首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 2–5A system is an interferon-regulated antiviral RNA decay pathway present in cells of higher vertebrates. Two enzymes are essential, a 2–5A synthetase which produces 5′-phosphorylated, 2′,5′-linked oligoadenylates (2–5A) in response to doublestranded RNA, and the 2–5A-dependent RNase L. To determine if these human proteins would be functional in plants, we expressed the human cDNAs for a 2–5A synthetase and RNase L in separate tobacco plants. Both proteins were enzymatically active in extracts of transgenic plants while such activities were not detected in the control plants. Furthermore, activation by 2–5A of RNase L in the transgenic plant leaves was shown to cause degradation of ribosomal RNA. The requirement for both the synthetase and RNase L for antiviral activity was underscored by the observations that expression of human RNase L alone or 2–5A-synthetase alone was insufficient to protect plants against either tobacco etch virus or tobacco mosaic virus.  相似文献   

2.
Respiratory syncytial virus (RSV), associated with bronchiolitis and asthma, is resistant to the antiviral effects of type-I interferons (IFN), but not IFN-gamma. However, the antiviral mechanism of IFN-gamma action against RSV infection is unknown. The molecular mechanism of IFN-gamma-induced antiviral activity was examined in this study using human epithelial cell lines HEp-2 and A549. Exposure of these cells to 100-1000 units/ml of IFN-gamma, either before or after RSV infection, results in a significant decrease in RSV infection. After 1 h of exposure, IFN-gamma induces protein expression of IFN regulatory factor-1 (IRF-1) but not IRF-2, double-stranded RNA-activated protein kinase, and inducible nitric-oxide synthase in these cells. The mRNA for IRF-1, p40, and p69 isoforms of 2'-5' oligoadenylate synthetase (2-5 AS) are detectable, respectively, at 1 and 4 h of IFN-gamma exposure. Studies using cycloheximide and antisense oligonucleotides to IRF-1 indicate a direct role of IRF-1 in activating 2-5 AS. Cells transfected with 2-5 AS antisense oligonucleotides inhibit the antiviral effect of IFN-gamma. A stable cell line of HEp-2 overexpressing RNase L inhibitor, RLI-14, which exhibits an IFN-gamma-induced gene expression pattern similar to that of the parent cell line, shows a significant reduction in RNase L activity and IFN-gamma-mediated antiviral effect, compared with HEp-2 cells. These results provide direct evidence of the involvement of 2-5 AS in IFN-gamma-mediated antiviral activity in these cells.  相似文献   

3.
The 2′,5′-oligoadenylate (2-5A) system is an RNA degradation pathway which plays an important role in the antipicornavirus effects of interferon (IFN). RNase L, the terminal component of the 2-5A system, is thought to mediate this antiviral activity through the degradation of viral RNA; however, the capacity of RNase L to selectively target viral RNA has not been carefully examined in intact cells. Therefore, the mechanism of RNase L-mediated antiviral activity was investigated following encephalomyocarditis virus (EMCV) infection of cell lines in which expression of transfected RNase L was induced or endogenous RNase L activity was inhibited. RNase L induction markedly enhanced the anti-EMCV activity of IFN via a reduction in EMCV RNA. Inhibition of endogenous RNase L activity inhibited this reduction in viral RNA. RNase L had no effect on IFN-mediated protection from vesicular stomatitis virus. RNase L induction reduced the rate of EMCV RNA synthesis, suggesting that RNase L may target viral RNAs involved in replication early in the virus life cycle. The RNase L-mediated reduction in viral RNA occurred in the absence of detectable effects on specific cellular mRNAs and without any global alteration in the cellular RNA profile. Extensive rRNA cleavage, indicative of high levels of 2-5A, was not observed in RNase L-induced, EMCV-infected cells; however, transfection of 2-5A into cells resulted in widespread degradation of cellular RNAs. These findings provide the first demonstration of the selective capacity of RNase L in intact cells and link this selective activity to cellular levels of 2-5A.  相似文献   

