首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.  相似文献   

2.
We report the homofermentative production of lactate in Escherichia coli strains containing mutations in the aceEF, pfl, poxB, and pps genes, which encode the pyruvate dehydrogenase complex, pyruvate formate lyase, pyruvate oxidase, and phosphoenolpyruvate synthase, respectively. The process uses a defined medium and two distinct fermentation phases: aerobic growth to an optical density of about 30, followed by nongrowth, anaerobic production. Strain YYC202 (aceEF pfl poxB pps) generated 90 g/liter lactate in 16 h during the anaerobic phase (with a yield of 0.95 g/g and a productivity of 5.6 g/liter · h). Ca(OH)2 was found to be superior to NaOH for pH control, and interestingly, significant succinate also accumulated (over 7 g/liter) despite the use of N2 for maintaining anaerobic conditions. Strain ALS961 (YYC202 ppc) prevented succinate accumulation, but growth was very poor. Strain ALS974 (YYC202 frdABCD) reduced succinate formation by 70% to less than 3 g/liter. 13C nuclear magnetic resonance analysis using uniformly labeled acetate demonstrated that succinate formation by ALS974 was biochemically derived from acetate in the medium. The absence of uniformly labeled succinate, however, demonstrated that glyoxylate did not reenter the tricarboxylic acid cycle via oxaloacetate. By minimizing the residual acetate at the time that the production phase commenced, the process with ALS974 achieved 138 g/liter lactate (1.55 M, 97% of the carbon products), with a yield of 0.99 g/g and a productivity of 6.3 g/liter · h during the anaerobic phase.  相似文献   

3.
The transformation of 1,2,4-trichlorobenzene (1,2,4-TCB) at initial concentrations in nano- and micromolar ranges was studied in batch experiments with Burkholderia sp. strain PS14. 1,2,4-TCB was metabolized from nano- and micromolar concentrations to below its detection limit of 0.5 nM. At low initial 1,2,4-TCB concentrations, a first-order relationship between specific transformation rate and substrate concentration was observed with a specific affinity (a0A) of 0.32 liter · mg (dry weight)−1 · h−1 followed by a second one at higher concentrations with an aoA of 0.77 liter · mg (dry weight)−1 · h−1. This transition from the first-order kinetics at low initial 1,2,4-TCB concentrations to the second first-order kinetics at higher 1,2,4-TCB concentrations was shifted towards higher initial 1,2,4-TCB concentrations with increasing cell mass. At high initial concentrations of 1,2,4-TCB, a maximal transformation rate of approximately 37 nmol · min−1 · mg (dry weight)−1 was measured, irrespective of the cell concentration.  相似文献   

4.
The second-order rate constants for the microbial transformation of a series of phenols were correlated with the physicochemical properties of the phenols. The compounds studied were phenol, p-methylphenol, p-chlorophenol, p-bromophenol, p-cyanophenol, p-nitrophenol, p-acetylphenol, and p-methoxyphenol. Phenol-grown cells of Pseudomonas putida U transformed these compounds. Microbial transformation rate constants ranged from (1.5 ± 0.99) × 10−14 liter · organism−1 · h−1 for p-cyanophenol to (7.0 ± 1.3) × 10−12 liter · organism−1 · h−1 for phenol. Linear regression analyses of rate constants and electronic, steric, and hydrophobic parameters showed that van der Waal's radii gave the best coefficient of determination (r2 = 0.956). Products identified by thin-layer chromatography and liquid chromatography indicated that the phenols were microbially oxidized to the corresponding catechols.  相似文献   

