首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study aimed to evaluate the effect of Cd exposure (100 μmol/L) on polar lipid composition, and to examine the level of fatty acid unsaturation in maize (Zea mays L.). In roots, the level of 16:0 and monounsaturated fatty acids (16:1 + 18:1) decreased in phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In contrast, the proportion of unsaturated 18-C fatty acid species showed an opposite response to Cd. The content, on the other hand, of PC, PE, digalactosyldiacylglycerol (DGDG), and steryl lipids increased in roots (2.9-, 1.6-, 5.3-, and 1.7-fold increase, respectively). These results suggest that a more unsaturated fatty acid composition than found in control plants with a concomitant increase in polar lipids may favor seedling growth during Cd exposure. However, the observed increase in the steryl lipid (SL) : phospholipid (PL) ratio (twofold), the decrease in monogalactosyldiacylglycerol (MGDG) : DGDG ratio, as well as the induction of lipid peroxidation in roots may represent symptoms of membrane injury. In shoots, the unsaturation level was markedly decreased in PC and phosphatidylglycerol (PG) after Cd exposure, but showed a significant increase in sulfoquinovosyldiacylglycerol (SQDG), MGDG and DGDG. The content of PG and MGDG was decreased by about 65%, while PC accumulated to higher levels (4.4-fold increase). Taken together, these changes in the polar lipid unsaturation and composition are likely to be due to alterations in the glycerolipid pathway. These results also support the idea that the increase in overall unsaturation plays some role in enabling the plant to withstand the metal exposure.  相似文献   

3.
A study is reported on the incorporation of14C-acetate into lipid classes from three different growth stages ofLaminaria japonica, a species long used for food in Japan. This was done because of the possible utilization of its lipids.Radioactivity incorporated into whole lipids in the three growth stages under the same experimental conditions (10 °C, 500 lux) increased with maturity of the thalli. The radioactivity was found mainly in PC, TG and 1,2-DG and subsequently distributed into other lipid classes (PG,PI,PE,MGDG,SQDG and DGDG) to a lesser extent. The incorporation patterns of the former group were similar at all stages, but those of the latter group differed slightly according to growth stage.In juvenile thalli,14C was incorporated to a much higher extent into PG, MGDG, PI and fucosterol than PE, SQDG, DGDG and MG, while the14C-incorporation into MG, SQDG, DGDG and PS in the mature growth stage was higher than into the other lipid classes. The absolute level of incorporation was higher for all these compounds in mature thalli than the thalli of other growth stages.  相似文献   

4.
The plasma membrane from Aphanothece halophytica was isolated using both glycerol and sucrose gradient centrifugation. The isolated membrane was characterized for lipid content by TLC and isolated lipids were quantified by chemical analysis. The plasma membrane of A. halophytica was composed of MGDG, DGDG and PG. The sulfur containing lipid SQDG was not detected. The mole percent of each lipid in the plasma membrane varied with the external salinity of the media. MGDG was the most abundant lipid in the plasma membrane of cells grown at one molar external NaCl. At three molar external NaCl, PG was the most abundant lipid. The ratio of uncharged to charged lipids comprising the plasma membrane decreased as the external salinity increased. It is possible that the alteration in lipid composition is of major importance in the adaptation of A. halophytica to changing external salinity.Abbreviations TLC Thin-layer chromatography - MGDG momogalactosyldiacylglycerol - DGDG digaloctosyldiacylglycerol - PG phosphatidylglycerol - SQDG sulphoquinovosyldiacylglycerol  相似文献   

