首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
2.
3.
Ethylene and fruit ripening   总被引:13,自引:0,他引:13  
The latest advances in our understanding of the relationship between ethylene and fruit ripening are reviewed. Considerable progress has been made in the characterisation of genes encoding the key ethylene biosynthetic enzymes, ACC synthase (ACS) and ACC oxidase (ACO) and in the isolation of genes involved in the ethylene signal transduction pathway, particularly those encoding ethylene receptors ( ETR ). These have allowed the generation of transgenic fruit with reduced ethylene production and the identification of the Nr tomato ripening mutant as an ethylene receptor mutant. Through these tools, a clearer picture of the role of ethylene in fruit ripening is now emerging. In climacteric fruit, the transition to autocatalytic ethylene production appears to result from a series of events where developmentally regulated ACO and ACS gene expression initiates a rise in ethylene production, setting in motion the activation of autocatalytic ethylene production. Differential expression of ACS and ACO gene family members is probably involved in such a transition. Finally, we discuss evidence suggesting that the NR ethylene perception and transduction pathway is specific to a defined set of genes expressed in ripening climacteric fruit and that a distinct ETR pathway regulates other ethylene-regulated genes in both immature and ripening climacteric fruit as well as in non-climacteric fruit. The emerging picture is one where both ethylene-dependent and -independent pathways coexist in both climacteric and non-climacteric fruits. Further work is needed in order to dissect the molecular events involved in individual ripening processes and to understand the regulation of the expression of both ethylene-dependent and -independent genes.  相似文献   

4.
5.
Fruit ripening and abscission are associated with an ethylene burst in several melon (Cucumis melo) genotypes. In cantaloupe as in other climacteric fruit, exogenous ethylene can prematurely induce abscission, ethylene production, and ripening. Melon genotypes without fruit abscission or without ethylene burst also exist and are, therefore, non-climacteric. In the nonabscising melon fruit PI 161375, exogenous ethylene failed to stimulate abscission, loss of firmness, ethylene production, and expression of all target genes tested. However, the PI 161375 etiolated seedlings displayed the usual ethylene-induced triple response. Genetic analysis on a population of recombinant cantaloupe Charentais x PI 161375 inbred lines in segregation for fruit abscission and ethylene production indicated that both characters are controlled by two independent loci, abscission layer (Al)-3 and Al-4. The non-climacteric phenotype in fruit tissues is attributable to ethylene insensitivity conferred by the recessive allelic forms from PI 161375. Five candidate genes (two ACO, two ACS, and ERS) that were localized on the melon genetic map did not exhibit colocalization with Al-3 or Al-4.  相似文献   

6.
7.
8.
1 Introduction The simple gaseous phytohormone ethylene as apotent modulator has various roles in plant growth,development and in response to biotic and abioticstress, such as germination, fruit ripening, flower andleaf senescence, and responsiveness to pathogen attack and mechanical damage[1]. The opening and senes-cence of many kinds of flowers are correlated tightly to ethylene, including carnation, petunia, orchid and rose[2]. Generally, roses are classified as ethylene-sen-sitive, however…  相似文献   

9.
Mechanical wounding and abscission in citrus   总被引:1,自引:0,他引:1  
Fruit detachment force (FDF), ethylene evolution, fruit and leaf drop were determined in Citrus sinensis for periods up to 96 h after mechanical wounding. Injury by removing a thin section of mature fruit flavedo reduced FDF, increased ethylene evolution and promoted abscission. Injuring flavedo 1 cm below the calyx was more effective at reducing FDF than injuring flavedo at the equator or the blossom‐end of mature fruit. Injuring the calyx or peduncle of mature fruit, or injuring three leaves closest to the mature fruit did not reduce FDF. Immature fruitlets either did not abscise or underwent low rates of abscission in response to mechanical wounding, depending on age. Inhibiting ethylene binding in wounded mature fruit with 1‐methylcyclopropene (1‐MCP) increased ethylene evolution compared with wounded fruit alone, but the reduction in FDF was similar. When an ethylene biosynthesis inhibitor (aminoethoxyvinylglycine, AVG) was used, reduction in FDF of wounded mature fruit exposed to AVG was similar to that of wounded fruit alone but ethylene production was markedly reduced. Wounding mature leaf blades in the presence or absence of 1‐MCP resulted in elevated but equal ethylene evolution up to 48 h after wounding, however, no leaf drop occurred. Thereafter, ethylene evolution was higher in 1‐MCP‐treated wounded leaves. Removing up to 77% of the total mature leaf area did not cause leaf drop, nor did wounding tissue across the laminar or petiolar abscission zones. Leaflets of 5 mm length reached nearly 100% abscission after mechanical wounding, whereas wounding leaves 20 mm length resulted in 15% abscission. The data suggest that mechanical wounding of flavedo results in mature fruit abscission, and ethylene binding may not be mandatory to initiate abscission in citrus fruit. The differential response of fruit and leaves at different ages to wounding may be related to potential contribution to carbohydrate accumulation, and production and sensitivity of tissues to an abscission signal(s).  相似文献   

