首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5,10-Dideazatetrahydrofolate (DDATHF) is a new antimetabolite designed as an inhibitor of folate metabolism at sites other than dihydrofolate reductase. DDATHF was found to inhibit the growth of L1210 and CCRF-CEM cells in culture at concentrations in the range of 10-30 nM. The inhibitory effect of DDATHF on the growth of L1210 and CCRF-CEM cells was reversed by either hypoxanthine or aminoimidazole carboxamide. Growth inhibition by DDATHF was prevented by addition of both thymidine and hypoxanthine, but not by thymidine alone. 5-Formyltetrahydrofolate reversed the effects of DDATHF in a dose-dependent manner. DDATHF had no appreciable inhibitory activity against either dihydrofolate reductase or thymidylate synthase in vitro, but was found to be an excellent substrate for folylpolyglutamate synthetase. DDATHF had little or no effect on incorporation of either deoxyuridine or thymidine into DNA, in distinct contrast to the effects of the classical dihydrofolate reductase inhibitor, methotrexate. DDATHF was found to deplete cellular ATP and GTP over the same concentrations as those inhibitory to leukemic cell growth, suggesting that the locus of DDATHF action was in the de novo purine biosynthesis pathway. The synthesis of formylglycinamide ribonucleotide in intact L1210 cells was inhibited by DDATHF with the same concentration dependence as inhibition of growth. This suggested that DDATHF inhibited glycinamide ribonucleotide transformylase, the first folate-dependent enzyme of de novo purine synthesis. DDATHF is a potent folate analog which suppresses purine synthesis through direct or indirect inhibition of glycinamide ribonucleotide transformylase.  相似文献   

2.
Methenyltetrahydrofolate synthetase (EC 6.3.3.2) catalyzes the irreversible ATP and Mg2+-dependent transformation of 5-formyltetrahydrofolate (N5-HCO-H4-pteroylglutamic acid (PteGlu] to 5,10-methenyltetrahydrofolate. The physiological function of this reaction remains unknown even though it is potentially involved in the intracellular metabolism of the large doses of N5-HCO-H4-PteGlu (leucovorin) administered to cancer patients. We have tried to elucidate methenyltetrahydrofolate synthetase's physiological role by examining the consequences of its inhibition in MCF-7 human breast cancer cells by the folate analog 5-formyltetrahydrohomofolate (fTHHF), a potent competitive inhibitor with a Ki of 1.4 microM. fTHHF inhibited MCF-7 cell growth with an IC50 of 2.0 microM during 72-h exposures, and this effect was fully reversible by hypoxanthine but not thymidine, indicating specific inhibition of de novo purine synthesis. A correlation was observed between increases in intracellular N5-HCO-H4-PteGlu concentrations following fTHHF and cell growth inhibition. De novo purine synthesis was inhibited at the second folate-dependent enzyme, phosphoribosyl aminoimidazole-carboxamide formyltransferase (AICAR transferase; EC 2.1.2.3), as determined by aminoimidazole carboxamide rescue and azaserine inhibition studies. N5-HCO-H4-PteGlu pentaglutamate was a potent inhibitor of purified MCF-7 cell AICAR transferase with a Ki of 3.0 microM while the monoglutamate was not an inhibitor up to 10 microM and fTHHF was only weakly inhibitory with a Ki of 16 microM. These findings suggest that methenyltetrahydrofolate synthetase activity is needed to prevent de novo purine synthesis inhibition by N5-HCO-H4-PteGlu polyglutamates.  相似文献   