5.
Plants of garden pea ( Pisum sativum L.) were exposed to charcoal-filtered air with or without addition of 65 ± 5 l−1 ozone. Plants were harvested daily for 9 days and lipids were extracted from the second-oldest leaf. Visible injury of this leaf was evident from day 5 on, while the differences in lipids between ozone and control treatments were observed earlier. Ozone caused large decreases in the contents of monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG) and sulfoquinovosyldiacylglycerol (SQDG), a slower decrease in the content of phosphatidylcholine (PC), but an increase in the content of phosphatidylethanolamine (PE) per leaf area, compared with exposure to charcoal-filtered air. The content of phosphatidylglycerol (PG) was unaffected by ozone. Compared with charcoal-filtered air, fumigation with ozone resulted in a decrease in the proportion of linolenic acid (18:3) of the total lipid extract, with a concomitant increase in the proportion of linoleic acid (18:2). For individual lipids, ozone caused a similar pattern of decreased 18:3 and increased 18:2 in MGDG, SQDG, PC and PE, while the fatty acid composition of DGDG was unaffected. In PG, ozone decreased the proportions of 18:3 and trans -Δ3-decenoic acid (16:1trans), balanced by increased proportions of palmitic and oleic acids. The contents of chlorophylls and carotenoids were unaffected by ozone. Our results show that moderately elevated levels of ozone cause significant changes in the polar lipid composition of garden pea leaves and in the level of unsaturation of the lipid acyl groups and, furthermore, that ozone has different effects, which could be direct or indirect, on chloroplast lipids (MGDG, DGDG, SQDG, PG acylated with 16:1trans) and cytosolic membrane lipids.  相似文献   

6.
利用从菠菜(Spinacia oleracea L.)叶绿体分离、纯化出的缺失膜脂的细胞色素b6f蛋白复合体(Cyt b6f)制剂与从菠菜类囊体分离、纯化的膜脂进行体外重组,检测了不同膜脂对Cyt b6f催化电子传递活性的影响.结果表明:被检测的5种膜脂,即单半乳糖基甘油二酯(MGDG)、双半乳糖基甘油二酯(DGDG)、磷脂酰胆碱(PC)、磷脂酰甘油(PG)和硫代异鼠李糖基甘油二酯(SQDG)对Cyt b6f催化电子传递的活性均有明显的促进作用,但促进的程度各不相同,这可能与这些膜脂分子的带电性质密切相关.不带电荷的MGDG和DGDG及分子整体呈电中性的PC对促进Cyt b6f催化电子传递的活性非常有效,可分别使其活性提高89%、75%和77%;而带负电荷的PG和SQDG对活性的促进作用则相对较弱,仅可使其活性分别提高43%和26%.  相似文献   

7.
The present study shows that thylakoid membranes of the diatom Cyclotella meneghiniana contain much higher amounts of negatively charged lipids than higher plant or green algal thylakoids. Based on these findings, we examined the influence of SQDG on the de-epoxidation reaction of the diadinoxanthin cycle and compared it with results from the second negatively charged thylakoid lipid PG. SQDG and PG exhibited a lower capacity for the solubilization of the hydrophobic xanthophyll cycle pigment diadinoxanthin than the main membrane lipid MGDG. Although complete pigment solubilization took place at higher concentrations of the negatively charged lipids, SQDG and PG strongly suppressed the de-epoxidation of diadinoxanthin in artificial membrane systems. In in vitro assays employing the isolated diadinoxanthin cycle enzyme diadinoxanthin de-epoxidase, no or only a very weak de-epoxidation reaction was observed in the presence of SQDG or PG, respectively. In binary mixtures of the inverted hexagonal phase forming lipid MGDG with the negatively charged bilayer lipids, comparable suppression took place. This is in contrast to binary mixtures of MGDG with the neutral bilayer lipids DGDG and PC, where rapid and efficient de-epoxidation was observed. In complex lipid mixtures resembling the lipid composition of the native diatom thylakoid membrane, we again found strong suppression of diadinoxanthin de-epoxidation due to the presence of SQDG or PG. We conclude that, in the native thylakoids of diatoms, a strict separation of the MGDG and SQDG domains must occur; otherwise, the rapid diadinoxanthin de-epoxidation observed in intact cells upon illumination would not be possible.  相似文献   

