首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Montagu's harrier ( Circus pygargus ), a specialist raptor in western France, faces huge variations in the abundance of its main prey, the common vole ( Microtus arvalis ). This simple predator–prey system provides fine-tuned data for investigating patterns of sex allocation under environmental variability. We analysed variations in brood sex ratio at fledging (1364 chicks from 451 broods) in two adjacent harrier populations for respectively 16- and 8-year surveys of both the predator and its prey. Overall sex ratio (number of males/total number of offspring) was close to parity (0.513) but this apparent equilibrium resulted in fact from opposite skews in the two populations which differed by almost 10% (0.561 vs 0.464). Brood reduction only is unlikely to produce such a difference in average brood sex ratios. Brood sex ratio of the predator was affected by prey abundance. Contrary to expectations and whatever the population, relatively more offspring of the smaller sex were produced during peak years of the vole cycle but also during poor years, thus providing the first evidence for a nonlinear influence of environmental quality (prey abundance) on sex ratio. Assuming that observed sex ratios in both populations are the result of an adaptive strategy that maximizes harrier reproductive output, we discuss possible origins of the bias and why nonlinearity may be involved in sex ratio adjustment. These results further point out that sex ratio analyses should take into account population characteristics, and more generally, environmental variations both in space and time.  相似文献   

2.
Anouk Spelt  Lorien Pichegru 《Ibis》2017,159(2):272-284
Biased offspring sex ratio is relatively rare in birds and sex allocation can vary with environmental conditions, with the larger and more costly sex, which can be either the male or female depending on species, favoured during high food availability. Sex‐specific parental investment may lead to biased mortality and, coupled with unequal production of one sex, may result in biased adult sex ratio, with potential grave consequences on population stability. The African Penguin Spheniscus demersus, endemic to southern Africa, is an endangered monogamous seabird with bi‐parental care. Female adult African Penguins are smaller, have a higher foraging effort when breeding and higher mortality compared with adult males. In 2015, a year in which environmental conditions were favourable for breeding, African Penguin chick production on Bird Island, Algoa Bay, South Africa, was skewed towards males (1.5 males to 1 female). Males also had higher growth rates and fledging mass than females, with potentially higher post‐fledging survival. Female, but not male, parents had higher foraging effort and lower body condition with increasing number of male chicks in their brood, thereby revealing flexibility in their parental strategy, but also the costs of their investment in their current brood. The combination of male‐biased chick production and higher female mortality, possibly at the juvenile stage as a result of lower parental investment in female chicks, and/or at the adult stage as a result of higher parental investment, may contribute to a biased adult sex ratio (ASR) in this species. While further research during years of contrasting food availability is needed to confirm this trend, populations with male‐skewed ASRs have higher extinction risks and conservation strategies aiming to benefit female African Penguin might need to be developed.  相似文献   

3.
Tawny Owls Strix aluco have been reported to skew the sex ratio of their offspring towards males when facing food shortage during the nestling period (and vice versa), because female fitness is more compromised by food shortage during development than male fitness. To test the generality of these results we used a DNA marker technique to determine the sex ratio in broods of Tawny Owls in Danish deciduous woodland during two years of ample food supply (rodent population outbreak) and two years of poor food supply. Of 268 nestlings, 59% were males (95% CI: 53–65%). This proportion was higher than previously reported for the species (49% in Northumberland, UK, and 52% in Hungary), but consistent with Fisherian sex allocation, which predicts a male bias of c . 57% based on inferred differences in energy requirements of male and female chicks. Contrary to previous results, brood sex ratios were not correlated with the resource abundance during the breeding seasons, despite considerable variation in breeding frequency, brood size or hatching date across years. Brood sex ratios were unaffected by brood reduction prior to DNA sampling, and nestling mortality rates after DNA sampling were not related to gender. The inconsistency between the sex ratio allocation patterns in our study and previous investigations suggests that adaptive sex allocation strategies differ across populations. These differences may relate to reproductive constraints in our population, where reproductive decisions seem primarily to concern whether to lay eggs at all, rather than adjust the sex ratio to differences in starvation risk of nestlings.  相似文献   