5.
A multicopy plasmid carrying the PDC1 gene (encoding pyruvate decarboxylase; Pdc) was introduced in Saccharomyces cerevisiae CEN.PK113-5D. The physiology of the resulting prototrophic strain was compared with that of the isogenic prototrophic strain CEN.PK113-7D and an empty-vector reference strain. In glucose-grown shake-flask cultures, the introduction of the PDC1 plasmid caused a threefold increase in the Pdc level. In aerobic glucose-limited chemostat cultures growing at a dilution rate of 0.10 h−1, Pdc levels in the overproducing strain were 14-fold higher than those in the reference strains. Levels of glycolytic enzymes decreased by ca. 15%, probably due to dilution by the overproduced Pdc protein. In chemostat cultures, the extent of Pdc overproduction decreased with increasing dilution rate. The high degree of overproduction of Pdc at low dilution rates did not affect the biomass yield. The dilution rate at which aerobic fermentation set in decreased from 0.30 h−1 in the reference strains to 0.23 h−1 in the Pdc-overproducing strain. In the latter strain, the specific respiration rate reached a maximum above the dilution rate at which aerobic fermentation first occurred. This result indicates that a limited respiratory capacity was not responsible for the onset of aerobic fermentation in the Pdc-overproducing strain. Rather, the results indicate that Pdc overproduction affected flux distribution at the pyruvate branch point by influencing competition for pyruvate between Pdc and the mitochondrial pyruvate dehydrogenase complex. In respiratory cultures (dilution rate, <0.23 h−1), Pdc overproduction did not affect the maximum glycolytic capacity, as determined in anaerobic glucose-pulse experiments.  相似文献   

6.
Kinetics of Perchlorate- and Chlorate-Respiring Bacteria   总被引:5,自引:2,他引:3       下载免费PDF全文
Ten chlorate-respiring bacteria were isolated from wastewater and a perchlorate-degrading bioreactor. Eight of the isolates were able to degrade perchlorate, and all isolates used oxygen and chlorate as terminal electron acceptors. The growth kinetics of two perchlorate-degrading isolates, designated “Dechlorosoma” sp. strains KJ and PDX, were examined with acetate as the electron donor in batch tests. The maximum observed aerobic growth rates of KJ and PDX (0.27 and 0.28 h−1, respectively) were only slightly higher than the anoxic growth rates obtained by these isolates during growth with chlorate (0.26 and 0.21 h−1, respectively). The maximum observed growth rates of the two non-perchlorate-utilizing isolates (PDA and PDB) were much higher under aerobic conditions (0.64 and 0.41 h−1, respectively) than under anoxic (chlorate-reducing) conditions (0.18 and 0.21 h−1, respectively). The maximum growth rates of PDX on perchlorate and chlorate were identical (0.21 h−1) and exceeded that of strain KJ on perchlorate (0.14 h−1). Growth of one isolate (PDX) was more rapid on acetate than on lactate. There were substantial differences in the half-saturation constants measured for anoxic growth of isolates on acetate with excess perchlorate (470 mg/liter for KJ and 45 mg/liter for PDX). Biomass yields (grams of cells per gram of acetate) for strain KJ were not statistically different in the presence of the electron acceptors oxygen (0.46 ± 0.07 [n = 7]), chlorate (0.44 ± 0.05 [n = 7]), and perchlorate (0.50 ± 0.08 [n = 7]). These studies provide evidence that facultative microorganisms with the capability for perchlorate and chlorate respiration exist, that not all chlorate-respiring microorganisms are capable of anoxic growth on perchlorate, and that isolates have dissimilar growth kinetics using different electron donors and acceptors.  相似文献   

7.
A perfusion method for assaying nitrogenase activity (acetylene reduction) in marine sediments was developed. The method was used to assay sediment cores from Spartina alterniflora (salt marsh), Zostera marina (sea grass), and Thalassia testudinum (sea grass) communities, and the results were compared with those of conventional sealed-flask assays. Rates of ethylene production increased progressively with time in the perfusion assays, reaching plateau values of 2 to 3 nmol · g of dry sediment−1 · h−1 by 10 to 20 h. Depletion of interstitial NH4+ was implicated in this stimulation of nitrogenase activity. Initial acetylene reduction rates determined by the perfusion assay of cores from the Spartina community ranged from 0.15 to 0.60 nmol of C2H4 · g of dry sediment−1 · h−1. These rates were similar to those for sediments assayed in sealed flasks without seawater when determined over linear periods of C2H4 production. Initial values obtained by using the perfusion method were 0.66 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Zostera communities and 0.70 nmol of C2H4 · g of dry sediment−1 · h−1 for sediments from Thalassia communities. In all cases, rates determined by simultaneous slurry assays were lower than those determined by the perfusion method.  相似文献   