8.
Organisms use various adaptive strategies against phosphate stress, including lipid remodeling. Here, the response of major membrane lipids to phosphate stress was analyzed in Synechococcus sp. PCC 7942. Unlike plants and eukaryotic microalgae, no significant increases in neutral lipids were found, whereas glycolipids content increased to as high as 6.13% (of dry cell weight, DCW) and phospholipids decreased to 0.34% (of DCW) after 16 days of cultivation without phosphate. Glycolipids accumulation were mainly attributed to the significant increase of digalactosyldiacylglycerol (DGDG) by 50% and sulfoquinovosyldiaclglycerol (SQDG) by 90%, both of which acted as complementary lipids for phosphatidylglycerol (PG) in the cyanobacterial membrane. Also, a notable increase in content (by 48%) of C18 fatty acids (especially C18:1) was observed in all glycolipids at the expense of C12 and C14 (72%). These changes may contribute to membrane fluidity and photosynthetic activity for basic cell metabolism and phosphate stress adaptation. Lipidomic analyses showed the reduction of PG 18:1/16: 0 (by 52%) with the increase of DGDG 18:1/16:0 (133%) and SQDG 18:1/16:0 (245%), strongly suggesting a direct conversion of PG to DGDG and SQDG. Moreover, the decreasing amount of monogalactosyldiacylglycerol (MGDG) 16:1/16:0 (22%) was consistent with the increase of free fatty acids (125%) on day 2 of phosphate absence, which suggested that MGDG is more likely to provide a pool of fatty acids for de novo synthesis of glycolipids. This study provides valuable insight into cyanobacteria adaptation strategies to phosphate stress by membrane lipid remodeling and unveils the underlying acyl chain fluxes into glycolipids.  相似文献   

9.
Major glycolipids [monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG)) and phospholipids (phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG)] as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from Anfeltia tobuchiensis (Rhodophyta), Laminaria japonica, Sargassum pallidum (Phaeophyta), Ulva fenestrata (Chlorophyta) and Zostera marina (Embriophyta), harvested in the Sea of Japan. GC analysis of their fatty acid (FA) composition revealed that the n-6 polyunsaturated FAs (PUFAs) shared the most part of the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG. In algae, it was related to the prevalence of 20:4n-6 over 20:5n-3 in non-photosynthetic lipids. Percentage of n-6 PUFAs as well as the sum of n-3 and n-6 PUFAs decreased in the following sequence: PC-->PE-->PG. The saturation increased in the lines of MGDG-->DGDG-->SQDG and PC-->PE-->PG. PG was close to SQDG by the level of saturation. Distribution of C(18) and C(20) PUFAs in polar lipids depended on taxonomic position of macrophytes. Balance between C(18) and C(20) PUFAs was preferably shifted to the side of C(20) PUFAs in PC and PE that was observed in contrast to glycolipids and PG from L. japonica containing both series of FAs. The set of major FAs of polar lipid classes can essentially differ from each other and from total lipids of macrophytes. For example, MGDG was found to accumulate characteristic fatty acids 16:4n-3, 16:3n-3, 18:3n-6 and 18:4n-3, 20:3n-6 in U. fenestrata, Z. marina, L. japonica and S. pallidum, respectively.  相似文献   

10.
The lipid distribution and function in the thylakoid membranes from a thermophilic cyanobacterium, Mastigocladus laminosus, were investigated. The thylakoid membranes were treated with digitonin and separated on a DEAE-cellulose column into fractions enriched in photosystem I or II complex. Lipid analyses showed a specific distribution of anionic lipids among the fractions. A mild delipidation of the membranes with cholate indicates that monogalactosyl diacylglycerol (MGDG) and sulfoquinovosyl diacylglycerol (SQDG) are released rapidly, while the major parts of digalactosyl diacylglycerol (DGDG) and phosphatidylglycerol (PG) are tightly associated with membranes, suggesting a different distribution between the two groups of lipids. Measurements of fluorescence of delipidated and reconstituted thylakoids showed the contribution of lipids to energy transfer. MGDG enhanced all the original fluorescence of thylakoids, while acidic PG and SQDG stimulated fluorescence of photosystem I and antena chlorophyll-protein complexes. DGDG was less effective under the conditions tested.  相似文献   

11.