4.
Male Mastophora cornigera exit egg sacs as adults, which allowed us to determine spiderling sex ratios and patterns of maternal investment in this species. We collected 15 egg sacs produced by seven mothers, which yielded 1945 emergent spiderlings which were sexed, 1850 of which were weighed. Two emergent broods were significantly male and female biased and were unaffected by pre-emergence mortality. The weights of male and female spiderlings differed in eight broods, with males and females being heavier in four cases each. Five of these broods were derived from multiple egg sac sets produced by one mother, and in each case, the total mean male and female spiderling weights for all broods in a set were biased in the same direction as the biased brood(s) within that set. Mean emergent spiderling weight was independent of brood size and sex ratio for both males and females. Despite such independence, sex allocation in M. cornigera can favor sons, daughters, or both equally, and by numbers, by weight, or both at once. The proximate mechanisms and adaptive significance of such variability is unknown. We also review evidence for gender-biased allocations in arachnid offspring and suggested mechanisms for their applicability to M. cornigera.  相似文献   

5.
M. Cucco    G. Malacarne 《Journal of Zoology》1996,240(1):141-151
Growth rate and fledging success were assessed in natural and manipulated broods of the pallid swift Apus pallidus. Daily measurements of chick mass, wing length, and insect abundance allowed us to examine the short-term variation of chick growth in relation to food availability.
The number of fledged nestlings increased with brood size. Wing length and body mass were slightly but significantly smaller in larger broods, and the nestlings of enlarged broods needed longer to fledge. We discuss how these differences could influence survival after fledging.
Hatching asynchrony caused a significant difference in growth among siblings, and the difference between the oldest and youngest chick was greater in larger broods.
Chick growth was independent of daily food availability. We suggest that this was due to an increased effort of the parents at their expense, when food availability was poor.
The ability of this species to raise an additional chick is in line with most findings on birds, but partially in contrast with results for the common swift in which, at least during poor seasons, the additional nestling caused an increased mortality and lowered the reproductive success.  相似文献   

6.
Parents should vary their level of investment in sons and daughters in response to the fitness costs and benefits accrued through male and female offspring. I investigated brood sex ratio biases and parental provisioning behaviour in the brown thornbill, Acanthiza pusilla, a sexually dimorphic Australian passserine. Parents delivered more food to male-biased than female-biased broods. However, factors determining parental provisioning rates differed between the sexes. Female provisioning rates were related to brood sex ratio in both natural and experimental broods with manipulated sex ratios. In contrast, male provisioning rates were not affected by brood sex ratio in either natural or experimental broods. However, males in established pairs provisioned at a higher rate than males in new pairs. Data on the sex ratio of 109 broods suggest that female brown thornbills adjust their primary sex ratio in response to pair bond duration. Females in new pairs produced broods with significantly fewer sons than females in established pairs. This pattern would be beneficial to females if the costs of rearing sons were higher for females in new than established pairs. This may be the case since females in new pairs provisioned experimental all-male broods at elevated rates. The condition of nestlings also tended to decline more in these all-male broods than in other experimental broods. This will have additional fitness consequences because nestling mass influences recruitment in thornbills. Female thornbills may therefore obtain significant fitness benefits from adjusting their brood sex ratio in response to the status of their pair bond. Copyright 2002 The Association for the Study of Animal Behaviour. Published by Elsevier Science Ltd. All rights reserved.  相似文献   

7.
The parents of sexually size-dimorphic offspring are often assumed to invest more resources producing individuals of the larger sex. A range of different methods have been employed to estimate relative expenditure on the sexes, including quantifying sex-specific offspring growth, food intake, energy expenditure and energy intake, in addition to measures of parental food provisioning and energy expenditure. These methods all have the potential to provide useful estimates of relative investment, but each has particular problems of interpretation, and few studies have compared the estimates derived concurrently from more than two of these measures. In this study we compared these surrogate measures of parental investment in the brown songlark Cinclorhamphus cruralis, which exhibits one of the most extreme cases of sexual size dimorphism among birds. At 10 days of age we found that male chicks, on average, were 49% heavier, received 42% more prey items, expended 44% more energy and ingested 50% more metabolizable energy than their sisters. Furthermore, we created, experimentally, both all-male and all-female broods of 10-day-old chicks and found that mothers delivered 43% more prey items and expended 27% more energy when provisioning all-male broods, providing the first direct evidence for a change in parental energy expenditure in relation to brood sex ratio. These data reveal remarkable agreement between these estimates of investment and suggest that all may provide quantitatively useful information on sex allocation. However, the lower variance associated with estimates of relative mass and energy intake suggest that these methods may be of greater utility, although this may primarily reflect the shorter period over which our provisioning data were collected.  相似文献   