8.
The specific growth rate is a key control parameter in the industrial production of baker’s yeast. Nevertheless, quantitative data describing its effect on fermentative capacity are not available from the literature. In this study, the effect of the specific growth rate on the physiology and fermentative capacity of an industrial Saccharomyces cerevisiae strain in aerobic, glucose-limited chemostat cultures was investigated. At specific growth rates (dilution rates, D) below 0.28 h−1, glucose metabolism was fully respiratory. Above this dilution rate, respirofermentative metabolism set in, with ethanol production rates of up to 14 mmol of ethanol · g of biomass−1 · h−1 at D = 0.40 h−1. A substantial fermentative capacity (assayed offline as ethanol production rate under anaerobic conditions) was found in cultures in which no ethanol was detectable (D < 0.28 h−1). This fermentative capacity increased with increasing dilution rates, from 10.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.025 h−1 to 20.5 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.28 h−1. At even higher dilution rates, the fermentative capacity showed only a small further increase, up to 22.0 mmol of ethanol · g of dry yeast biomass−1 · h−1 at D = 0.40 h−1. The activities of all glycolytic enzymes, pyruvate decarboxylase, and alcohol dehydrogenase were determined in cell extracts. Only the in vitro activities of pyruvate decarboxylase and phosphofructokinase showed a clear positive correlation with fermentative capacity. These enzymes are interesting targets for overexpression in attempts to improve the fermentative capacity of aerobic cultures grown at low specific growth rates.The quality of commercial baker’s yeast (Saccharomyces cerevisiae) is determined by many parameters, including storage stability, osmotolerance, freeze-thaw resistance, rehydration resistance of dried yeast, and color. In view of the primary role of baker’s yeast in dough, fermentative capacity (i.e., the specific rate of carbon dioxide production by yeast upon its introduction into dough) is a particularly important parameter (2).In S. cerevisiae, high sugar concentrations and high specific growth rates trigger alcoholic fermentation, even under fully aerobic conditions (6, 18). Alcoholic fermentation during the industrial production of baker’s yeast is highly undesirable, as it reduces the biomass yield on the carbohydrate feedstock. Industrial baker’s yeast production is therefore performed in aerobic, sugar-limited fed-batch cultures. The conditions in such cultures differ drastically from those in the dough environment, which is anaerobic and with sugars at least initially present in excess (23).Optimization of biomass productivity requires that the specific growth rate and biomass yield in the fed-batch process be as high as possible. In the early stage of the process, the maximum feasible growth rate is dictated by the threshold specific growth rate at which respirofermentative metabolism sets in. In later stages, the specific growth rate is decreased to avoid problems with the limited oxygen transfer and/or cooling capacity of industrial bioreactors (10, 27). The actual growth rate profile during fed-batch cultivation is controlled primarily by the feed rate profile of the carbohydrate feedstock (4, 22). Generally, an initial exponential feed phase is followed by phases with constant and declining feed rates, respectively (8).From a theoretical point of view, the objective of suppressing alcoholic fermentation during the production phase may interfere with the aim of obtaining a high fermentative capacity in the final product. Process optimization has so far been based on strain selection and on empirical optimization of environmental conditions during fed-batch cultivation (e.g., pH, temperature, aeration rate, and feed profiles of sugar, nitrogen, and phosphorus [5, 10, 23]). For rational optimization of the specific growth rate profile, knowledge of the relation between specific growth rate and fermentative capacity is of primary importance. Nevertheless, quantitative data on this subject cannot be found in the literature.The chemostat cultivation system allows manipulation of the specific growth rate (which is equal to the dilution rate) while keeping other important growth conditions constant. Similar to industrial fed-batch cultivation, sugar-limited chemostat cultivation allows fully respiratory growth of S. cerevisiae on sugars (21, 37, 39). This is not possible in batch cultures, which by definition require high sugar concentrations, which lead to alcoholic fermentation, even during aerobic growth (6, 18, 37). Thus, as an experimental system, batch cultures bear little resemblance to the aerobic baker’s yeast production process. Indeed, we have recently shown that differences in fermentative capacity between a laboratory strain of S. cerevisiae and an industrial strain became apparent only in glucose-limited chemostat cultures but not in batch cultures (30).The aim of the present study was to assess the effect of specific growth rate on fermentative capacity in an industrial baker’s yeast strain grown in aerobic, sugar-limited chemostat cultures. Furthermore, the effect of specific growth rate on in vitro activities of key glycolytic and fermentative enzymes was investigated in an attempt to identify correlations between fermentative capacity and enzyme levels.  相似文献   