3.
A number of antagonists of nucleotide metabolism with anti-cancer activity affect the de novo purine pathway. To determine the biochemical mechanisms of cytotoxicity of these drugs, assay procedures have been developed for measurement of the levels of intermediates proximal to IMP in the pathway for de novo purine biosynthesis in mouse L1210 leukemia cells. Purine precursors have been synthesized in vitro from [14C]glycine using enzymes from chicken liver. These 14C-labeled intermediates have been used as marker compounds to define retention times for metabolites of leukemia cells separated by HPLC and the chromatographic mobilities of these intermediates after two-dimensional thin-layer chromatography. These new chromatographic procedures have been used in combination to determine the steady-state concentrations for purine precursors in mouse L1210 leukemia cells in the exponential phase of growth: N-formylglycineamide ribotide (16 microM); N-formylglycineamidine ribotide (4.7 microM); 5-aminoimidazole ribotide (4.0 microM); 4-carboxy-5-aminoimidazole ribotide (0.46 microM); N-succino-5-aminoimidazole-4-carboxamide ribotide (11 microM); 5-aminoimidazole-4-carboxamide ribotide (16 microM); 5-formamidoimidazole-4-carboxamide ribotide (2.7 microM); and IMP (57 microM). The metabolic effects of tiazofurin (25 microM) upon mouse L1210 leukemia cells growing in culture define a "metabolic crossover point" at the reaction catalyzed by IMP dehydrogenase (EC 1.1.1.205) which confirms previous reports of inhibition of this enzyme.  相似文献   

4.
Cytotoxic mechanisms of glutamine antagonists in mouse L1210 leukemia   总被引:1,自引:0,他引:1  
The glutamine antagonists, acivicin (NSC 163501), azaserine (NSC 742), and 6-diazo-5-oxo-L-norleucine (DON) (NSC 7365), are potent inhibitors of many glutamine-dependent amidotransferases in vitro. Experiments performed with mouse L1210 leukemia growing in culture show that each antagonist has different sites of inhibition in nucleotide biosynthesis. Acivicin is a potent inhibitor of CTP and GMP synthetases and partially inhibits N-formylglycineamidine ribotide (FGAM) synthetase of purine biosynthesis. DON inhibits FGAM synthetase, CTP synthetase, and glucosamine-6-phosphate isomerase. Azaserine inhibits FGAM synthetase and glucosamine-6-phosphate isomerase. Large accumulations of FGAR and its di- and triphosphate derivatives were observed for all three antagonists which could interfere with the biosynthesis of nucleic acids, providing another mechanism of cytotoxicity. Acivicin, azaserine, and DON are not potent inhibitors of carbamyl phosphate synthetase II (glutamine-hydrolyzing) and amidophosphoribosyltransferase in leukemia cells growing in culture although there are reports of such inhibitions in vitro. Blockade of de novo purine biosynthesis by these three antagonists results in a "complementary stimulation" of de novo pyrimidine biosynthesis.  相似文献   

5.
We have investigated the structural features of 5,10-dideaza-5,6,7,8-tetrahydrofolate (DDATHF) that determine the activity of this compound as an inhibitor of glycinamide ribonucleotide formyltransferase (GARFT) purified from mouse L1210 cells. 5-Deazatetrahydrofolate was as good an inhibitor of GARFT as DDATHF, indicating that isosteric replacement of nitrogen by carbon at the 5-position of tetrahydrofolate is sufficient for inhibition of GARFT. 5,10-Dideazafolic acid, 5,8,10-trideazatetrahydrofolate, and 2-desamino-5,10-dideazatetrahydrofolate were poor inhibitors of GARFT, indicating that a reduced pyridopyrimidine ring, N-8, and the 2-amino group of DDATHF, respectively, play an important role in the binding of tetrahydrofolate analogues to this enzyme. DDATHF analogues in which the phenyl ring was replaced either by a cyclohexyl ring or by methylene groups retained activity as inhibitors. 5,10-Dideazatetrahydrohomofolate was about 6 times more potent as an inhibitor of GARFT than DDATHF, but 5,10-dideazatetrahydronorfolate had about one-fifth of the activity of DDATHF. An analogue of DDATHF in which the glutamic acid side chain was replaced by aspartic acid (which was not a substrate for polyglutamation and was only weakly cytotoxic) was equiactive with DDATHF as an inhibitor of purified GARFT. Surprisingly, 5,10-dideazatetrahydropteroic acid was about as active as DDATHF as an inhibitor of GARFT, an indication that the glutamic acid in the side chain of DDATHF does not play a role in this ligand-enzyme interaction. The polyglutamate derivatives of DDATHF bound up to 100 times tighter to GARFT than DDATHF itself; longer chain polyglutamates conformed to Goldstein's zone B behavior under experimental conditions and were projected to be in zone C, i.e., stoichiometric inhibition, in vivo. We conclude that the presence of carbon at the 5-position of tetrahydrofolate analogues is sufficient for inhibition of GARFT, that N-8 and the 2-amino group are involved in binding of DDATHF to GARFT, probably through hydrogen bonds, and that the structures of the phenyl ring and amino acid side chain of DDATHF analogues are not primary determinants of GARFT inhibition by monoglutamate forms of these compounds. We also conclude that polyglutamation plays a major role in the potent cytotoxicity of DDATHF.  相似文献   