8.
We manipulated brood sizes to promote different levels of parentaleffort in the common swift (Apus apus). This provided a powerfulmethod for testing hypotheses regarding parental investmentdecisions concerning optimal allocation strategies between parentsand young. Data were analyzed on a visit-by-visit basis regardingchanges in parental and chick body mass, the mass of prey delivered,and the estimated mass of parental self-feeding. Our resultswere consistent with current theory in that food delivery increasedwith brood size, whereas the food received per chick, and hencemean chick body mass, decreased with brood size. Parental bodymass decreased with brood size and increasing parental effortbut recovered quickly during lower levels of chick feeding immediatelybefore fledging, suggesting some short-term cost of reproduction.Parents feeding at the highest level experienced criticallylow body mass and responded by a temporary cessation of chickfeeding. On any one foraging trip, total mass of prey captureddid not differ between brood sizes, but load mass deliveredto the young was negatively related to the amount of estimatedparental self-feeding. Allocation decisions of parents feedingthemselves and their young matched differential allocation theories,but estimated provisioning efficiency of parents at differentbody masses did not suggest any adaptive advantage from parentalmass loss.  相似文献   

9.
Models considering sex ratio optima under single foundress strict local mate competition predict that female bias will be reduced by stochasticity in sex allocation, developmental mortality of males and limited insemination capacity of males. In all three cases the number of males per brood is expected to increase with brood size. Sex ratio optima may also be less female biased when several mothers contribute offspring to local mating groups or if non‐local mating occurs between members of different broods; again more males are expected in larger broods. In the parasitoid wasp Goniozus legneri (Hymenoptera: Bethylidae), sex allocation has only a small stochastic component, developmental mortality is low and non‐siblings are unlikely to develop in the same brood. However, the number of males per brood increases with the size of the brood (produced by a single mother). We investigated the further possibilities of limited insemination capacity and non‐local mating using a naturalistic experimental protocol. We found that limited insemination capacity is an unlikely general explanation for the increase in number of males with brood size. All males and females dispersed from both mixed and single sex broods. Although most females in mixed sex broods mated prior to dispersal, these data suggest that non‐local mating is possible, for instance via male immigration to broods containing virgin females. This may influence sex ratio optima and account for the trend in male number.  相似文献   

10.
We hypothesized that increasing chick plasma testosterone concentrations, transmitted from the mothers via their eggs, enhances survival of their offspring and that the fitness of the young, depending on the maternal hormones, is influenced by parental quality. To test our hypotheses we distinguished the broods of white storks Ciconia ciconia L. where chicks died and those where all chicks survived. We analysed the plasma testosterone concentrations in the chicks, the ability of the chicks to be first to receive food and the mass of chicks before fledging in relation to their hatching order and recorded the body mass of parents and food mass delivered by them.
Female storks used the asymmetries in testosterone concentrations within a brood to control brood size and adjusted the number of young hatched to match the parental ability to rear offspring. Females of poor condition altered the testosterone concentrations to produce large differences between the chicks: The first-hatched chicks, which had high plasma testosterone levels, responded faster to the feeding parent and received more food than did their younger siblings. One or two later-hatched chicks, which had lower testosterone levels, died in these broods. Females in good condition produced small differences in testosterone concentrations between the chicks and all chicks survived in their brood. Chicks that were raised by the females of poor condition in reduced broods were heavier than chicks that were raised by females of good condition in broods where all chicks survived.
We suggest that the control of brood size by testosterone concentration, transmitted by the mother to the chicks, is a hormonal means of condition-dependent reproductive strategy in the white stork.  相似文献   

