase, day 5 of DSS treatment was found clinically most critical as disease activity index (DAI) exhibited an exponential rise with severe weight loss and rectal bleeding. Surprisingly, on days 1-2, colonic TNF-α expression (70-80-fold) and tissue protein (50-fold) were increased, whereas IL-1β only increased on days 7-9 (60-90-fold). Days 3-6 of DSS treatment were characterized by a prominent down regulation in the expression of regulatory cytokines (40-fold for IL-10 and TGFβ) and mucin genes (15-18 fold for Muc2 and Muc3) concomitant with depletion of goblet cell and adherent mucin. Remarkably, treatment with TNF-α neutralizing antibody markedly altered DSS injury with reduced DAI, restoration of the adherent and goblet cell mucin and IL-1β and mucin gene expression. We conclude that early onset colitis is dependent on TNF-α that preceded depletion of adherent and goblet cell mucin prior to epithelial cell damage and these biomarkers can be used as therapeutic targets for UC.  相似文献   

4.
Colonic mucosal protection is provided by the mucus gel, mainly composed of mucins. Several factors can modulate the formation and the secretion of mucins, and among them butyrate, an end-product of carbohydrate fermentation. However, the specific effect of butyrate on the various colonic mucins, and the consequences in terms of the mucus layer thickness are not known. Our aim was to determine whether butyrate modulates colonic MUC genes expression in vivo and whether this results in changes in mucus synthesis and mucus layer thickness. Mice received daily for 7 days rectal enemas of butyrate (100 mM) versus saline. We demonstrated that butyrate stimulated the gene expression of both secreted (Muc2) and membrane-linked (Muc1, Muc3, Muc4) mucins. Butyrate especially induced a 6-fold increase in Muc2 gene expression in proximal colon. However, butyrate enemas did not modify the number of epithelial cells containing the protein Muc2, and caused a 2-fold decrease in the thickness of adherent mucus layer. Further studies should help understanding whether this last phenomenon, i.e. the decrease in adherent mucus gel thickness, results in a diminished protective function or not.  相似文献   

5.
6.

Aim

To investigate colonic mucus thickness in vivo in health and during experimental inflammatory bowel disease.

Methods

Colitis was induced with 5% DSS in drinking water for 8 days prior to experiment, when the descending colonic mucosa of anesthetized rats was studied using intravital microscopy. Mucus thickness was measured with micropipettes attached to a micromanipulator. To assess the contributions of NOS and prostaglandins in the regulation of colonic mucus thickness, the non-selective NOS-inhibitor L-NNA (10 mg/kg bolus followed by 3 mg/kg/h), the selective iNOS-inhibitor L-NIL (10 mg/kg bolus followed by 3 mg/kg/h) and the non-selective COX-inhibitor diclofenac (5 mg/kg) were administered intravenously prior to experiment. To further investigate the role of iNOS in the regulation of colonic mucus thickness, iNOS −/− mice were used.

Results

Colitic rats had a thicker firmly adherent mucus layer following 8 days of DSS treatment than untreated rats (88±2 µm vs 76±1 µm). During induction of colitis, the thickness of the colonic mucus layer initially decreased but was from day 3 significantly thicker than in untreated rats. Diclofenac reduced the mucus thickness similarly in colitic and untreated rats (−16±5 µm vs −14±2 µm). While L-NNA had no effect on colonic mucus thickness in DSS or untreated controls (+3±2 µm vs +3±1 µm), L-NIL reduced the mucus thickness significantly more in colitic rats than in controls (−33±4 µm vs −10±3 µm). The importance of iNOS in regulating the colonic mucus thickness was confirmed in iNOS−/− mice, which had thinner colonic mucus than wild-type mice (35±3 µm vs 50±2 µm, respectively). Furthermore, immunohistochemistry revealed increased levels of iNOS in the colonic surface epithelium following DSS treatment.

