首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The genus Oryzias contains nearly 20 species, including the Japanese medaka (Oryzias latipes). Because each species exhibits different adaptability to environmental salinity, Oryzias fishes offer unique opportunities for comparative studies. To understand the mechanisms of osmotic adaptation, we are studying the functional evolution of the natriuretic peptide (NP) family??a group of small peptide hormones involved in body fluid regulation??by using Oryzias fishes. Analysis of the Japanese medaka genome revealed that 7 NP subtypes, namely, Atrial NP (ANP), B-type NP (BNP), Ventricular NP (VNP), and 4?C-type NPs (CNP-1 through CNP-4) were generated from a CNP-4-like ancestral gene discovered in the cyclostomes before the ray-finned fish/lobe-finned fish divergence. This evolutionary history has been confirmed by the discovery of hidden NP genes in tetrapods. Through analyses of phylogenetic distribution of NP subtypes, we also found that specific losses of subtypes have occurred in each vertebrate lineage. For example, ANP is absent in the Japanese and Indian medaka and the flying fish, suggesting that loss of the ANP gene occurred after the divergence of Beloniformes from Cyprinodontiformes. This fact also supports the inclusion of Oryzias into Beloniformes as suggested by phylogenetic analysis using whole mitochondrial genome sequences. How Oryzias fishes have retained their euryhalinity with a reduced number of NPs is an interesting question. CNP-3, which is functionally flexible, may be a substitute for the lost cardiac NPs.  相似文献   

2.
Previous studies on non-diadromous euryhaline teleosts introduced a hypothesis that the lowest level of gill Na+/K+-ATPase (NKA) activity occurs in the environments with salinity close to the primary natural habitats of the studied species. To provide more evidence of the hypothesis, two medaka species, Oryzias latipes and O. dancena, whose primary natural habitats are fresh water (FW) and brackish water (BW) environments, respectively, were compared from levels of mRNA to cells in this study. The plasma osmolalities of O. latipes and O. dancena were lowest in the FW individuals. The muscle water contents of O. latipes decreased with elevated external salinities, but were constant among FW-, BW-, and seawater (SW)-acclimated O. dancena. Expression of NKA, the primary driving force of ion transporters in gill ionocytes, revealed different patterns in the two Oryzias species. The highest NKA α-subunit mRNA abundances were found in the gills of the SW O. latipes and the FW O. dancena, respectively. The pattern of NKA activity and α-subunit protein abundance in the gills of O. latipes revealed that the FW group was the lowest, while the pattern in O. dancena revealed that the BW group was the lowest. Immunohistochemical staining showed similar profiles of NKA immunoreactive (NKIR) cell activities (NKIR cell number × cell size) in the gills of these two species among FW, BW, and SW groups. Taken together, O. latipes exhibited better hyposmoregulatory ability, while O. dancena exhibited better hyperosmoregulatory ability. Our results corresponding to the hypothesis indicated that the lowest branchial NKA activities of these two medaka species were found in the environments with salinities similar to their natural habitats.  相似文献   

3.
The Japanese medaka, Oryzias latipes, is a vertebrate teleost model with a long history of genetic research. A number of unique features and established resources distinguish medaka from other vertebrate model systems. A large number of laboratory strains from different locations are available. Due to a high tolerance to inbreeding, many highly inbred strains have been established, thus providing a rich resource for genetic studies. Furthermore, closely related species native to different habitats in Southeast Asia permit comparative evolutionary studies. The transparency of embryos, larvae, and juveniles allows a detailed in vivo analysis of development. New tools to study diverse aspects of medaka biology are constantly being generated. Thus, medaka has become an important vertebrate model organism to study development, behavior, and physiology. In this review, we provide a comprehensive overview of established genetic and molecular-genetic tools that render medaka fish a full-fledged vertebrate system.  相似文献   