6.
5-Formyltetrahydrofolate (5-formylTHF) is the only folate derivative that does not serve as a cofactor in folate-dependent one-carbon metabolism. Two metabolic roles have been ascribed to this folate derivative. It has been proposed to 1) serve as a storage form of folate because it is chemically stable and accumulates in seeds and spores and 2) regulate folate-dependent one-carbon metabolism by inhibiting folate-dependent enzymes, specifically targeting folate-dependent de novo purine biosynthesis. Methenyltetrahydrofolate synthetase (MTHFS) is the only enzyme that metabolizes 5-formylTHF and catalyzes its ATP-dependent conversion to 5,10-methenylTHF. This reaction determines intracellular 5-formylTHF concentrations and converts 5-formylTHF into an enzyme cofactor. The regulation and metabolic role of MTHFS in one-carbon metabolism was investigated in vitro and in human neuroblastoma cells. Steady-state kinetic studies revealed that 10-formylTHF, which exists in chemical equilibrium with 5,10-methenylTHF, acts as a tight binding inhibitor of mouse MTHFS. [6R]-10-formylTHF inhibited MTHFS with a K(i) of 150 nM, and [6R,S]-10-formylTHF triglutamate inhibited MTHFS with a K(i) of 30 nm. MTHFS is the first identified 10-formylTHF tight-binding protein. Isotope tracer studies in neuroblastoma demonstrate that MTHFS enhances de novo purine biosynthesis, indicating that MTHFS-bound 10-formylTHF facilitates de novo purine biosynthesis. Feedback metabolic regulation of MTHFS by 10-formylTHF indicates that 5-formylTHF can only accumulate in the presence of 10-formylTHF, providing the first evidence that 5-formylTHF is a storage form of excess formylated folates in mammalian cells. The sequestration of 10-formylTHF by MTHFS may explain why de novo purine biosynthesis is protected from common disruptions in the folate-dependent one-carbon network.  相似文献   

7.
It has been proposed that the clinical utility of methotrexate (MTX) in the treatment of rheumatoid arthritis may be due, in part, to inhibition of 5-amino imidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT) by polyglutamated forms of MTX. AICARFT is the second folate dependent enzyme in de novo purine biosynthesis. In this study, the effects of MTX on de novo purine biosynthesis as well as total nucleotide pools were evaluated in both the human T cell line, CEM, and phytohemagglutinin-activated normal human T lymphocytes. De novo synthesized purines were metabolically labeled with 14C-glycine after MTX treatment and analyzed by HPLC. In normal T cells, MTX produced a dose-dependent reduction in de novo adenosine and guanosine pools with maximal effects (>50%) at 1 microM MTX. In CEM cells, de novo purine synthesis was almost completely blocked by 1 microM MTX. Total purine pools were also reduced in both cell types after MTX treatment. Since 1 microM MTX caused almost complete growth inhibition in CEM cells, we evaluated whether growth could be reconstituted with exogenous purine bases and pyrimidine nucleosides which can be utilized via salvage pathways. The combination of hypoxanthine and thymidine substantially reversed growth inhibition with 1 microM MTX in CEM cells. Taken together, these results demonstrate that MTX inhibits de novo nucleotide synthesis in T cells and suggest that AICARFT inhibition may be one aspect of the multi-site mechanism of MTX action in the treatment of rheumatoid arthritis.  相似文献   