Conclusion

Both prostaglandins and nitric oxide regulate basal colonic mucus thickness. During onset of colitis, the thickness of the mucus layer is initially reduced followed by an iNOS mediated increase.  相似文献   

7.

Background

Protection of the large intestine with its enormous amount of commensal bacteria is a challenge that became easier to understand when we recently could describe that colon has an inner attached mucus layer devoid of bacteria (Johansson et al. (2008) Proc. Natl. Acad. Sci. USA 105, 15064–15069). The bacteria are thus kept at a distance from the epithelial cells and lack of this layer, as in Muc2-null mice, allow bacteria to contact the epithelium. This causes colitis and later on colon cancer, similar to the human disease Ulcerative Colitis, a disease that still lacks a pathogenetic explanation. Dextran Sulfate (DSS) in the drinking water is the most widely used animal model for experimental colitis. In this model, the inflammation is observed after 3–5 days, but early events explaining why DSS causes this has not been described.

Principal Findings

When mucus formed on top of colon explant cultures were exposed to 3% DSS, the thickness of the inner mucus layer decreased and became permeable to 2 µm fluorescent beads after 15 min. Both DSS and Dextran readily penetrated the mucus, but Dextran had no effect on thickness or permeability. When DSS was given in the drinking water to mice and the colon was stained for bacteria and the Muc2 mucin, bacteria were shown to penetrate the inner mucus layer and reach the epithelial cells already within 12 hours, long before any infiltration of inflammatory cells.

Conclusion

DSS thus causes quick alterations in the inner colon mucus layer that makes it permeable to bacteria. The bacteria that reach the epithelial cells probably trigger an inflammatory reaction. These observations suggest that altered properties or lack of the inner colon mucus layer may be an initial event in the development of colitis.  相似文献   

8.
9.
The mouse model (Cftr(tm1UNC)/Cftr(tm1UNC)) for cystic fibrosis (CF) shows mucus accumulation and increased Muc1 mucin mRNA levels due to altered splicing (Hinojosa-Kurtzberg AM, Johansson MEV, Madsen CS, Hansson GC, and Gendler SJ. Am J Physiol Gastrointest Liver Physiol 284: G853-G862, 2003). However, it is not known whether Muc1 is a major mucin contributing to the increased mucus and why CF/Muc1-/- mice show lower mucus accumulation. To address this, we have purified mucins from the small intestine of CF mice using guanidinium chloride extraction, ultracentrifugation, and gel filtration and analyzed them by slot blot, gel electrophoresis, proteomics, and immunoblotting. Normal and CF mice with wild-type (WT) Muc1 or Muc1-/- or that are transgenic for human MUC1 (MUC1.Tg, on a Muc1-/- background) were analyzed. The total amount of mucins, both soluble and insoluble in guanidinium chloride, increased up to 10-fold in the CF mice compared with non-CF animals, whereas the CF mice lacking Muc1 showed intermediate levels between the CF and non-CF mice. However, the levels of Muc3 (orthologue of human MUC17) were increased in the CF/Muc1-/- mice compared with the CF/MUC1.Tg animals. The amount of MUC1 mucin was increased several magnitudes in the CF mice, but MUC1 did still not appear to be a major mucin. The amount of insoluble mucus of the large intestine was also increased in the CF mice, an effect that was partially restored in the CF/Muc1-/- mice. The thickness of the firmly adherent mucus layer of colon in the Muc1-/- mice was significantly lower than that of WT mice. The results suggest that MUC1 is not a major component in the accumulated mucus of CF mice and that MUC1 can influence the amount of other mucins in a still unknown way.  相似文献   