Main conclusion

MGDG leads to a dimerization of isolated, monomeric PSII core complexes. SQDG and PG induce a detachment of CP43 from the PSII core, thereby disturbing the intrinsic PSII electron transport. The influence of the four thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure and function of isolated monomeric photosystem (PS) II core complexes was investigated. Incubation with the negatively charged lipids SQDG and PG led to a loss of the long-wavelength 77 K fluorescence emission at 693 nm that is associated with the inner antenna proteins. The neutral galactolipids DGDG and MGDG had no or only minor effects on the fluorescence emission spectra of the PSII core complexes, respectively. Pigment analysis, absorption and 77 K fluorescence excitation spectroscopy showed that incubation with SQDG and PG led to an exposure of chlorophyll molecules to the surrounding medium followed by conversion to pheophytin under acidic conditions. Size-exclusion chromatography and polypeptide analysis corroborated the findings of the spectroscopic measurements and pigment analysis. They showed that the negatively charged lipid SQDG led to a dissociation of the inner antenna protein CP43 and the 27- and 25-kDa apoproteins of the light-harvesting complex II, that were also associated with a part of the PSII core complexes used in the present study. Incubation of PSII core complexes with MGDG, on the other hand, induced an almost complete dimerization of the monomeric PSII. Measurements of the fast PSII fluorescence induction demonstrated that MGDG and DGDG only had a minor influence on the reduction kinetics of plastoquinone QA and the artificial PSII electron acceptor 2,5-dimethyl-p-benzoquinone (DMBQ). SQDG and, to a lesser extent, PG perturbed the intrinsic PSII electron transport significantly.  相似文献   

12.
Precise structural identification of photosynthetic polar glycerolipids in microalga Tetraselmis chuii has been established using Ultra Performance Liquid Chromatography-Electrospray ionization-Quadrupole-Time of Flight Mass Spectrometry (UPLC-ESI-Q-TOF-MS) by direct analysis of the total lipids extract. The mass spectrometry was performed in reflective time-of-flight using electron spraying ionization in both positive and negative modes. The structural determination was based on the characteristic product ions yielded by different glycerolipids under ESI-MS/MS mode, and confirmed the molecular species by the carboxylate anions produced by glycerolipids in the negative mode. As a result, more than 40 lipid molecular species, including 11 monogalactosyldiacylglycerols (MGDG), 7 digalactosyldiacylglycerols (DGDG), 16 sulfoquinovosyldiacylglycerols (SQDG), and 9 phosphatidylglycerols (PG), were detected in Tetraselmis chuii, which had never been identified before in this microalga. Furthermore, some intact lipid molecules with hydroxylated fatty acids that could not be detected by the traditional GC-MS method were found this time, providing novel information for the photosynthetic lipidome of Tetraselmis chuii. Comparative studies on fatty acids at the sn-2 position showed that SQDG and MGDG are dominantly biosynthesized through the prokaryotic pathway, PG is a typically mixed biosynthetic pathway, while DGDG is somewhat peculiar with C14:0 and C16:0 at its sn-2 position. This method could provide a full structural profile of intact photosynthetic lipid molecular species, which may be applied to study the physiological and ecological functions of lipid by monitoring their individual changes.  相似文献   