8.
The effects of several metabolic inhibitors of DNA synthesis on the antiproliferative activity of 6-thioguanine (6-TG) were examined using cultured L1210 leukemia cels. The presence of hydroxyurea (HU), 1-beta-D-arabinofuranosylcytosine (araC), or 5-fluorodeoxyuridine (FUdR) in cultures of L1210 leukemic cells during exposure of 6-TG did not increase the degree of inhibition of cellular replication produced by the 6-thiopurine, but instead partially protected cells against the delayed cytotoxicity of 6-TG, implying that DNA replication was essential for the expression of cytotoxicity by the purine antimetabolite. Consistent with these results was the finding that synchronized L1210 cells exposed to 6-TG were the most susceptible to the cytotoxic action of the 6-thiopurine during G1/S and S phase. However, G2 phase cells were also sensitive to 6-TG indicating that at least two metabolic lesions are responsible for the production of cytotoxicity. Alkaline sucrose gradient sedimentation of L1210 cells exposed to 6-TG revealed that the purine analog causes structural changes in DNA suggesting that these hitherto unreported lesions may be involved in the cytotoxicity caused by this agent.  相似文献   

9.
Polyglutamated dihydrofolate, accumulated as a result of potent inhibition of dihydrofolate reductase (DHFR), has been postulated to directly inhibit the purine pathway at 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylase (reaction 9) in leukemia cells exposed to methotrexate (MTX). We have observed that 25 microM MTX or piritrexim, a "non-classical" antifolate, induce several-fold accumulations of AICAR and N-succino-AICAR to a combined cellular concentration of 89 microM in mouse L1210 leukemia cells after 2 h. By contrast, complete inhibition of reaction 4 by 25 microM azaserine results in accumulation of N-formyl-glycinamide ribotide (FGAR) polyphosphates to a combined cellular concentration of greater than 10 mM. MTX prevented azaserine-induced accumulation of FGAR polyphosphates. Hence, these antifolates induce primary inhibition of the de novo purine pathway at, or prior to, glycinamide ribotide transformylase (reaction 3).  相似文献   

10.
The pathway for de novo biosynthesis of purine nucleotides contains two one-carbon transfer reactions catalyzed by glycinamide ribotide (GAR) and 5-aminoimidazole-4-carboxamide ribotide (AICAR) transformylases in which N10-formyltetrahydrofolate is the one-carbon donor. We have found that the antifolates methotrexate (MTX) and piritrexim (PTX) completely block the de novo purine pathway in mouse L1210 leukemia cells growing in culture but with only minor accumulations of GAR and AICAR to less than 5% of the polyphosphate derivatives of N-formylglycinamide ribotide (FGAR) which accumulate when the pathway is blocked completely by azaserine. This azaserine-induced accumulation of FGAR polyphosphates is completely abolished by MTX, indicating that inhibition of the pathway is at or before GAR transformylase (reaction 3; Lyons, S. D., and Christopherson, R. I. (1991) Biochem. Int. 24, 187-197). Three h after the addition of MTX (0.1 microM), cellular 5-phosphoribosyl-1-pyrophosphate has accumulated 3.4-fold while 6-methyl-mercaptopurine riboside (25 microM) induces a 6.3-fold accumulation. These data suggest that amido phosphoribosyltransferase catalyzing reaction 1 of the pathway is the primary site of inhibition. In support of this conclusion, we have found that dihydrofolate-Glu5, which accumulates in MTX-treated cells, is a noncompetitive inhibitor of amido phosphoribosyltransferase with a dissociation constant of 3.41 +/- 0.08 microM for interaction with the enzyme-glutamine complex in vitro. Folate-Glu5, MTX-Glu5, PTX, dihydrotriazine benzenesulfonyl fluoride, and AICAR also inhibit amido phosphoribosyltransferase.  相似文献   