10.
Two C57BL/6 mice colonies maintained in two rooms of the same specific pathogen-free (SPF) facility were found to have different gut microbiota and a mucus phenotype that was specific for each colony. The thickness and growth of the colon mucus were similar in the two colonies. However, one colony had mucus that was impenetrable to bacteria or beads the size of bacteria—which is comparable to what we observed in free-living wild mice—whereas the other colony had an inner mucus layer penetrable to bacteria and beads. The different properties of the mucus depended on the microbiota, as they were transmissible by transfer of caecal microbiota to germ-free mice. Mice with an impenetrable mucus layer had increased amounts of Erysipelotrichi, whereas mice with a penetrable mucus layer had higher levels of Proteobacteria and TM7 bacteria in the distal colon mucus. Thus, our study shows that bacteria and their community structure affect mucus barrier properties in ways that can have implications for health and disease. It also highlights that genetically identical animals housed in the same facility can have rather distinct microbiotas and barrier structures.  相似文献   

11.
The mucin Muc2 is the structural component of the colonic mucus layer. Adult Muc2 knockout (Muc2(-/-)) mice suffer from severe colitis. We hypothesized that Muc2 deficiency induces inflammation before weaning of mother's milk [postnatal day (P) 14] with aggravation of colitis after weaning (P28). Muc2(-/-) and wild-type mice were killed at embryonic day 18.5 and P1.5, P7.5, P14, P21, and P28. Colonic morphology, influx of T cells, and goblet cell-specific protein expression was investigated by (immuno)histochemistry. Cytokine and Toll-like receptor (TLR) profiles in the colon were analyzed by quantitative RT-PCR. Muc2(-/-) mice showed an increased and persistent influx of Cd3ε-positive T cells in the colonic mucosa as of P1.5. This was accompanied by mucosal damage at P28 in the distal colon but not in the proximal colon. At P14, the proinflammatory immune response [i.e., increased interleukin (IL)-12 p35, IL-12 p40, and tumor necrosis factor-α, expression] in the distal colon of Muc2(-/-) mice presented with an immune suppressive response [i.e., increased Foxp3, transforming growth factor (TGF)-β1, IL-10, and Ebi3 expression]. In contrast, at P28, a proinflammatory response remained in the distal colon, whereas the immune suppressive response (i.e., Foxp3 and TGF-β1 expression) declined. The proximal colon of Muc2(-/-) mice did not show morphological damage and was dominated by an immune suppressive response at P14 and P28. Interestingly, changes in expression of TLRs and TLR-related molecules were observed in the distal colon at P14 and P28 and in the proximal colon only at P28. Colitis in Muc2(-/-) mice is limited before weaning by immune suppressive responses and exacerbates in the distal colon after weaning because of the decline in the immune suppressive response.  相似文献   

12.
The beneficial effects exerted by probiotics in inflammatory bowel disease (IBD) are well known, although their exact mechanisms have not been fully elucidated, and only few studies have focused on their impact on selected miRNAs and the gut microbiota composition. Therefore, our aim was to correlate the intestinal anti-inflammatory activity of the probiotic Saccharomyces boulardii in the dextran sodium sulphate (DSS) model of mouse colitis and the changes induced in miRNA expression and gut microbiota populations. Probiotic was given orally (5×109 CFU) to C57BL/6 mice for 26 days. After 2 weeks, the colitis was induced adding DSS to the drinking water. Mice were scored daily using a Disease Activity Index (DAI). After sacrifice, the colonic specimens were evaluated by determining the expression of inflammatory markers and micro-RNAs by qRT-PCR. Moreover, changes in microbiota populations were evaluated by pyrosequencing. Probiotic ameliorated the colonic damage induced by DSS, as evidenced by lower DAI values and colonic weight/length compared with untreated mice. The treatment modified the colonic expression of different inflammatory markers and the epithelial integrity proteins, and induced changes in micro-RNAs expression. Moreover, microbiota characterization showed that probiotic treatment increased bacterial diversity, thus ameliorating the dysbiosis produced by DSS-colitis. Saccharomyces boulardii exerted intestinal anti-inflammatory effects in DSS-mouse colitis, through the modulation in the immune response, involving modification of altered miRNA expression, being associated to the improvement of the inflammation-associated dysbiosis in the intestinal lumen, which could be of great interest to control the complex pathogenesis of IBD.  相似文献   