4.
A DM-domain gene on the Y chromosome was identified as the sex-determining gene in the medaka, Oryzias latipes, and named DMY (also known as dmrt1bY). However, this gene is absent in most Oryzias fishes, suggesting that closely related species have another sex-determining gene. In fact, it has been demonstrated that the Y chromosome in O. dancena is not homologous to that in O. latipes, whereas both species have an XX/XY sex-determination system. Through a progeny test of sex-reversed fish and a linkage analysis of isolated sex-linked DNA markers, we show that O. hubbsi, which is one of the most closely related species to O. dancena, has a ZZ/ZW system. In addition, genetic and fluorescence in situ hybridization mapping of the sex-linked markers revealed that sex chromosomes in O. hubbsi and O. dancena are not homologous, indicating different origins of these ZW and XY sex chromosomes. Furthermore, we found that O. hubbsi has morphologically heteromorphic sex chromosomes, in which the W chromosome has 4,6-diamidino-2-phenylindole (DAPI)-positive heterochromatin blocks and is larger than the Z chromosome, although such differentiated sex chromosomes have not been observed in other Oryzias species. These findings suggest that a variety of sex-determining mechanisms and sex chromosomes have evolved in Oryzias.  相似文献   

5.
Marine medaka (Oryzias melastigma) is considered to be a useful fish model for marine and estuarine ecotoxicology studies and has good potential for field‐based population genomics because of its geographical distribution in Asian estuarine and coastal areas. In this study, we present the first whole‐genome draft of O. melastigma. The genome assembly consists of 8,602 scaffolds (N50 = 23.737 Mb) and a total genome length of 779.4 Mb. A total of 23,528 genes were predicted, and 12,670 gene families shared with three teleost species (Japanese medaka, mangrove killifish and zebrafish) were identified. Genome analyses revealed that the O. melastigma genome is highly heterozygous and contains a large number of repeat sequences. This assembly represents a useful genomic resource for fish scientists.  相似文献   

6.
FXYD proteins are novel regulators of Na+-K+-ATPase (NKA). In fish subjected to salinity challenges, NKA activity in osmoregulatory organs (e.g., gills) is a primary driving force for the many ion transport systems that act in concert to maintain a stable internal environment. Although teleostean FXYD proteins have been identified and investigated, previous studies focused on only a limited group of species. The purposes of the present study were to establish the brackish medaka (Oryzias dancena) as a potential saltwater fish model for osmoregulatory studies and to investigate the diversity of teleostean FXYD expression profiles by comparing two closely related euryhaline model teleosts, brackish medaka and Japanese medaka (O. latipes), upon exposure to salinity changes. Seven members of the FXYD protein family were identified in each medaka species, and the expression of most branchial fxyd genes was salinity-dependent. Among the cloned genes, fxyd11 was expressed specifically in the gills and at a significantly higher level than the other fxyd genes. In the brackish medaka, branchial fxyd11 expression was localized to the NKA-immunoreactive cells in gill epithelia. Furthermore, the FXYD11 protein interacted with the NKA α-subunit and was expressed at a higher level in freshwater-acclimated individuals relative to fish in other salinity groups. The protein sequences and tissue distributions of the FXYD proteins were very similar between the two medaka species, but different expression profiles were observed upon salinity challenge for most branchial fxyd genes. Salinity changes produced different effects on the FXYD11 and NKA α-subunit expression patterns in the gills of the brackish medaka. To our knowledge, this report is the first to focus on FXYD expression in the gills of closely related euryhaline teleosts. Given the advantages conferred by the well-developed Japanese medaka system, we propose the brackish medaka as a saltwater fish model for osmoregulatory studies.  相似文献   

7.
Many estuary and coastal waters are highly threatened by heavy anthropogenic pollutants. Oryzias melastigma, also called O. dancena, a marine medaka that showed sensitive response to hypoxia and estrogenic endocrine disruptors in previous studies, is becoming a sentinel species for marine ecotoxicology studies. However, the lack of strong molecular foundation and knowledge of early developmental stages hampers its practical applications. Combining our research strength on zebrafish embryos, this study revealed both morphological and molecular (at mRNA and protein levels) development of embryos of this emergent model. Whole mount immunostaining technique specific for O. melastigma was successfully developed based on zebrafish standard protocols. We demonstrated that 17 out of 61 primary antibodies, which were previously tested in zebrafish, showed specific immunoreactivity with O. melastigma. These antibodies clearly illustrated the embryonic development of target tissues (principally neurons) in this medaka. Additionally, partial cDNA fragments of 11 organ-specific marker genes were isolated according to genomic resources of zebrafish, Japanese medaka and other fishes. Of the 11 genes, 8 are widely used as organ markers and their expression patterns were remarkably similar to their homologues in zebrafish and Japanese medaka. The expression profiles of the remaining 3 genes in fish are reported for the first time. These molecular markers (17 antibodies and 11 mRNA probes) can be used as responsive indicators in environmental toxicity evaluation. Moreover, this study brought forward and demonstrated the advantage of transferring techniques and resources from one model to another to hasten the research of interest.  相似文献   

8.