11.
The purine anti-metabolite 6-mercaptopurine is one of the most widely used drugs for the treatment of acute childhood leukemia and chronic myelocytic leukemia. Developed in the 1950s, the drug is also being used as a treatment for inflammatory diseases such as Crohn's disease. The antiproliferative mechanism of action of this drug and other purine anti-metabolites has been demonstrated to be through inhibition of de novo purine synthesis and incorporation into nucleic acids. Despite the extensive clinical use and study of 6-mercaptopurine and other purine analogues, the cellular effects of these compounds remain relatively unknown. More recently, purine anti-metabolites have been shown to function as protein kinase inhibitors and to regulate gene expression. In an attempt to find small molecule regulators of the orphan nuclear receptor Nurr1, interestingly, we identified 6-mercaptopurine as a specific activator of this receptor. A detailed analysis of 6-mercaptopurine regulation of Nurr1 demonstrates that 6-mercaptopurine regulates Nurr1 through a region in the amino terminus. This activity can be inhibited by components of the purine biosynthesis pathway. These findings indicate that Nurr1 may play a role in mediating some of the antiproliferative effects of 6-mercaptopurine and potentially implicate Nurr1 as a molecular target for treatment of leukemias.  相似文献   

12.
Concentrations and rates of synthesis of phosphoribosylpyrophosphate (PP-Rib-P) and purine nucleotides were compared in fibroblasts cultured from 5 males with PP-Rib-P synthetase superactivity, 3 normal individuals, and 2 children with severe hypoxanthine-guanine phosphoribosyltransferase deficiency. Although all cell strains with PP-Rib-P synthetase superactivity showed increased PP-Rib-P concentration and generation, increased rates of PP-Rib-P-dependent purine synthetic pathways, and increased purine and pyrimidine nucleoside triphosphate concentrations, two subgroups were discernible. Three fibroblast strains with isolated catalytic defects in PP-Rib-P synthetase showed milder increases in PP-Rib-P concentration (2.5-fold normal) and generation (1.6- to 2.1-fold) and in rates of purine synthesis de novo (1.6- to 2.2-fold) and purine nucleoside triphosphate pools (1.5-fold) than did cells from 2 individuals with combined kinetic defects in PP-Rib-P synthetase, both with purine nucleotide inhibitor-resistance. Values for these processes in the latter two strains were, respectively, 5- to 6-fold, 2.6- to 3.2-fold, 4- to 7-fold, and 1.7- to 2.2-fold those of normal cells. In contrast to cells with catalytic defects, these cells also excreted an abnormally high proportion of labeled purines and resisted purine base-mediated inhibition of PP-Rib-P and purine nucleotide synthesis. Hypoxanthine-guanine phosphoribosyltransferase-deficient cells showed normal regulation of PP-Rib-P synthesis and normal nucleoside triphosphate pools despite increased rates of purine synthesis de novo and of purine excretion. Cells with PP-Rib-P synthetase superactivity thus synthesize purine nucleotides at increased rates as a consequence of increased PP-Rib-P production, despite increased purine nucleotide concentrations. These and additional findings provide evidence that regulation of purine synthesis de novo is effected at both the PP-Rib-P synthetase and amidophosphoribosyltransferase reactions.  相似文献   

13.
We studied the ability of purine compounds to restore the proliferation of concanavalin-A-stimulated rat T-lymphocytes under conditions of purine de novo synthesis inhibition and, on the other hand, the inhibition by purine nucleosides of the response of these cells to a mitogenic stimulation under conditions of normal purine de novo synthesis. The use of 50 μM azaserine, a potent inhibitor of purine de novo synthesis, allowed us to define the physiologically active salvage pathways of purine bases, ribo- and deoxyribonucleosides in concanavalin-A-stimulated rat T-lymphocytes. Except for guanylic compounds, all purines completely restored cell proliferation at a concentration of 50 μM. Guanine, guanosine and 2′-deoxyguanosine at concentrations up to 500 μM did not allow us to restore more than 50% of the cell proliferation. In conditions of normal purine de novo synthesis, the addition of 1000 μM adenine, adenosine, 2′-deoxyadenosine or 100 μM 2′-deoxyguanosine inhibited rat T-lymphocyte proliferation. The differences between the degree of inhibition of cell proliferation could be explained only in part by the differences between the capacities of salvage of these compounds. Furthermore, the fact that 2′-deoxyguanosine toxicity was dependent and 2′-deoxyadenosine toxicity independent on the activation state of the cells provided more evidence that the biochemical mechanisms of inhibition of cell proliferation should be different for these two nucleosides.  相似文献   