13.
Transendothelial migration of circulating leukocytes into the colonic wall is a key step in the development of the inflammatory infiltrate in inflammatory bowel disease (IBD). The platelet-endothelial cell adhesion molecule-1 PECAM-1 (CD31) is expressed in the tight junction area of endothelial cells, where it is supposed to support the transmigration process. The aim of this study was to determine the role of PECAM-1 in experimental IBD and to show whether blockade of PECAM-1 has therapeutic effects. Chronic colitis was induced in female BALB/c mice by cyclic oral administration of dextran sodium sulfate (DSS) 3% (wt/vol). Expression of PECAM-1 was visualized by immunohistochemistry. In the treatment group animals received 1 mg/kg anti-PECAM-1 (2H8) ip daily starting on day 26. On day 30 leukocyte adhesion and migration was measured during N(2)O-isoflurane anesthesia in the distal colon by intravital microscopy. Disease activity index (DAI), histology, and MPO levels were compared with healthy and diseased controls. PECAM-1 was expressed in colitic mice. Chronic DSS colitis was characterized by a marked increase in rolling, adherent, and transmigrated leukocytes compared with healthy controls. Immunoblockade of PECAM-1 reduced leukocyte transmigration significantly and also diminished leukocyte rolling and sticking in an indirect manner. It also resulted in a significantly diminished DAI and MPO levels, as well as an amelioration of the histological inflammation score. PECAM-1 plays an important role in transendothelial leukocyte migration in DSS colitis. PECAM-1 could be a novel target for antibody-based treatment in IBD.  相似文献   

14.
目的:探讨氯化两面针碱(NC)通过靶向miR-31对葡聚糖硫酸钠(DSS)诱发小鼠结肠炎的保护作用及其机制。方法:用1%DSS诱发小鼠溃疡性结肠炎(UC)。30只雄性C57BL/6小鼠随机分为正常对照组(Control)(n=7),DSS组(n=8),DSS+NC组(7.27 mg/kg)(n=8)和NC组(n=7),饮水给予DSS,灌胃给予氯化两面针碱。造模周期为3周,分别为Control组和NC组每天饮用无菌水,DSS组和DSS+NC组第一周饮用1% DSS水,第2周正常饮水,第3周1% DSS水。造模最后一周给予Control组和DSS组小鼠0.5% 羧甲基纤维素钠(CMC-Na)灌胃,DSS+NC组和NC组给予NC灌胃。造模完成后,观察小鼠结肠炎相关的疾病活动指数(DAI),HE染色进行结肠组织病理评分,qPCR检测小鼠结肠组织miR-31的表达水平,Western blot检测小鼠结肠组织炎症蛋白NF-κB和COX-2的表达情况。结果:①与DSS组相比,DSS+NC组的 DAI 显著降低(P<0.01),结肠病理损伤明显改善;②与Control组相比,DSS组小鼠结肠组织miR-31表达显著升高(P<0.01),DSS+NC组miR-31的表达水平显著低于DSS组(P<0.05);③与DSS组相比,DSS+NC组中的炎症蛋白NF-κB和COX-2表达水平显著下降(P<0.05)。结论:氯化两面针碱对DSS诱导的小鼠溃疡性结肠炎有明显的治疗作用,其抗炎机制与下调miR-31的表达有关。  相似文献   

15.
目的:采用2.5%葡聚糖硫酸钠(DSS)定量灌胃诱导小鼠溃疡性结肠炎(UC),观察小鼠结肠通透性改变与肿瘤坏死因子α(TNF-α)及NF-κB p65的关系。方法:48只ICR小鼠随机分为2组(n=24):对照组和模型组。模型组小鼠给予2.5% DSS定量灌胃诱发小鼠急性UC,对照组小鼠予同体积的蒸馏水灌胃代替。记录两组小鼠疾病活动指数(DAI),9 d后测定两组小鼠结肠组织病理学评分、结肠通透性、TNF-α及NF-κB p65。统计分析DAI、结肠通透性、TNF-α与NF-κB p65之间的相关性。结果:与对照组比较,模型组小鼠DAI、结肠病理学评分、结肠通透性、TNF-α、NF-κB p65均显著增高(P均<0.01)。小鼠DAI增高与结肠通透性密切相关(P均<0.01),结肠通透性增高与TNF-α、NF-κB p65密切相关(P均<0.01)。结论:与对照组小鼠相比,DSS造模小鼠的结肠通透性显著增高,并与TNF-α、NF-κB p65增高呈正相关。TNF-α、NF-κB p65增高导致结肠通透性增高,进而导致炎症免疫反应过度增强,可能是UC发病的重要环节。  相似文献   