Introduction

Villin 1 is an actin-regulatory protein involved in the formation of microvilli of mammalian enterocytes. The microvilli, finger-like protrusions, are more abundant on the apical surfaces of gill ionocytes in various freshwater (FW) teleosts than in seawater (SW) fishes. However, the plasticity in the mechanisms of microvillus formation in the gill ionocytes are poorly understood, and the actin-regulatory proteins involved in the formation of microvilli have not been identified in fishes. The present study used the euryhaline medaka (Oryzias dancena) as a model to explore the role of a homolog of villin 1 in the actin-organization of cellular morphologies induced by decreasing salinities.

Results

By ultrastructural observation, there are numerous actin filaments organized on the apical cortex of ion-absorptive ionocytes in the FW-acclimated medaka. From gills of the euryhaline medaka, we have identified the VILL sequence. The phylogenetic tree and functional domains suggest that VILL is the homolog of villin 1 in fishes. Immunofluorescence using a specific antibody revealed that VILL was specifically localized to the apical region of gill ionocytes along with microvilli in the FW medaka, but not in SW fish. The expression levels of Odvill mRNA and VILL protein were higher in the gills of the FW individuals than in the SW group and were induced when fish were transferred from SW to FW. A morpholino oligonucleotide for VILL knockdown eliminated the apical protrusions of ionocytes and pavement cells in the trunk epithelia of embryos.

Conclusions

From a novel aspect of cytoskeletal functions, our findings highlighted the important role of VILL protein in the ionoregulation of aquatic vertebrates in response to different osmotic challenges. This study is the first to show that the expression of VILL is associated with the formation of microvilli in the absorptive ionocytes of a euryhaline fish. Loss-of-function experiments showed that the distribution of VILL may represent the molecular link between the cytoskeletal organization and cellular morphology of the absorptive ionocytes during hypoosmotic adaptation in aquatic vertebrates.  相似文献   

9.
Diverse adaptability in oryzias species to high environmental salinity   总被引:1,自引:0,他引:1  
The genus Oryzias containing freshwater (FW) and seawater (SW) species is a potential model for studying mechanisms of osmotic adaptation. In this study, we compared SW adaptability of four Oryzias species, O. javanicus, O. dancena, O. latipes and O. marmoratus inhabiting different osmotic environments. SW adaptability was evaluated at several stages of the lifecycle: (i) survival rates of adult fish after transfer from FW to 50%SW or SW, (ii) spawning ability in FW and SW, (iii) fertilization rates in FW and SW, and (iv) hatching rates in FW, 50%SW and SW. Results obtained agreed with the natural habitat of each species: O. javanicus, which inhabits SW or brackish water (BW), is fully adaptable to both SW and FW at all the stages examined. The BW species O. dancena also revealed high SW adaptability except for the hatching rate. O. marmoratus, confined in FW, exhibited low SW adaptability at all stages examined while O. latipes, another FW species, was adaptable to SW at most stages examined. Based on these results, the role of SW adaptability to the distribution area of each species is discussed.  相似文献   