13.
Lipids and fatty acids of Ectocarpus fasciculatus (Ectocarpales,Phaeophyceae) were analyzed. Major polar lipids are monogalactosyldiacylglycerol(MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinovosyldiacylglycerol(SQDG), diacylglycerylhydroxymethyl-N,N,N-trimethyl-rß-alanine(DGTA), phosphatidylcholine (PC), phospha-tidylethanolamine(PE), phosphatidylglycerol (PG) and phosphatidylinositol (PI).Diphosphatidylglycerol (DPG), phosphatidic acid (PA) and phosphatidyl-O-[N-(2-hydroxy-ethyl)glycine](PHEG) were also present in small amounts. Nonpolar lipids mainlyconsist of triacylglycerol (TAG) and diacylglycerol (DAG). Majorfatty acids are 16:0,18:1, 18:3, 18:4, 20:4 and 20:5. The positionaldistribution of fatty acids showed that molecular species ofeukaryotic structure account for 99% in MGDG, 98% in DGDG, 62%in PG and 23% in SQDG. On incubation with [1-14C]18:1 for 30min, 33% of the total label was detected in TAG, 16% in PG,14% in PE, 10% in PC and 8% in MGDG. During 7 days of chase,the label in TAG, PG, PE and PC decreased and simultaneouslyincreased in MGDG up to 41% of the total. In SQDG, labelledfatty acids were found in prokaryotic as well as in eukaryoticmolecular species. During the experiment, the label shiftedfrom 18:1 to 18:2, 18:3, 18:4 and, to a minor extent, to 20:4and 20:5 acids indicating 18:1 to be processed by elongationand/or desaturation. These results suggest TAG to act as a majorprimary acceptor of exogenous oleate and to be involved in thetransfer of fatty acids to MGDG and other polar lipids. (Received March 24, 1997; Accepted June 11, 1997)  相似文献   

14.
Among photomixotrophic green calluses tested (N. rustica. N. tobacum L. cv. BY-4 and Samsun), the callus of Samsun had the highest contents of chlorophyll and chloroplast lipids, such as monogalactosyldiglyceride (MGDG), digalactosyldiglyceride (DGDG), sulfoquinovosyldigly-ceride (SQDG) and phosphatidylglycerol (PG). However, the chlorophyll and chloroplast lipids in the green callus of Samsun were still 1/6 and 1/3 of that in the parent leaves, respectively. The relative content of a-linolenate in MGDG, DGDG and SQDG of the green calluses were higher than that of the white calluses. The ratios of hexadecatrienoate in MGDG and hexadeceno-ate 3-trans) in PG in the green calluses were trace or less compared with that of the parent leaves. The crude lipids and total fatty acid contents of the chlorophyll deficient leaves (N. taba-cum L. cv. Consolation 402 and Dominant Aurea Su/su) were almost the same as those of the normal leaves (cv. BY-4 and Samsun), although the chlorophyll contents of the chlorophyll deficient leaves were 1/3 ~ 1/4 of that of the normal leaves. The ratios of chloroplast lipids in the total polar lipids in the chlorophyll deficient leaves were a little lower than that in the normal green leaves, but the former had a slightly higher ratio of phospholipids such as phosphatidylcholine and phosphatidylethanolamine than the latter. There were few differences in the fatty acid compositions of each individual lipid betweeen both types of leaves.  相似文献   

15.
The positional distribution of fatty acids in chloroplast polar lipids and phosphatidylcholine from leaves of four plants has been measured in order to determine the origin of the diacylglycerol (DAG) moieties of each lipid. In spinach and tobacco, the DAG of sulfoquinovosyldiacylglycerol (SQDG), monogalactosyldiacylglycerol (MGDG) and digalactosylglycerol (DGDG) were derived partly from the chloroplast and partly from the cytoplasm. The contribution of the chloroplast pathway differed for each lipid, but in both plants the proportion of a lipid derived from that pathway was in the order SQDG greater than MGDG greater than DGDG. In contrast, all the DAG moieties of the three glycolipids of wheat and cucumber were derived from the cytoplasm. The DAG moiety of chloroplast phosphatidylglycerol was synthesized in the chloroplast in all four plants.  相似文献   