16.
BackgroundInorganic nitrate from exogenous and endogenous sources is accumulated in saliva, reduced to nitrite by oral bacteria and further converted to nitric oxide (NO) and other bioactive nitrogen oxides in the acidic gastric lumen. To further explore the role of oral microbiota in this process we examined the gastric mucus layer in germ free (GF) and conventional mice given different doses of nitrate and nitrite.MethodsMice were given either nitrate (100 mg/kg/d) or nitrite (0.55–11 mg/kg/d) in the drinking water for 7 days, with the lowest nitrite dose resembling the levels provided by swallowing of fasting saliva. The gastric mucus layer was measured in vivo.ResultsGF animals were almost devoid of the firmly adherent mucus layer compared to conventional mice. Dietary nitrate increased the mucus thickness in conventional animals but had no effect in GF mice. In contrast, nitrite at all doses, restored the mucus thickness in GF mice to the same levels as in conventional animals. The nitrite-mediated increase in gastric mucus thickness was not inhibited by the soluble guanylyl cyclase inhibitor ODQ. Mice treated with antibiotics had significantly thinner mucus than controls. Additional studies on mucin gene expression demonstrated down regulation of Muc5ac and Muc6 in germ free mice after nitrite treatment.ConclusionOral bacteria remotely modulate gastric mucus generation via bioactivation of salivary nitrate. In the absence of a dietary nitrate intake, salivary nitrate originates mainly from NO synthase. Thus, oxidized NO from the endothelium and elsewhere is recycled to regulate gastric mucus homeostasis.  相似文献   

17.
Inflammatory bowel diseases (IBDs) such as Crohn’s disease and ulcerative colitis are chronic inflammatory disorders of the intestinal tract with excessive production of cytokines, adhesion molecules, and reactive oxygen species. Although nitric oxide (NO) is reported to be involved in the onset and progression of IBDs, it remains controversial as to whether NO is toxic or protective in experimental colitis. We investigated the effects of oral nitrite as a NO donor on dextran sulfate sodium (DSS)-induced acute colitis in mice. Mice were fed DSS in their drinking water with or without nitrite for up to 7 days. The severity of colitis was assessed by disease activity index (DAI) observed over the experimental period, as well as by the other parameters, including colon lengths, hematocrit levels, and histological scores at day 7. DSS treatment induced severe colitis by day 7 with exacerbation in DAI and histological scores. We first observed a significant decrease in colonic nitrite levels and increase in colonic TNF-α expression at day 3 after DSS treatment, followed by increased colonic myeloperoxidase (MPO) activity and increased colonic expressions of both inducible NO synthase (iNOS) and heme oxygenase-1 (HO-1) at day 7. Oral nitrite supplementation to colitis mice reversed colonic nitrite levels and TNF-α expression to that of normal control mice at day 3, resulting in the reduction of MPO activity as well as iNOS and HO-1 expressions in colonic tissues with clinical and histological improvements at day 7. These results suggest that oral nitrite inhibits inflammatory process of DSS-induced experimental colitis by supplying nitrite-derived NO instead of impaired colonic NOS activity.  相似文献   