14.
To clarify the contributions of amidophosphoribosyltransferase (ATase) and its feedback regulation to the rates of purine de novo synthesis, DNA synthesis, protein synthesis, and cell growth, mutated human ATase (mhATase) resistant to feedback inhibition by purine ribonucleotides was engineered by site-directed mutagenesis and expressed in CHO ade (-)A cells (an ATase-deficient cell line of Chinese hamster ovary fibroblasts) and in transgenic mice (mhATase-Tg mice). In Chinese hamster ovary transfectants with mhATase, the following parameters were examined: ATase activity and its subunit structure, the metabolic rates of de novo and salvage pathways, DNA and protein synthesis rates, and the rate of cell growth. In mhATase-Tg mice, ATase activity in the liver and spleen, the metabolic rate of the de novo pathway in the liver, serum uric acid concentration, urinary excretion of purine derivatives, and T lymphocyte proliferation by phytohemagglutinin were examined. We concluded the following. 1) ATase and its feedback inhibition regulate not only the rate of purine de novo synthesis but also DNA and protein synthesis rates and the rate of cell growth in cultured fibroblasts. 2) Suppression of the de novo pathway by the salvage pathway is mainly due to the feedback inhibition of ATase by purine ribonucleotides produced via the salvage pathway, whereas the suppression of the salvage pathway by the de novo pathway is due to consumption of 5-phosphoribosyl 1-pyrophosphate by the de novo pathway. 3) The feedback inhibition of ATase is more important for the regulation of the de novo pathway than that of 5-phosphoribosyl 1-pyrophosphate synthetase. 4) ATase superactivity leads to hyperuricemia and an increased bromodeoxyuridine incorporation in T lymphocytes stimulated by phytohemagglutinin.  相似文献   

15.
In exponentially growing 3T6 cells, the synthesis of deoxythymidine triphosphate (dTTP) is balanced by its utilization for DNA replication, with a turnover of the dTTP pool of around 5 min. We now investigate the effects of two inhibitors of DNA synthesis (aphidicolin and hydroxyurea) on the synthesis and degradation of pyrimidine deoxynucleoside triphosphates (dNTPs). Complete inhibition of DNA replication with aphidicolin did not decrease the turnover of pyrimidine dNTP pools labeled from the corresponding [3H]deoxynucleosides, only partially inhibited the in situ activity of thymidylate synthetase and resulted in excretion into the medium of thymidine derived from breakdown of dTTP synthesized de novo. These data demonstrate continued synthesis of dTTP in the absence of DNA replication. In contrast, hydroxyurea decreased the turnover of pyrimidine dNTP pools 5-50-fold. Hydroxyurea is an inhibitor of ribonucleotide reductase and stops DNA synthesis by depleting cells of purine dNTPs but not pyrimidine dNTPs. Our results suggest that degradation of dNTPs is turned off by an unknown mechanism when de novo synthesis is blocked.  相似文献   