4.
The 2',5'-oligoadenylate synthetase (OAS) proteins associated with endoribonuclease RNase L are components of the interferon-regulated OAS/RNase L system, which is an RNA decay pathway known to play an important role in the innate antiviral immunity. A large body of evidence suggests a critical role for the 1b isoform of the mouse Oas gene (Oas1b) in resistance to West Nile virus (WNV) infection in vivo. WNV is a positive, single-stranded RNA virus responsible for severe encephalitis in a large range of animal species and humans. To investigate the molecular basis for the sensitivity of WNV to the Oas1b antiviral pathway, we established a stable mouse fibroblastic cell clone that up-regulates Oas1b protein expression under the control of the Tet-Off expression system. We showed that murine cells respond to Oas1b expression by efficiently inhibiting WNV replication. The antiviral action of Oas1b was essentially restricted to the early stages in virus life cycle. We found that the inability of WNV to productively infect the Oas1b-expressing cells was attributable to a dramatic reduction in positive-stranded viral RNA level. Thus, Oas1b represents an antiviral pathway that exerts its inhibitory effect on WNV replication by preventing viral RNA accumulation inside infected cells.  相似文献   

5.
The classical interferon (IFN)-dependent antiviral response to viral infection involves the regulation of IFN-stimulated genes (ISGs), one being the gene encoding cellular endoribonuclease RNase L, which arrests protein synthesis and induces apoptosis by nonspecifically cleaving rRNA. Recently, the herpes simplex virus type 1 (HSV-1) protein ICP0 has been shown to block the induction of ISGs by subverting the IFN pathway upstream of the 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway. We report that ICP0 also prevents rRNA degradation at late stages of HSV-1 infection, independent of its E3 ubiquitin ligase activity, and that the resultant rRNA degradation is independent of the classical RNase L antiviral pathway. Moreover, the degradation is independent of the viral RNase vhs and is independent of IFN response factor 3. These studies indicate the existence of another, previously unidentified, RNase that is part of the host antiviral response to viral infection.  相似文献   

6.
The interferon-regulated 2-5A/RNase L pathway plays a major role in the antiviral and antiproliferative activities of these cytokines. Several viruses, however, have evolved strategies to escape the antiviral activity of the 2-5A/RNase L pathway. In this context, we have cloned a cDNA coding for the RNase L inhibitor (RLI), a protein that specifically inhibits RNase L and whose regulated expression in picornavirus-infected cells down regulates the activity of the 2-5A/RNase L pathway. We show here that RLI increases during the course of human immunodeficiency virus type 1 (HIV-1) infection, which may be related to the downregulation of RNase L activity that has been described to occur in HIV-infected cells. In order to establish a possible causal relationship between these observations, we have stably transfected H9 cells with RLI sense or antisense cDNA-expressing vectors. The overexpression of RLI causes a decrease in RNase L activity and a twofold enhancement of HIV production. This increase in HIV replication correlates with an increase in HIV RNA and proteins. In contrast, reduction of RLI levels in RLI antisense cDNA-expressing clones reverses the inhibition of RNase L activity associated with HIV multiplication and leads to a threefold decrease in the viral load. This anti-HIV activity correlated with a decrease in HIV RNA and proteins. These findings demonstrate that the level of RLI, via its modulation of RNase L activity, can severely impair HIV replication and suggest the involvement of RLI in the inhibition of the 2-5A/RNase L system observed during HIV infection.  相似文献   

7.
Activation of RNase L by 2′,5′-linked oligoadenylates (2-5A) is one of the antiviral pathways of interferon action. To determine the involvement of the 2-5A system in the control of human immunodeficiency virus type 1 (HIV-1) replication, a segment of the HIV-1 nef gene was replaced with human RNase L cDNA. HIV-1 provirus containing sense orientation RNase L cDNA caused increased expression of RNase L and 500- to 1,000-fold inhibition of virus replication in Jurkat cells for a period of about 2 weeks. Subsequently, a partial deletion of the RNase L cDNA which coincided with increases in virus production occurred. The anti-HIV activity of RNase L correlated with decreases in HIV-1 RNA and with an acceleration in cell death accompanied by DNA fragmentation. Replication of HIV-1 encoding RNase L was also transiently suppressed in peripheral blood lymphocytes (PBL). In contrast, recombinant HIV containing reverse orientation RNase L cDNA caused decreased levels of RNase L, increases in HIV yields, and reductions in the anti-HIV effect of alpha interferon in PBL and in Jurkat cells. To obtain constitutive and continuous expression of RNase L cDNA, Jurkat cells were cotransfected with HIV-1 proviral DNA and with plasmid containing a cytomegalovirus promoter driving expression of RNase L cDNA. The RNase L plasmid suppressed HIV-1 replication by eightfold, while an antisense RNase L construct enhanced virus production by twofold. These findings demonstrate that RNase L can severely impair HIV replication and suggest involvement of the 2-5A system in the anti-HIV effect of alpha interferon.  相似文献   