9.
For ethanol production from lignocellulose, the fermentation of xylose is an economic necessity. Saccharomyces cerevisiae has been metabolically engineered with a xylose-utilizing pathway. However, the high ethanol yield and productivity seen with glucose have not yet been achieved. To quantitatively analyze metabolic fluxes in recombinant S. cerevisiae during metabolism of xylose-glucose mixtures, we constructed a stable xylose-utilizing recombinant strain, TMB 3001. The XYL1 and XYL2 genes from Pichia stipitis, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, and the endogenous XKS1 gene, encoding xylulokinase (XK), under control of the PGK1 promoter were integrated into the chromosomal HIS3 locus of S. cerevisiae CEN.PK 113-7A. The strain expressed XR, XDH, and XK activities of 0.4 to 0.5, 2.7 to 3.4, and 1.5 to 1.7 U/mg, respectively, and was stable for more than 40 generations in continuous fermentations. Anaerobic ethanol formation from xylose by recombinant S. cerevisiae was demonstrated for the first time. However, the strain grew on xylose only in the presence of oxygen. Ethanol yields of 0.45 to 0.50 mmol of C/mmol of C (0.35 to 0.38 g/g) and productivities of 9.7 to 13.2 mmol of C h−1 g (dry weight) of cells−1 (0.24 to 0.30 g h−1 g [dry weight] of cells−1) were obtained from xylose-glucose mixtures in anaerobic chemostat cultures, with a dilution rate of 0.06 h−1. The anaerobic ethanol yield on xylose was estimated at 0.27 mol of C/(mol of C of xylose) (0.21 g/g), assuming a constant ethanol yield on glucose. The xylose uptake rate increased with increasing xylose concentration in the feed, from 3.3 mmol of C h−1 g (dry weight) of cells−1 when the xylose-to-glucose ratio in the feed was 1:3 to 6.8 mmol of C h−1 g (dry weight) of cells−1 when the feed ratio was 3:1. With a feed content of 15 g of xylose/liter and 5 g of glucose/liter, the xylose flux was 2.2 times lower than the glucose flux, indicating that transport limits the xylose flux.  相似文献   

10.
Thermothrix thiopara did not appear to be stressed at high temperature (72°C). Both the actual and theoretical yields were higher than those of analogous mesophilic sulfur bacteria, and the specific growth rate (μmax) was more rapid than that of most autotrophs. The specific growth rate (0.58 h−1), specific maintenance rate (0.11 h−1), actual molar growth yield at μmax (Ymax = 16 g mol−1), and theoretical molar growth yield (YG = 24 g mol−1) were all higher for T. thiopara (72°C) than for mesophilic (25 to 30°C) Thiobacillus spp. The growth efficiencies for T. thiopara at 70 and 75°C (0.84 and 0.78) were significantly higher than at 65°C (0.47). Corresponding specific maintenance rates were highest at 65°C (0.41 h−1) and lowest at 70 and 75°C (0.11 and 0.15 h−1, respectively). Growth efficiencies of metabolically similar mesophiles were generally higher than for T. thiopara. However, the actual yields at μmax were higher for T. thiopara because its theoretical yield was higher. Thus, at 70°C, T. thiopara was capable of deriving more metabolically useful energy from thiosulfate than were mesophilic sulfur bacteria at 25 and 30°C. The low growth efficiency of T. thiopara reflected higher maintenance expenditures. T. thiopara had higher maintenance rates than Thiobacillus ferroxidans or Thiobacillus denitrificans, but also attained higher molar growth yields. It is concluded that sulfur metabolism may be more efficient overall at extremely high temperatures due to increased theoretical yields despite increased maintenance requirements.  相似文献   