16.
The importance of methyl-thioIMP (Me-tIMP) formation for methylmercaptopurine ribonucleoside (Me-MPR) cytotoxicity was studied in Molt F4 cells. Cytotoxicity of Me-MPR is caused by Me-tIMP formation with concomitant inhibition of purine de novo synthesis. Inhibition of purine de novo synthesis resulted in decreased purine nucleotide levels and enhanced 5-phosphoribosyl-1-pyrophosphate (PRPP) levels, with concurrent increased pyrimidine nucleotide levels. The Me-tIMP concentration increased proportionally with the concentration of Me-MPR. High Me-tIMP concentration also caused inhibition of PRPP synthesis. Maximal accumulation of PRPP thus occurred at low Me-MPR concentrations. As little as 0.2 μM Me-MPR resulted already after 2 h in maximal inhibition of formation of adenine and guanine nucleotides, caused by inhibition of purine de novo synthesis by Me-tIMP. Under these circumstances increased intracellular PRPP concentrations could be demonstrated, resulting in increased levels of pyrimidine nucleotides. So, in Molt F4 cells, formation of Me-tIMP form Me-MPR results in cytotoxicity by inhibition of purine de novo synthesis.  相似文献   

17.
Human B lymphoblast lines severely deficient in hypoxanthine-guanine phosphoribosyltransferase (HGPRT) were selected for resistance to 6-thioguanine from cloned normal and phosphoribosylpyrophosphate (PP-Rib-P) synthetase-superactive cell lines and were compared with their respective parental cell lines with regard to growth and PP-Rib-P and purine nucleotide metabolism. During blockade of purine synthesis de novo with 6-methylthioinosine or aminopterin, inhibition of growth of all HGPRT-deficient cell lines was refractory to addition of Ade at concentrations which restored substantial growth to parental cell lines. Ade-resistant inhibition of growth of parental lines by 6-methylthioinosine, however, occurred during Ado deaminase inhibition. Insufficient generation of IMP (and ultimately guanylates) to support growth of lymphoblasts lacking HGPRT activity and blocked in purine synthesis de novo best explained these findings, implying that a major route of interconversion of AMP to IMP involves the reaction sequence: AMP----Ado----Ino----Hyp----IMP. PP-Rib-P generation and purine nucleoside triphosphate pools were unchanged by introduction of HGPRT deficiency into normal lymphoblast lines, in agreement with the view that accelerated purine synthesis de novo in this deficiency results from increased availability of PP-Rib-P for the pathway. Cell lines with dual enzyme defects did not differ from PP-Rib-P synthetase-superactive parental lines in rates of PP-Rib-P and purine synthesis despite 5-6-fold increases in PP-Rib-P concentrations, excretion of nearly 50% of newly synthesized purines, and diminished GTP concentrations. Fixed rates of purine synthesis de novo in PP-Rib-P synthetase-superactive cells appeared to reflect saturation of the rate-limiting amidophosphoribosyltransferase reaction for PP-Rib-P. In combination with accelerated purine excretion, increased channeling of newly formed purines into adenylates, and impaired conversion of AMP to IMP, fixed rates of purine synthesis de novo may condition cell lines with defects in HGPRT and PP-Rib-P synthetase to depletion of GTP with consequent growth retardation.  相似文献   

18.
Regulation of de novo purine biosynthesis in Chinese hamster cells   总被引:1,自引:0,他引:1  
Regulation of de novo purine biosynthesis was examined in two Chinese hamster cell lines, CHO and V79. De novo purine biosynthesis is inhibited at low concentrations of adenine. The mechanism of inhibition was studied using the RNA and protein synthesis inhibitors actinomycin D, cycloheximide, and azacytidine. Although all three inhibitors rapidly inhibited de novo purine biosynthesis in vivo, neither adenine nor the RNA and protein synthesis inhibitors could be found to have an effect in vitro on either phosphoribosylpyrophosphate (PRPP) synthetase or amido phosphoribosyltransferase, the first enzymes of the de novo pathway. However, in the presence of actinomycin D, cycloheximide, and azacytidine, there was a 50% or greater reduction in PRPP concentrations. This reduction in PRPP levels is correlated with a 2-fold increase in purine nucleotides in the acid-soluble pool. It is proposed that in the presence of the metabolic inhibitors there is an increase in nucleotide pools due to degradation of RNA, with a resulting feedback inhibition on de novo purine biosynthesis. In contrast to a previous report (Martin, D. W., Jr., and Owen, N. T. (1972) J. Biol. Chem. 247, 5477-5485), we could find no evidence for a repressor type mechanism in these cells.  相似文献   