11.
We studied the primary brood sex ratio of an old-growth forest passerine, the Eurasian treecreeper (Certhia familiaris), along a gradient of forest fragmentation. We found evidence that male nestlings were more costly to produce, since they suffered twofold higher nestling mortality and were larger in body size than females. Furthermore, the proportion of males in the brood was positively associated with the provisioning rate and the amount of food delivered to the nestlings. During the first broods, a high edge density and a high proportion of pine forests around the nests were related to a decreased production of males. The densities of spiders, the main food of the treecreeper, were 38% higher on spruce trunks than on pine trunks. This suggests that pine-dominated territories with female-biased broods may have contained less food during the first broods. The observation was further supported by the fact that the feeding frequencies were lower in territories with high proportions of pines. In the second broods, territories with a high forest patch density produced female-biased broods, whereas high-quality territories with a large amount of deciduous trees and mixed forests produced male-biased broods. Our results suggest that habitat quality as measured by habitat characteristics is associated with sex allocation in free-living birds.  相似文献   

12.
Sex allocation in black-capped chickadees Poecile atricapilla   总被引:2,自引:0,他引:2  
Optimal sex allocation for individuals can be predicted from a number of different hypotheses. Fisherian models of sex allocation predict equal investment in males and females up to the end of parental care and predict brood compositions based on the relative costs of producing males and females. The Trivers-Willard hypothesis predicts that individual females should alter the sex ratio of their broods based on their own condition if it has a differential impact on the lifetime reproductive success of their sons and daughters. The Charnov model of sex allocation predicts that females should alter sex allocation based on paternal attributes that may differentially benefit sons versus daughters. Because females are the heterogametic sex in birds, many recent studies have focussed on primary sex ratio biases. In black-capped chickadees Poecile atricapilla , males are larger than females suggesting they may be more costly to raise than females. Female condition affects competitive ability in contests for mates, and thus may be related to variance in fecundity. Females prefer high-ranking males as both social and extrapair partners. These observations suggest that females might vary the sex ratio of their broods based on the predictions of any of the above models. Here, we report on the results of PCR based sex determination of 1093 nestlings in 175 broods sampled from 1992 to 2001. Population-wide, we found a mean brood sex ratio of 0.525±0.016, with no significant deviation from a predicted binomial distribution. We found no effect of clutch size, female condition, hatch date, parental rank or paternity. Our results reject the idea that female black-capped chickadees systematically vary sex allocation in their broods.  相似文献   

13.
When the cost of rearing sons and daughters differs and the subsequent survival and reproductive success of one sex is more dependent than the other, on the amount of parental investment, adult females tend to produce more chicks of the more dependent sex if the females are in good condition themselves. One method of varying the total investment in each sex is through modifying the sex ratio of offspring produced. This study shows that in broods of European Shags Phalacrocorax aristotelis , the sex ratio varied with laying date. Presumably in this species, the lifetime reproductive success of males is more dependent on the level of parental investment. Early breeders are in better condition, the brood sex ratio of early broods was male biased (0.63), while that of late broods was female biased (0.36). The overall difference in sex ratio found between early and late nests could be attributed to manipulation of sex in the first laid egg. In early broods, 77% of the first hatched chicks were male but only 30% of the first hatched chicks in late broods were male. The sex combination of the first two chicks in a brood significantly affected growth as measured by asymptotic mass.  相似文献   

14.
Differential growth rate between males and females, owing to a sexual size dimorphism, has been proposed as a mechanism driving sex‐biased survival. How parents respond to this selection pressure through sex ratio manipulation and sex‐biased parental investment can have a dramatic influence on fitness. We determined how differential growth rates during early life resulting from sexual size dimorphism affected survival of young and how parents may respond in a precocial bird, the black brant Branta bernicla nigricans. We hypothesized that more rapidly growing male goslings would suffer greater mortality than females during brood rearing and that parents would respond to this by manipulating their primary sex ratio and parental investment. Male brant goslings suffered a 19.5% reduction in survival relative to female goslings and, based on simulation, we determined that a female biased population sex ratio at fledging was never overcome even though previous work demonstrated a slight male‐biased post‐fledging survival rate. Contrary to the Fisherian sex ratio adjustment hypothesis we found that individual adult female brant did not manipulate their primary sex ratio (50.39% male, n = 645), in response to the sex‐biased population level sex ratio. However, female condition at the start of the parental care period was a good predictor of their primary sex ratio. Finally, we examined how females changed their behavior in response to primary sex ratio of their broods. We hypothesized that parents would take male biased broods to areas with increased growth rates. Parents with male biased primary sex ratios took broods to areas with higher growth rates. These factors together suggest that sex‐biased growth rates during early life can dramatically affect population dynamics through sex‐biased survival and recruitment which in turn affects decisions parents make about sex allocation and sex‐biased parental investment in offspring to maximize fitness.  相似文献   