8.
Abstract

The 2-5A/RNase L system is widely accepted to be part of the antiviral mechanism of interferon1, 2an and may also regulate cell growth3, where 2-5A exerts its biological effects by activating RNase L. Numerous 2-5A analogs have been synthesized with the goal of binding to, but not activating, RNase L. However, these analogs have had limitations when studied In vitrQ. We have reported on the unique properties of 2-5A molecules in which Rp and Sp chirality have been introduced into the 2-5A backbone to form the phosphorothioate analogs of 2-5A4-6. By chiral modification of the 2-5A backbone, we have examined the stereochemical requirements for binding to and activation of RNase L. In order to elucidate the mechanism by which 2-5A binds to and activates RNase L, it is essential to ascertain the interactions in the nucleotide binding domain of RNase L and/or other 2-5A binding proteins. By employing photoaffinity labeling using enzymatically synthesized 2 and 8 azido photoprobes of 2-5A, we have characterized the 2- and 8-azido trimer 5′-triphoshate photoprobes of 2-5A and described the biological properties of these photoprobes (Figure 1) of 2-5A and their application in photolabeling of RNase L and/or other 2-5A binding proteins? have been reported. 2- and 8-azidoATP are substrates for the 2-5A synthetase from IFN-8-treated HeLa cell extracts and from rabbit reticulocyte lysates, but not for highly purified 2-5A synthetase from rabbit reticulocyte lysates'. W irradiation results in the photoinsertion of 2- and 8-azidoATP into the catalytic site of the 2-5A synthetase. Analysis of Scatchard plots of the 2-5A synthetase suggests the presence of high affinity and low affinity binding sites that may correspond to the acceptor and the 2′-adenylation sites of the enzyme.  相似文献   

9.
The type I/III interferon (IFN)-inducible 2′-5′- oligoadenylate synthetase (OAS)/endoribonuclease L (RNase L) is a classical innate immune pathway that has been implicated in antiviral and antibacterial defense and also in hereditary prostate cancer. The OAS/RNase L pathway is activated when OAS senses double-stranded RNA and catalyzes the synthesis of 2′-5′ linked oligodenylates (2-5A) from ATP. 2-5A then binds and activates RNase L, resulting cleavage of single-stranded RNAs. RNase L cleavage products are capable of activating RIG-like receptors such as RIG-I and MDA5 that leads to IFN-β expression during viral infection. Our recent findings suggest that beside the RLR pathway, RNase L cleavage products can also activate the NLRP3-inflammasome pathway, which requires DHX33 (DExD/H-box helicase) and the mitochondrial adaptor protein MAVS. Here we discuss this newly identified role of OAS-RNase L pathway in regulation of inflammasome signaling as an alternative antimicrobial mechanism that has potential as a target for development of new broad-spectrum antimicrobial and anti-inflammatory therapies.  相似文献   

10.
11.
Metabolically stable phosphorothioate tetramer analogues of (2'-5')(A)n with Rp and/or Sp chirality in the 2'-5'-phosphodiester linkages constitute a new class of antiviral agents since they mimic the effects of interferons. Three of the diastereomeric 5'-monophosphates (i.e., pRpRpRp, pSpRpRp, and pRpSpSp) bind to and activate RNase L from extracts of HeLa cells. However, the pSpSpSp (2'-5')-(A)4-phosphorothioate is unique in that it binds to, but cannot activate, RNase L to cleave rRNA. When microinjected into the cytoplasm of HeLa cells followed by virus infection, the pRpRpRp, pSpRpRp, and pRpSpSp (2'-5')(A)4-phosphorothioates demonstrate antiviral activity, as does (2'-5')(A)4ox-red, an active (2'-5')(A)n analogue. When microinjected simultaneously with (2'-5')(A)nox-red, an active the pSpSpSp (2'-5')(A)4-phosphorothioate inhibits activation of RNase L in HeLa cells, thereby blocking direct protection of vesicular stomatitis virus. The agonist and antagonist properties of pRpRpRp and pSpSpSp, respectively, are transient probably as a consequence of the hydrolysis of the 5'-monophosphate and formation of the less active (2'-5')(A)4-phosphorothioate cores. The possible use of these (2'-5')(A)4-phosphorothioates as tools for dissecting the biological significance of the (2'-5')(A)n system or in antiviral chemotherapy is discussed.  相似文献   