18.
The heavily O-glycosylated mucin MUC2 constitutes the major protein in the mucosal layer that acts as a physical barrier protecting the epithelial layer in the colon. In this study, Muc2 was purified from mucosal scrapings from the colon of wild-type (WT) mice, core 3 transferase knockout (C3Gnt(-/-)) mice and intestinal epithelial cell-specific core 1 knockout (IEC C1Galt1(-/-)) mice. The Muc2 O-glycans were released by reductive β-elimination and analyzed with liquid chromatography-mass spectrometry in the negative-ion mode. Muc2 from the distal colon of WT and C3Gnt(-/-) knockout mice carried a mixture of core 1- or core 2-type glycans, whereas Muc2 from IEC C1Galt1(-/-) mice carried highly sialylated core 3- and core 4-type glycans. A large portion of NeuAc in all mouse models was positioned on disialylated N-acetyllactosamine units, an epitope not reported on human colonic MUC2. Mass spectra and proton NMR spectroscopy revealed an abundant NeuAc linked to internally positioned N-acetylglucosamine on colonic murine Muc2, which also differs markedly from human MUC2. Our results highlight that murine colonic Muc2 O-glycosylation is substantially different from human MUC2, which could be one explanation for the different commensal microbiota of these two species.  相似文献   

19.
Modulation of adhesion molecule expression or function is regarded as a promising therapy for inflammatory conditions. This study evaluates the effects of an inhibitor of adhesion molecule expression (GI270384X) in two experimental models of colitis. Colitis of different severity was induced in C57BL/6J mice by administering 1, 2, or 3% dextran sulfate sodium (DSS). GI270384X (3, 10, or 25 mg.kg(-1).day(-1)) was administered as pretreatment or started 3 days after colitis induction. In IL-10-deficient mice, the highest dose was given for 2 wk. The clinical course of colitis, pathological changes, serum inflammatory biomarkers, expression of adhesion molecules, and leukocyte-endothelial cell interactions in colonic venules were measured in mice treated with vehicle or with active drug. In the most severe forms of colitis (2% and 3% DSS and IL-10-deficient mice), the magnitude of colonic inflammation was not modified by treatment with GI270384X. In a less severe form of colitis (1% DSS), GI270384X treatment dose dependently ameliorated the clinical signs of colitis, colonic pathological changes, and serum levels of biomarkers (IL-6 and serum amyloid A). Administration of 25 mg.kg(-1).day(-1) GI270384X abrogated upregulation of ICAM-1 in the inflamed colon but had no effect on VCAM-1 or E-selectin expression. This was associated with a significant reduction in number of rolling and firmly adherent leukocytes in colonic venules. These results indicate that GI270384X is effective in the treatment of experimental colitis of moderate severity. Reduced adhesion molecule expression and leukocyte recruitment to the inflamed intestine contribute to this beneficial effect.  相似文献   

20.
Germ-free immunocompetent (BALB/c) and immunodeficient (SCID) mice were colonized either by E. coli O6K13 or by E. coli strain Nissle 1917 and intestinal inflammation was induced by administering 2.5% dextran sulfate sodium (DSS) in drinking water. Controls were germ-free mice which demonstrated only mild inflammatory changes after induction of an acute intestinal inflammation with DSS as compared with conventional mice in which acute colitis of the colon mucosa similar to human ulcerative colitis is elicited. In mice monocolonized with the nonpathogenic E. coli Nissle 1917 the inflammatory disease did not develop (damage grade 0) while animals monocolonized with uropathogenic E. coli O6K13 exhibited inflammatory changes similar to those elicited in conventionally reared mice (damage grade 3). In the chronic inflammation model, immunocompetent BALB/c mice monocolonized with E. coli Nissle 1917 showed no conspicuous inflammatory changes of the colon mucosa whereas those monocolonized with E. coli O6K13 developed colon inflammation associated with marked infiltration of inflammatory cells. In contrast to germ-free immunodeficient SCID mice that died after application of DSS, the colon mucosa of SCID mice monoassociated with E. coli Nissle 1917 exhibited only moderate inflammatory changes which were less pronounced than changes of colon mucosa of SCID mice monoassociated with E. coli O6K13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号