11.
3-Phenoxybenzoic acid (3-PBA) is of great environmental concern with regards to endocrine disrupting activity and widespread occurrence in water and soil, yet little is known about microbial degradation in contaminated regions. We report here that a new bacterial strain isolated from soil, designated DG-02, was shown to degrade 95.6% of 50 mg·L−1 3-PBA within 72 h in mineral salt medium (MSM). Strain DG-02 was identified as Bacillus sp. based on the morphology, physio-biochemical tests and 16S rRNA sequence. The optimum conditions for 3-PBA degradation were determined to be 30.9°C and pH 7.7 using response surface methodology (RSM). The isolate converted 3-PBA to produce 3-(2-methoxyphenoxy) benzoic acid, protocatechuate, phenol, and 3,4-dihydroxy phenol, and subsequently transformed these compounds with a q max, K s and K i of 0.8615 h−1, 626.7842 mg·L−1 and 6.7586 mg·L−1, respectively. A novel microbial metabolic pathway for 3-PBA was proposed on the basis of these metabolites. Inoculation of strain DG-02 resulted in a higher degradation rate on 3-PBA than that observed in the non-inoculated soil. Moreover, the degradation process followed the first-order kinetics, and the half-life (t 1/2) for 3-PBA was greatly reduced as compared to the non-inoculated control. This study highlights an important potential application of strain DG-02 for the in situ bioremediation of 3-PBA contaminated environments.  相似文献   

12.
There are only a few examples of microbial conversion of picric acid (2,4,6-trinitrophenol). None of the organisms that have been described previously is able to use this compound as a sole source of carbon, nitrogen, and energy at high rates. In this study we isolated and characterized a strain, strain CB 22-2, that was able to use picric acid as a sole source of carbon and energy at concentrations up to 40 mM and at rates of 1.6 mmol · h−1 · g (dry weight) of cells−1 in continuous cultures and 920 μmol · h−1 · g (dry weight) of cells−1 in flasks. In addition, this strain was able to use picric acid as a sole source of nitrogen at comparable rates in a nitrogen-free medium. Biochemical characterization and 16S ribosomal DNA analysis revealed that strain CB 22-2 is a Nocardioides sp. strain. High-pressure liquid chromatography and UV-visible light data, the low residual chemical oxygen demand, and the stoichiometric release of 2.9 ± 0.1 mol of nitrite per mol of picric acid provided strong evidence that complete mineralization of picric acid occurred. During transformation, the metabolites detected in the culture supernatant were the [H]-Meisenheimer complexes of picric acid and 2,4-dinitrophenol (H-DNP), as well as 2,4-dinitrophenol. Experiments performed with crude extracts revealed that H-DNP formation indeed is a physiologically relevant step in picric acid metabolism.  相似文献   

13.
The kinetics for the reduction of sulfate alone and for concurrent uranium [U(VI)] and sulfate reduction, by mixed and pure cultures of sulfate-reducing bacteria (SRB) at 21 ± 3°C were studied. The mixed culture contained the SRB Desulfovibrio vulgaris along with a Clostridium sp. determined via 16S ribosomal DNA analysis. The pure culture was Desulfovibrio desulfuricans (ATCC 7757). A zero-order model best fit the data for the reduction of sulfate from 0.1 to 10 mM. A lag time occurred below cell concentrations of 0.1 mg (dry weight) of cells/ml. For the mixed culture, average values for the maximum specific reaction rate, Vmax, ranged from 2.4 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1) at 0.25 mM sulfate to 5.0 ± 1.1 μmol of sulfate/mg (dry weight) of SRB · h−1 at 10 mM sulfate (average cell concentration, 0.52 mg [dry weight]/ml). For the pure culture, Vmax was 1.6 ± 0.2 μmol of sulfate/mg (dry weight) of SRB · h−1 at 1 mM sulfate (0.29 mg [dry weight] of cells/ml). When both electron acceptors were present, sulfate reduction remained zero order for both cultures, while uranium reduction was first order, with rate constants of 0.071 ± 0.003 mg (dry weight) of cells/ml · min−1 for the mixed culture and 0.137 ± 0.016 mg (dry weight) of cells/ml · min−1 (U0 = 1 mM) for the D. desulfuricans culture. Both cultures exhibited a faster rate of uranium reduction in the presence of sulfate and no lag time until the onset of U reduction in contrast to U alone. This kinetics information can be used to design an SRB-dominated biotreatment scheme for the removal of U(VI) from an aqueous source.  相似文献   