16.
The study investigated the effect of the thylakoid membrane lipids monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulphoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) on the structure of two algal light‐harvesting complexes (LHCs). In contrast to higher plants whose thylakoid membranes are characterized by an enrichment of the neutral galactolipids MGDG and DGDG, both the green alga Mantoniella squamata and the centric diatom Thalassiosira pseudonana contain membranes with a high content of the negatively charged lipids SQDG and PG. The algal thylakoids do not show the typical grana–stroma differentiation of higher plants but a regular arrangement. To analyze the effect of the membrane lipids, the fucoxanthin chlorophyll protein (FCP) complex of T. pseudonana and the LHC of M. squamata (MLHC) were prepared by successive cation precipitation using Triton X‐100 as detergent. With this method, it is possible to isolate LHCs with a reduced amount of associated lipids in an aggregated state. The results from 77 K fluorescence and photon correlation spectroscopy show that neither the neutral galactolipids nor the negatively charged lipids are able to significantly alter the aggregation state of the FCP or the MLHC. This is in contrast to higher plants where SQDG and PG lead to a strong disaggregation of the LHCII whereas MGDG and DGDG induce the formation of large macroaggregates. The results indicate that LHCs which are integrated into thylakoid membranes with a high amount of negatively charged lipids and a regular arrangement are less sensitive to lipid‐induced structural alterations than their counterparts in membranes enriched in neutral lipids with a grana–stroma differentiation.  相似文献   

17.
Glenda R. Orr  John K. Raison 《Planta》1990,181(1):137-143
The composition and phase behavior of some lipid classes and mixtures of thylakoid polar lipids were measured to investigate their role as determinants of the temperature of the transition associated with chilling injury. For Nerium oleander L., a plant which acclimates to growth temperature, a mixture of the phosphatidylglycerol (PG) and sulfoquinovosyldiacylglycerol (SQDG) showed transition temperatures of 22° and 10° C for plants grown at 45° and 20° C, respectively. This difference was similar to the 9 Celsius degrees differential in the transition of the polar lipids and indicated that the PG and-or the PG-SQDG mixture could be the major determinants of the transition temperature. Reconstitution of the PG-SQDG mixture from 20°-grown oleander with the galactolipids from 45°-grown plants, however, reduced the transition temperature by only 4 Celsius degrees. This indicates that some, low-melting-point lipids, which are structurally capable of forming a co-gel with the high-melting-point lipids, also play a role in determining the temperature of the transition and that the composition of these low-melting-point lipids also changes with growth temperature. More specific information on the role of PG was obtained using polar lipids from Cucumis sativus L., a chilling-sensitive plant. For this material the transition in the polar lipids was reduced from 9° to 5° and 4° C when the transition of the PG was reduced from 32° to 25° and 22° C. This was accomplished by reducing the proportion of disaturated molecular species in PG from 78 to 56 and 44 mol% by the addition of a fraction of the PG enriched in unsaturated molecular species. The data indicate that the transition temperature of the polar lipids of cucumber would be reduced to below 0° C, typical of a chillinginsensitive plant, when the transition temperature of PG was reduced to 15° C and this would occur at 21 mol% of disaturated molecular species. It is concluded that the transition in the thylakoid polar lipids, associated with chilling injury, involves both high- and low-meltingpoint lipids but can be reduced when the transition temperature of the high-melting-point component is reduced.Abbreviations DGDG digalactosyldiacylglycerol - MGDG monogalactosyldiacylglycerol - PG phosphatidylglycerol - SQDG sulfoquinovosyldiacylglycerol  相似文献   

18.
Salt treatment strongly affected cell growth by decreasing dry weight. Exposure of Catharanthus roseus cell suspensions to increasing salinity significantly enhanced total lipid (TL) content. The observed increase is mainly due to high level of phospholipids (PL). Hundred mM NaCl treatment increased phospholipid species phosphatidylcholine (PC) and phosphatidylethanolamine (PE), whereas it reduced glycolipid ones monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) but not sulfoquinovosyldiacylglycerol (SQDG). Moreover, fatty acid composition was clearly modified when cells were cultured in the presence of 100 mM NaCl, whereas only few changes occurred at 50 mM. Salt treatment decreased palmitic acid (16:0) level and increased that of linolenic acid (18:2). Such effect was observed in phospholipid species PC and PE and in glycolipid DGDG. Double bond index (DBI) was enhanced more than 2-fold in fatty acids of either glycolipids or phospholipids from cells submitted to 100 mM NaCl. Free sterol content was also significantly enhanced, especially at 100 mM NaCl, whereas free sterols/phospholipids (St/PL) ratio was slightly decreased. All these salt-induced changes in membrane lipids suggest an increase in membrane fluidity of C. roseus cells.  相似文献   