19.
Procedures for assaying the rate of purine de novo synthesis in cultured fibroblast cells have been compared. These were (i) the incorporation of [(14)C]-glycine or [(14)C]formate in alpha-N-formylglycinamide ribonucleotide (an intermediate in the purine synthetic pathway) and (ii) the incorporation of [(14)C]-formate into newly synthesised cellular purines and purines excreted by the cell into the medium. Fibroblast cells, derived from patients with a deficiency of hypoxanthine phosphoribosyltransferase (HPRT-) (EC 2.4.2.8) and increased rates of purine de novo synthesis, were compared with fibroblasts from healthy subjects (HPRT+). Fetal calf serum, which was used to supplement the assay and cell growth medium, was found to contain sufficient quantities of the purine base hypoxanthine to inhibit purine de novo synthesis in HPRT+ cells. This inhibition was the basis of differentiation between HPRT- and HPRT+ cells. In the absence of added purine base, both cell types had similar capacities for purine de novo synthesis. This result contrasts with the increased rates of purine de novo synthesis reported for a number of human HPRT- cells in culture but conforms recent studies made on human HPRT- lymphoblast cells. The intracellular concentration and utilisation of 5-phosphoribosyl-1-pyrophosphate (P-Rib-PP), a substrate and potential controlling factor for purine de novo synthesis, were determined in HPRT- and HPRT+ cells. The rate of utilisation of P-Rib-PP in the salvage of free purine bases was far greater than that in purine de novo synthesis. Although HPRT- cells had a 3-fold increase in P-Rib-PP content, the rate of P-Rib-PP generation was similar to HPRT+ cells. Thus, in fibroblasts, the concentration of P-Rib-PP appears to be critical in the control of de novo purine synthesis and its preferential utilisation in the HPRT reaction limits its availability for purine de novo synthesis. In vivo, HPRT+ cells, in contrast to HPRT- cells, may be operating purine de novo synthesis at a reduced rate because of their ability to reutilise hypoxanthine.  相似文献   

20.
We have investigated the role of dihydrofolate (H2PteGlu) accumulation in the inhibition of de novo purine synthesis by methotrexate (MTX) in human MCF-7 breast cancer cells. Previous studies have shown that cytotoxic concentrations of MTX that inhibit dihydrofolate reductase produce only minimal depletion of the reduced folate cofactor, 10-formyltetrahydrofolate, required for purine synthesis. At the same time, de novo purine synthesis is totally inhibited. In these studies, we show that 10 microM MTX causes inhibition of purine synthesis at the step of phosphoribosylaminoimidazolecarboxamide (AICAR) transformylase, as reflected in a 2-3-fold expansion of the intracellular AICAR pool. The inhibition of purine synthesis coincides with the rapid intracellular accumulation of H2PteGlu, a known inhibitor of AICAR transformylase. When the generation of H2PteGlu is blocked by pretreatment with 50 microM 5-fluorodeoxyuridine (FdUrd), an inhibitor of thymidylate synthase, MTX no longer causes inhibition of purine synthesis. Intermediate levels of H2PteGlu produced in the presence of lower (0.1-10 microM) concentrations of FdUrd led to proportional inhibition of purine biosynthesis, and the exogenous addition of H2PteGlu to breast cells in culture re-established the block in purine synthesis in the presence of FdUrd and MTX. The early phases of inhibition of purine biosynthesis could be ascribed only to H2PteGlu accumulation. MTX polyglutamates, also known to inhibit AICAR transformylase, were present in breast cells only after 6 h of incubation with the parent compounds and were not formed in cells preincubated with FdUrd. The lipid-soluble antifolate trimetrexate, which does not form polyglutamates, produced modest 10-formyltetrahydrofolate depletion, but caused marked H2PteGlu accumulation and a parallel inhibition of purine biosynthesis. This evidence leads to the conclusion that MTX and the lipid-soluble analog trimetrexate cause inhibition of purine biosynthesis through the accumulation of H2PteGlu behind the blocked dihydrofolate reductase reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号