14.
The steady-state effect of 2,5,2′,5′-tetrachlorobiphenyl (TCBP) on the green alga Selenastrum capricornutum was investigated in a P-limited two-stage chemostat system. The partition coefficient of this polychlorinated biphenyl congener was 5.9 × 104 in steady-state cultures. At a cellular TCBP concentration of 12.2 × 10−8 ng · cell−1, growth rate was not affected. However, photosynthetic capacity (Pmax) was significantly enhanced by TCBP (56 × 10−9 μmol of C · cell−1 · h−1 versus 34 × 10−9 μmol of C · cell−1 · h−1 in the control). Photosynthetic efficiency, or the slope of the photosynthesis-irradiance curve, was also significantly higher. There was little difference in the cell chlorophyll a content, and therefore the difference in these photosynthetic characteristics was the same even when they were expressed on a per-chlorophyll a basis. Cell C content was higher in TCBP-containing cells than in TCBP-free cells, but approximately 36% of the C fixed by cells with TCBP was not incorporated as cell C. The maximum P uptake rate was also enhanced by TCBP, but the half-saturation concentration appeared to be unaffected.  相似文献   

15.
The purpose of this study was to investigate the relationship between biomechanical variables and running economy in North African and European runners. Eight North African and 13 European male runners of the same athletic level ran 4-minute stages on a treadmill at varying set velocities. During the test, biomechanical variables such as ground contact time, swing time, stride length, stride frequency, stride angle and the different sub-phases of ground contact were recorded using an optical measurement system. Additionally, oxygen uptake was measured to calculate running economy. The European runners were more economical than the North African runners at 19.5 km · h−1, presented lower ground contact time at 18 km · h−1 and 19.5 km · h−1 and experienced later propulsion sub-phase at 10.5 km · h−1,12 km · h−1, 15 km · h−1, 16.5 km · h−1 and 19.5 km · h−1 than the European runners (P < 0.05). Running economy at 19.5 km · h−1 was negatively correlated with swing time (r = -0.53) and stride angle (r = -0.52), whereas it was positively correlated with ground contact time (r = 0.53). Within the constraints of extrapolating these findings, the less efficient running economy in North African runners may imply that their outstanding performance at international athletic events appears not to be linked to running efficiency. Further, the differences in metabolic demand seem to be associated with differing biomechanical characteristics during ground contact, including longer contact times.  相似文献   

16.
The gene cassette (camA+ camB+ camC) encoding a cytochrome P-450cam variant was integrated into the nonessential gene pcpM of the pentachlorophenol degrader Sphingobium chlorophenolicum ATCC 39723 by homologous recombination. The recombinant strain could degrade hexachlorobenzene at a rate of 0.67 nmol · mg (dry weight)−1 · h−1, and intermediate pentachlorophenol was also identified.  相似文献   