10.
Among ricefishes of the genus Oryzias, the Javanese medaka (O. javanicus) and the Indian medaka (O. dancena) are highly adaptable to seawater. Although wide distribution of the two species in the brackish waters of South and South-East Asia has been reported, their habitat preference remains unknown. We surveyed 12 sites in five estuarial areas of the west coast of Peninsular Malaysia from Kuala Gula to Tanjung Piai. Both species were found in all five areas, suggesting their distribution throughout the west coast of Peninsular Malaysia. This is the southernmost-recorded appearance of O. dancena, to the best of our knowledge. However, the habitats of the two species were essentially separated: of the 12 surveyed sites, the species were found in co-existence at only two sites, and one or the other species was found alone at the remaining 10 sites. We compared temperature, salinity, pH, and dissolved oxygen (DO) at the sampling sites and found that the habitat of O. javanicus is with higher salinity and DO. The salinity and DO at the sites of co-existence are near the lowest values found at the O. javanicus-only sites, and the highest values at the O. dancena-only sites. These results suggest that O. javanicus and O. dancena habitats are essentially separated; the former prefers hyperosmotic conditions while the latter prefers hypoosmotic conditions, and the latter may be more tolerant of hypoxia. The two sites of co-existence are points of contact between the species’ separate distribution areas.  相似文献   

11.
12.
MAM domain containing glycosilphosphatidilinositol anchor 1 (MDGA1) is an IgCAM protein present in many vertebrate species including humans. In mammals, MDGA1 is expressed by a subset of neurons in the developing brain and thought to function in neural cell migration. We identified a fish ortholog of mdga1 by a gene‐trap screen utilizing the Frog Prince transposon in medaka (Japanese killifish, Oryzias latipes). The gene‐trap vector was inserted into an intronic region of mdga1 to form a chimeric protein with green fluorescent protein, allowing us to monitor mdga1 expression in vivo. Expression of medaka mdga1 was seen in various types of embryonic brain neurons, and specifically in neurons migrating toward their target sites, supporting the proposed function of MDGA1. We also isolated the closely related mdga2 gene, whose expression partially overlapped with that of mdga1. Despite the fact that the gene‐trap event eliminated most of the functional domains of the Mdga1 protein, homozygous embryos developed normally without any morphological abnormality, suggesting a functional redundancy of Mdga1 with other related proteins. High sequential homology of MDGA proteins between medaka and other vertebrate species suggests an essential role of the MDGA gene family in brain development among the vertebrate phylum. genesis 47:505–513, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
14.
15.
16.
Ricefishes, known best by the model organism, the medaka, Oryzias latipes Temminck & Schlegel, 1846, comprise the family Adrianichthyidae, which ranges broadly throughout fresh and brackish waters of Central, South and Southeast Asia and the Indo‐Malay‐Philippines Archipelago as far east as Timor. Twenty‐eight Recent species are recognized here in two monophyletic genera, Adrianichthys and Oryzias. Xenopoecilus and Horaichthys are placed in synonymy of Oryzias for the first time. Adrianichthys comprises four species from Lake Poso, Sulawesi, Indonesia. Oryzias comprises 24 species that live throughout the range of the family. A fossil genus and species, ?Lithopoecilus brouweri from the Miocene of central Sulawesi, is included tentatively in the Adrianichthyidae. Evidence for the sister group relationship of adrianichthyids and exocoetoids is reviewed briefly and that relationship corroborated. Monophyly of adrianichthyids is likewise strongly supported here. Species groups within Oryzias are diagnosed as monophyletic largely based on osteology, colour pattern and meristic variation. They correspond only in part to species groups previously recognized based on chromosome constitution. Miniature species do not comprise a monophyletic group; disjunct absolute size in close relatives has evolved repeatedly. Oryzias latipes is a member of a species complex that includes O. luzonensis, O. curvinotus and the miniatures O. sinensis and O. mekongensis. A new species, Oryzias bonneorum sp. nov. , is described from Lake Lindu, Sulawesi, Indonesia. Lectotypes are designated for Haplochilus celebensis Weber, 1894 and Haplochilus timorensis Weber & de Beaufort, 1922. No claim to original US Government works. Journal compilation © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 494–610.  相似文献   