19.
From cyanobacteria to higher plants, photosynthetic membranes are composed of two galactolipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), and two negatively charged lipids, sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG). In many environments, plants and algae grow in a shortage of nutrients, leading to the development of nutrient-saving mechanisms. For example, at the cellular level, in phosphate starvation, these mechanisms include conversion of phospholipids into phosphorus-free lipids. In photosynthetic membranes, PG is supposed to be replaced by SQDG in phosphate starvation whereas the opposite occurs in sulfur deprivation. All biological data confirm a complementary relationship between SQDG and PG and suggest the importance of maintaining the total amount of anionic lipids in photosynthetic membranes. Using neutron diffraction on reconstituted SQDG or PG lipid membranes, we demonstrate that, despite chemically different headgroups, PG and SQDG have similar physicochemical properties. With an equivalent diacylglycerol backbone, PG and SQDG membranes have a similar bilayer thickness and bending rigidity. They also have essentially the same response to hydration in terms of repulsion and interaction forces. The results presented here establish that SQDG and PG are good substitutes to each other in nutrient starvation conditions to maintain the chloroplast functional organization and its photosynthesis activity.  相似文献   

20.
Changes in fatty acids of leaf polar lipids: monogalactosyldiacylglycerol (MGDG), digalactosyldiacylglycerol (DGDG), sulfoquinosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG) in maize seedlings of chiling-sensitive (CS) CM 7 and Co 151 lines and chilling-tolerant (CT) S 215 and EP 1 lines upon chilling for either 4 or 6 days in the dark and after rewarming for 4 days at original growth conditions were studied. The content of free fatty acids (FFA) in control leaves as well as alterations in the proportion of major fatty acids, unsaturation ratio (UR), double bond index (DBI) and changes in the proportion of heigh-temperature melting of both phosphatidylglycerol (htm-PG) and sulfoquinovosylglycerol (htm-SQDG) after chilling and rewarming of seedlings were estimated. FFA content in intact leaves was 2–3-fold higher in the chilling susceptible CM 7 line than in the other three inbreeds studied. After chilling for 6 days the level of FFA increased only in CM 7 and S 215 lines by about 30 %. Upon rewarming seedlings chilled for 6 days the level of FFA increased about two-fold in CS Co 151 line and CT EP 1 line and decreased in CS CM 7 line. Limited accumulation of FFAs during chilling and post-chilling rewarming of maize seedlings, did not correspond to the extent of polar lipid breakdown (Kaniuga et al. 1999b) probably due to the contribution of active oxidative systems to the peroxidation of fatty acids under these conditions. During rewarming seedlings chilled for 6 days major changes were observed in decrease of 18:3 and an increase of 16:0 in all four polar lipids studied with more pronounced changes in CS than CT lines. Similarly, in CS inbreeds a decrease in UR of fatty acids in MGDG, DGDG and SQDG after post-chilling rewarming was greater than in CT lines. Proportion of htm-fraction in both PG and SQDG increased after post-chilling rewarming in all four inbreeds, however to a lesser extent in CT than CS lines. A similar pattern of changes in DBI in CS and CT maize seedlings was observed in glycolipid and combine lipid classes. More extensive degradation of polar lipids in CS than CT maize inbreeds following galactolipase action in chloroplasts (Kaniuga et al. 1998) provides FFAs for initiation of peroxidation by LOX which is manifested by decrease of UR and DBI. This sequence of reactions during chilling and post-chilling rewarming appears to be a main route of fatty acids peroxidation responsible for secondary events involved in chilling injury. In addition, the extent of these changes differentiates CS and CT inbreeds. Contribution of esterified fatty acids in thylakoid lipids to direct peroxidation, may be of minor importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号