17.
Trichloroethylene (TCE) was removed from soils by using a wheat rhizosphere established by coating seeds with a recombinant, TCE-degrading Pseudomonas fluorescens strain that expresses the tomA+ (toluene o-monooxygenase) genes from Burkholderia cepacia PR123(TOM23C). A transposon integration vector was used to insert tomA+ into the chromosome of P. fluorescens 2-79, producing a stable strain that expressed constitutively the monooxygenase at a level of 1.1 nmol/min · mg of protein (initial TCE concentration, 10 μM, assuming that all of the TCE was in the liquid) for more than 280 cell generations (36 days). We also constructed a salicylate-inducible P. fluorescens strain that degraded TCE at an initial rate of 2.6 nmol/min · mg of protein in the presence of 10 μM TCE [cf. B. cepacia G4 PR123(TOM23C), which degraded TCE at an initial rate of 2.5 nmol/min · mg of protein]. A constitutive strain, P. fluorescens 2-79TOM, grew (maximum specific growth rate, 0.78 h−1) and colonized wheat (3 × 106 CFU/cm of root) as well as wild-type P. fluorescens 2-79 (maximum specific growth rate, 0.77 h−1; level of colonization, 4 × 106 CFU/cm of root). Rhizoremediation of TCE was demonstrated by using microcosms containing the constitutive monooxygenase-expressing microorganism, soil, and wheat. These closed microcosms degraded an average of 63% of the initial TCE in 4 days (20.6 nmol of TCE/day · plant), compared to the 9% of the initial TCE removed by negative controls consisting of microcosms containing wild-type P. fluorescens 2-79-inoculated wheat, uninoculated wheat, or sterile soil.  相似文献   

18.
The effect of inulin sugars concentration on the growth and ethanol production by Kluyveromyces marxianus UCD (FST) 55-82 was studied. A maximum ethanol concentration of 102 g/liter was obtained from 250 g of sugars per liter initial concentration. The maximum specific growth rate varied from 0.44 h−1 at 50 g of sugar per liter to 0.13 h−1 at 300 g of sugar per liter, whereas the ethanol yield remained almost constant at 0.45 g of ethanol per g of sugars utilized.  相似文献   

19.
We report the conversion of glycerol to pyruvate by E. coli ALS929 containing knockouts in the genes encoding for phosphoenolpyruvate synthase, lactate dehydrogenase, pyruvate formate lyase, the pyruvate dehydrogenase complex, and pyruvate oxidase. As a result of these knockouts, ALS929 has a growth requirement of acetate for the generation of acetyl CoA. In steady-state chemostat experiments using excess glycerol and limited by acetate, lower growth rates favored the formation of pyruvate from glycerol (0.60 g/g at 0.10 h−1 versus 0.44 g/g at 0.25 h−1), while higher growth rates resulted in the maximum specific glycerol consumption rate (0.85 g/g h at 0.25 h−1 versus 0.59 g/g h at 0.10 h−1). The presence of glucose significantly improved pyruvate productivity and yield from glycerol (0.72 g/g at 0.10 h−1). In fed-batch studies using exponential acetate/glucose-limited feeding at a constant growth rate of 0.10 h−1, the final pyruvate concentration achieved was about 40 g/L in 36 h. A derivative of ALS929 which additionally knocked out methylglyoxal synthase did not further increase pyruvate productivity or yield, indicating that pyruvate formation was not limited by accumulation of methylglyoxal.  相似文献   

20.
A bacterial strain, PM1, which is able to utilize methyl tert-butyl ether (MTBE) as its sole carbon and energy source, was isolated from a mixed microbial consortium in a compost biofilter capable of degrading MTBE. Initial linear rates of MTBE degradation by 2 × 106 cells ml−1 were 0.07, 1.17, and 3.56 μg ml−1 h−1 for initial concentrations of 5, 50, and 500 μg MTBE ml−1, respectively. When incubated with 20 μg of uniformly labeled [14C]MTBE ml−1, strain PM1 converted 46% to 14CO2 and 19% to 14C-labeled cells within 120 h. This yield is consistent with the measurement of protein accumulation at different MTBE concentrations from which was estimated a biomass yield of 0.18 mg of cells mg MTBE−1. Strain PM1 was inoculated into sediment core material collected from a contaminated groundwater plume at Port Hueneme, California, in which there was no evidence of MTBE degradation. Strain PM1 readily degraded 20 μg of MTBE ml−1 added to the core material. The rate of MTBE removal increased with additional inputs of 20 μg of MTBE ml−1. These results suggest that PM1 has potential for use in the remediation of MTBE-contaminated environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号