15.
P. SHAW 《Ibis》1985,127(4):476-494
Brood reduction is common in a population of Blue-eyed Shags on Signy Island, South Orkney Islands. This paper describes possible adaptations which may reduce the brood. In clutches of three, the last egg was smaller, and hatched 2.4 days later than its siblings. Whilst 78–84% of first and second ('A' & 'B') chicks fledged, only 11 % of 'C' chicks did. In a sample of artificially synchronized broods chick survival was as high as in normal asynchronously hatching broods, but there were more cases of total brood loss. The age at which the C chick died was related inversely to the length of the A-C hatching interval. Relative differences in sibling weights were highest during the first 12 days, when most of the C chick deaths occurred. At this age the daily food requirements of each brood of three was one-tenth that of each brood of two just prior to fledging. It is suggested that C chicks were unable to compete effectively for a food supply which was limited by the parents, rather than by the environment. The asymptotic weight attained by A chicks was inversely related to brood size, and was greater than that of B or C chicks. Normal asynchronous broods produced at least one heavy (A) chick and one medium weight (B) chick, whilst in synchronized broods the asymptotic weight attained was similar to that of B chicks in normal broods.  相似文献   

16.
We use data on pigeon guillemots Cepphus columba to test the hypothesis that discretionary time in breeding seabirds is correlated with variance in prey abundance. We measured the amount of time that guillemots spent at the colony before delivering fish to chicks ("resting time") in relation to fish abundance as measured by beach seines and bottom trawls. Radio telemetry showed that resting time was inversely correlated with time spent diving for fish during foraging trips (r=−0.95). Pigeon guillemots fed their chicks either Pacific sand lance Ammodytes hexapterus , a schooling midwater fish, which exhibited high interannual variance in abundance (CV=181%), or a variety of non-schooling demersal fishes, which were less variable in abundance (average CV=111%). Average resting times were 46% higher at colonies where schooling prey dominated the diet. Individuals at these colonies reduced resting times 32% during years of low food abundance, but did not reduce meal delivery rates. In contrast, individuals feeding on non-schooling fishes did not reduce resting times during low food years, but did reduce meal delivery rates by 27%. Interannual variance in resting times was greater for the schooling group than for the non-schooling group. We conclude from these differences that time allocation in pigeon guillemots is more flexible when variable schooling prey dominate diets. Resting times were also 27% lower for individuals feeding two-chick rather than one-chick broods. The combined effects of diet and brood size on adult time budgets may help to explain higher rates of brood reduction for pigeon guillemot chicks fed non-schooling fishes.  相似文献   

17.
Studies of sibling competition within brood hierarchies have rarely assessed simultaneously the effects of sex and rank in the brood hierarchy on traits other than offspring mortality and differential growth. We studied the expression of heat-shock proteins (Hsps) to assess the physiological stress response to different combinations of sex and position within competitive brood hierarchies in the black kite Milvus migrans (Bodd.), a sexually dimorphic raptor showing facultative siblicide. Senior males showed higher stress levels than did senior females and younger siblings of each sex as revealed by Hsp60 values. The analysis of Hsp70 levels indicated that nestlings from broods in which the senior chick was a male showed higher stress levels than did nestlings from broods in which the senior chick was a female. In addition, levels of Hsp60 were related negatively to nutritional condition expressed as levels of plasmatic albumin. This suggests that the sex of senior chicks may be key in determining their stress level and that of their siblings, which is probably associated with sibling competition by fighting within brood hierarchies. The comparatively higher stress levels of senior males (and their siblings) may be a consequence of their ability to exploit their potential advantage from being the head start while avoiding a possible competitive disadvantage from being the smaller sex, independent of environmental conditions determining the probability of brood reduction. Differential stress levels depending on sex and rank in the brood hierarchy may be a consequence of parental control of offspring behaviour through differential resource allocation (e.g. yolk androgens) or it may reflect adaptations of particular chicks (senior males) to enhance their competitive ability within brood hierarchies.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 88 , 383–390.  相似文献   