17.
Transgenic fish carrying a reconstructed mouse tyrosinase gene, mg-Tyrs-J, were produced by microinjecting the gene into the oocyte nucleus of an orange-colored variant of medaka (Oryzias latipes). Of 64 oocytes microinjected and subsequently inseminated, 13 embryos developed normally beyond hatching and three of them exhibited brown skin pigmentation in the adult as was commonly observed in the wild type of this species. Light and electron microscopic examination disclosed a ubiquitous distribution of typical melanophores in the skin of these transgenic fish. Judging from their population density and distribution pattern, it was presumed that melanogenesis in these fish was elicited in amelanotic melanophores that resided in the skin of the orange-colored fish of this variant. Immunofluorescence with use of the anti-mouse tyrosinase antiserum lacking reactivity to medaka tyrosinase clearly disclosed that the gene introduced was expressed in the melanophores of transgenic fish. Crosses of female transgenic fish and males from an orange-colored variant yielded offspring exhibiting wild-type or orange-colored pigmentation in a ratio of 1:1, thus implying that mg-Tyrs-J integrated into the medaka genome behaves like a dominant gene. Little melanogenesis was observed in xanthophores, leucophores and iridophores in transgenic fish, suggesting possible specificity in recognition of teleostean cell types (i.e., melanophores) by the regulatory region of the mouse tyrosinase gene.  相似文献   

18.
The major histocompatibility complex (MHC) class I region of teleosts harbors a tight cluster of the class IA genes and several other genes directly involved in class I antigen presentation. Moreover, the dichotomous haplotypic lineages (termed d- and N- lineages) of the proteasome subunit beta genes, PSMB8 and PSMB10, are present in this region of the medaka, Oryzias latipes. To understand the evolution of the Oryzias MHC class I region at the nucleotide sequence level, we analyzed bacterial artificial chromosome clones covering the MHC class I region containing the d- lineage of Oryzias luzonensis and the d- and N- lineages of Oryzias dancena. Comparison among these three elucidated sequences and the published sequences of the d- and N- lineages of O. latipes indicated that the order and orientation of the encoded genes were completely conserved among these five genomic regions, except for the class IA genes, which showed species-specific variation in copy number. The PSMB8 and PSMB10 genes showed trans-species dimorphism. The remaining regions flanking the PSMB10, PSMB8, and class IA genes showed high degrees of sequence conservation at interspecies as well as intraspecies levels. Thus, the three independent evolutionary patterns under apparently distinctive selective pressures are recognized in the Oryzias MHC class I region. Electronic Supplementary Material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
Somitogenesis is the key developmental step, which divides the vertebrate body axis into segmentally repeated structures. It requires an intricate process of pre-patterning, which is driven by an oscillator mechanism consisting of the Delta–Notch pathway and various hairy- and Enhancer of split-related (her) genes. The subset of her genes, which are necessary to set up the segmentation clock, reveal a complex scenario of interactions. To understand which her genes are essential core players in this process, we compared the expression patterns of somitogenesis-relevant her genes in zebrafish and medaka (Oryzias latipes). Most of the respective medaka genes (Ol-her) are duplicated like what has been shown for zebrafish (Dr-her) and pufferfish genes (Fr-her). However, zebrafish genes show some additional copies and significant differences in expression patterns. For the paralogues Dr-her1 and Dr-her11, only one copy exists in the medaka (Ol-her1/11), which combines the expression patterns found for both zebrafish genes. In contrast to Dr-her5, the medaka orthologue appears to play a role in somitogenesis because it is expressed in the presomitic mesoderm (PSM). PSM expression also suggests a role for both Ol-her13 genes, homologues of mouse Hes6 (mHes6), in this process, which would be consistent with a conserved mHes6 homologue gear in the segmentation clock exclusively in lower vertebrates. Members of the mHes5 homologue group seem to be involved in somite formation in all vertebrates (e.g. Dr- and Ol-her12), although different paralogues are additionally recruited in zebrafish (e.g. Dr-her15) and medaka (e.g. Ol-her4). We found that the linkage between duplicates is strongly conserved between pufferfish and medaka and less well conserved in zebrafish. Nevertheless, linkage and orientation of several her duplicates are identical in all three species. Therefore, small-scale duplications must have happened before whole genome duplication occurred in a fish ancestor. Expression of multiple stripes in the intermediate PSM, characteristic for the zebrafish orthologues, is absent in all somitogenesis-related her genes of the medaka. In fact, the expression mode of Ol-her1/11 and Ol-her5 indicates dynamism similar to the hairy clock genes in chicken and mouse. This suggests that Danio rerio shows a rather derived clock mode when compared to other fish species and amniotes or that, alternatively, the clock mode evolved independently in zebrafish, medaka and mouse or chicken.An erratum to this article can be found at  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号