10.
11.
Mume (Japanese apricot: Prunus mume Sieb. et Zucc.) is a climacteric fruit that produces large amounts of ethylene as it ripens. Ripening is accompanied by marked increases in the activities of two ethylene-biosynthetic enzymes, namely, 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase. To study the molecular aspects of ripening of mume, we isolated cDNA clones for proteins that we considered likely to be involved in the biosynthesis and perception of ethylene during ripening, namely, ACC synthase, ACC oxidase and the ethylene receptor. Northern blotting analysis revealed the markedly increased expression of ACC synthase prior to that of ACC oxidase and the increase in ethylene production during ripening. Overall, the levels of the mRNAs for the genes corresponded closely to the levels of activity of the ethylene-biosynthetic enzymes. Exposure of mature green mume fruit to ethylene for 12 h induced strong expression of ACC synthase, as well as of ACC oxidase. Wounding of the pericarp of mume fruit induced the expression of ACC synthase but not of ACC oxidase. The rate of ethylene production increased only slightly after wounding. These results suggest that expression of the genes for ACC synthase and ACC oxidase must be activated sequentially for maximum production of ethylene during ripening of mume fruit and that several mechanisms regulate the expression of ethylene-biosynthetic genes during ripening.  相似文献   

12.
The present study was carried out to understand the mechanism of salt stress amelioration in red pepper plants by inoculation of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing halotolerant bacteria. In general, ethylene production, ACC concentration, ACC synthase (ACS), and ACC oxidase (ACO) enzyme activities increased with increasing levels of salt stress. Treatment with halotolerant bacteria reduced ethylene production by 47–64%, ACC concentration by 47–55% and ACO activity by 18–19% in salt-stressed (150 mmol NaCl) red pepper seedlings compared to uninoculated controls. ACS activity was lower in red pepper seedlings treated with Bacillus aryabhattai RS341 but higher in seedlings treated with Brevibacterium epidermidis RS15 (44%) and Micrococcus yunnanensis RS222 (23%) under salt-stressed conditions as compared to uninoculated controls. A significant increase was recorded in red pepper plant growth under salt stress when treated with ACC deaminase-producing halotolerant bacteria as compared to uninoculated controls. The results of this study collectively suggest that salt stress enhanced ethylene production by increasing enzyme activities of the ethylene biosynthetic pathway. Inoculation with ACC deaminase-producing halotolerant bacteria plays an important role in ethylene metabolism, particularly by reducing the ACC concentration, although a direct effect on reducing ACO activity was also observed. It is suggested that growth promotion in inoculated red pepper plants under inhibitory levels of salt stress is due to ACC deaminase activity present in the halotolerant bacteria.  相似文献   

13.
14.
Citrus fruits infected with the fungus Penicillium digitatum substantially increase the production of the plant hormone ethylene. In this study, the regulation of ethylene biosynthesis in Citrus sinensis-infected fruits and its putative involvement in an active defence response against P. digitatum infection is examined. Ethylene production is demonstrated as being the result of the co-ordinated and differential up-regulation of at least three ethylene biosynthetic genes: ACS1, ACS2, and ACO. Blocking ethylene perception by 1-MCP resulted in an increased ethylene production and ACS2 expression during infection and mechanical wounding, suggesting that this gene is negatively regulated by ethylene. ACO expression was induced by ethylene in the absence of wounding or infection, although further results indicate that its induction during the course of infection may not be primarily mediated by ethylene. Treatment with 1-MCP also increased susceptibility to Penicillium decay, showing an involvement of ethylene perception in promoting defence responses in citrus fruits. The changes in the expression of two defence-related genes up-regulated during infection were also studied: the ones coding for phenylalanine ammonia-lyase (PAL) and an acidic class II chitinase (ACR311). The onset of PAL expression after mechanical wounding or inoculation was not changed in 1-MCP-pretreated fruits, while its later increase during the course of infection was abolished. Chitinase gene induction was more related to mechanical damage and was partially repressed by ethylene. These studies indicate distinct possible regulatory mechanisms of plant fruit defence genes in the context of fungal infection and ethylene perception.  相似文献   

15.
The plant hormone ethylene is involved in many plant processes ranging from seed germination to leaf and flower senescence and fruit ripening. Ethylene is synthesized from methionine, via S-adenosyl-L-methionine (SAM) and 1-amino-cyclopropane-1-carboxylic acid (ACC). The key ethylene biosynthetic enzymes are ACC synthase (ACS) and ACC oxidase (ACO). Manipulation of ethylene biosynthesis by chemicals and gene technology is discussed. Biotechnological modification of ethylene synthesis is a promising method to prevent spoilage of agricultural and horticultural products.  相似文献   

16.
17.
18.
19.
20.
Tang X  Gomes A  Bhatia A  Woodson WR 《The Plant cell》1994,6(9):1227-1239
The differential expression of the petunia 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene family during flower development and senescence was investigated. ACC oxidase catalyzes the conversion of ACC to ethylene. The increase in ethylene production by petunia corollas during senescence was preceded by increased ACC oxidase mRNA and enzyme activity. Treatment of flowers with ethylene led to an increase in ethylene production, ACC oxidase mRNA, and ACC oxidase activity in corollas. In contrast, leaves did not exhibit increased ethylene production or ACC oxidase expression in response to ethylene. Gene-specific probes revealed that the ACO1 gene was expressed specifically in senescing corollas and in other floral organs following exposure to ethylene. The ACO3 and ACO4 genes were specifically expressed in developing pistil tissue. In situ hybridization experiments revealed that ACC oxidase mRNAs were specifically localized to the secretory cells of the stigma and the connective tissue of the receptacle, including the nectaries. Treatment of flower buds with ethylene led to patterns of ACC oxidase gene expression spatially distinct from the patterns observed during development. The timing and tissue specificity of ACC oxidase expression during pistil development were paralleled by physiological processes associated with reproduction, including nectar secretion, accumulation of stigmatic exudate, and development of the self-incompatible response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号