18.
In the polygynous pied flycatcher, Ficedula hypoleuca, reproductivesuccess of females is constrained by male food provisioningduring the nestling period. Hence, there will be conflictinginterests among the male and each of his mates as to how malefeeding effort should be shared among broods. This paper describesthree experiments designed to examine the parental behaviorof the members of a bigynous trio, i.e., the male and his twomates, in light of these conflicts. In all experiments, primaryand secondary broods were manipulated to hatch on the same dayto reduce the difference in brood-reproductive value due toage. Males divided their effort equally when the two broodswere the same size. However, males did not allocate their investmentin proportion to brood size when brood sizes differed, but investedmore heavily per young in the larger broods. This finding suggeststhat males tried to optimize the joint effort of their two mates.Males and females showed similar responses to experimental reductionin brood demands, which indicates no difference in their willingnessto invest in offspring. When one of the male’s mates wasremoved temporarily, the male increased his total feeding rateand provided proportionately more food to the "motherless" brood.Through flexible allocation of parental investment, males seemable to optimize their reproductive interests in the two broods.The only way a polygynously mated female might successfullyincrease the amount of male assistance at her nest is to makeher own brood more valuable for the male, relative to the otherbroods he might have. We discuss some ways this might be achieved.[Behav Ecol 1991;2:106–115]  相似文献   

19.
In sexually size‐dimorphic species, brood sex composition may exert differential effects on sex‐specific mortality. We investigated the sex‐specific mortality and body condition in relation to brood sex composition in nestlings of the black‐billed magpie Pica pica. Neither significantly sex‐biased production at hatching nor overall sex‐biased mortality during the nestling period was found. Sex‐specific mortality as a function of brood sex composition, however, differed between female and male nestlings. We found higher mortality for females in male‐biased broods and higher mortality for males in female‐biased broods, a phenomenon that we call ‘rarer‐sex disadvantage’. As a result, fledging sex ratios became more biased in the direction of bias at hatching, a phenomenon that cannot be readily explained by previous hypotheses for sex‐specific mortality. Two temporal variables, fledging date and laying date, were also correlated with sex‐specific mortality: female nestlings in earlier broods experienced higher mortality than male nestlings whereas male nestlings in later broods experienced higher mortality. We suggest that this unusual pattern of mortality may be explained by adaptive adjustments of brood sex composition by parents, either through the effects of a slight sex difference in offspring dispersal patterns on parental fitness, or owing to sex differences as regards the benefits of early fledging.  相似文献   

20.
Brown-headed cowbirds, Molothrus ater, frequently parasitize red-winged blackbirds,Agelaius phoeniceus . The presence of a brood parasite, unrelated to both host nestlings and parents, has provoked speculation regarding within-brood food allocation and parental provisioning. This study is the first to compare directly the effect of brood parasitism on host parent and offspring behaviour in younger and older broods. We videotaped 28 unparasitized red-winged blackbird broods and compared them to 22 parasitized broods. Red-winged blackbird nestling begging appears largely unaffected by cowbird parasitism. The presence of the cowbird in the nest affected neither the latency nor duration of host nestling begging, but stimulated more frequent begging by red-winged blackbird nestlings following food distribution. Begging by cowbirds was unique in two ways: (1) cowbirds maintained a consistent begging effort throughout the nestling period (but did not receive a consistent food share); and (2) cowbirds begged longer and more frequently following the allocation of food. Persistent begging by the cowbird following the allocation of food has implications for the division of parental care, if by doing so the brood parasite is able to provoke the foster parent to increase provisioning, at the expense of brooding. We found no evidence for the adjustment of parental care. Neither the foraging rates nor the lengths of the parental feeding visits differed markedly between parasitized and unparasitized broods. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号