12.
The latent ribonuclease RNase L and the interferon-inducible 2′,5′-oligoadenylate synthetase (OAS) have been implicated in the antiviral response against hepatitis C virus (HCV). However, the specific roles of these enzymes against HCV have not been fully elucidated. In this study, a scarce endogenous expression and RNA degrading activity of RNase L in human hepatoma Huh7 cells enabled us to demonstrate the antiviral activity of RNase L against HCV replication through the transient expression of the enzyme. The antiviral potential of specific members of the OAS family was further examined through overexpression and RNA interference approaches. Our data suggested that among the members of the OAS family, OAS1 p46 and OAS3 p100 mediate the RNase l-dependent antiviral activity against HCV.  相似文献   

13.
Theiler''s virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS) and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler''s virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler''s virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler''s virus.  相似文献   

14.
Alleles at the Flv locus determine disease outcome after a flavivirus infection in mice. Although comparable numbers of congenic resistant and susceptible mouse embryo fibroblasts (MEFs) are infected by the flavivirus West Nile virus (WNV), resistant MEFs produce approximately 100- to 150-fold lower titers than susceptible ones and flavivirus titers in the brains of resistant and susceptible animals can differ by >10,000-fold. The Flv locus was previously identified as the 2'-5' oligoadenylate synthetase 1b (Oas1b) gene. Oas gene expression is up-regulated by interferon (IFN), and after activation by double-stranded RNA, some mouse synthetases produce 2-5A, which activates latent RNase L to degrade viral and cellular RNAs. To determine whether the lower levels of intracellular flavivirus genomic RNA from resistant mice detected in cells at all times after infection were mediated by RNase L, RNase L activity levels in congenic resistant and susceptible cells were compared. Similar moderate levels of RNase L activation by transfected 2-5A were observed in both types of uninfected cells. After WNV infection, the mRNAs of IFN-beta and three Oas genes were up-regulated to similar levels in both types of cells. However, significant levels of RNase L activity were not detected until 72 h after WNV infection and the patterns of viral RNA cleavage products generated were similar in both types of cells. When RNase L activity was down-regulated in resistant cells via stable expression of a dominant negative RNase L mutant, approximately 5- to 10-times-higher yields of WNV were produced. Similarly, about approximately 5- to 10-times-higher virus yields were produced by susceptible C57BL/6 RNase L-/- cells compared to RNase L+/+ cells that were either left untreated or pretreated with IFN and/or poly(I) . poly(C). The data indicate that WNV genomic RNA is susceptible to RNase L cleavage and that RNase L plays a role in the cellular antiviral response to flaviviruses. The results suggest that RNase L activation is not a major component of the Oas1b-mediated flavivirus resistance phenotype.  相似文献   

15.
Double-stranded RNA (dsRNA) produced during viral infection activates several cellular antiviral responses. Among the best characterized is the shutoff of protein synthesis mediated by the dsRNA-dependent protein kinase (PKR) and the oligoadenylate synthetase (OAS)/RNase L system. As viral replication depends on protein synthesis, many viruses have evolved mechanisms for counteracting the PKR and OAS/RNase L pathways. The murine cytomegalovirus (MCMV) proteins m142 and m143 have been characterized as dsRNA binding proteins that inhibit PKR activation, phosphorylation of the translation initiation factor eIF2α, and a subsequent protein synthesis shutoff. In the present study we analyzed the contribution of the PKR- and the OAS-dependent pathways to the control of MCMV replication in the absence or presence of m142 and m143. We show that the induction of eIF2α phosphorylation during infection with an m142- and m143-deficient MCMV is specifically mediated by PKR, not by the related eIF2α kinases PERK or GCN2. PKR antagonists of vaccinia virus (E3L) or herpes simplex virus (γ34.5) rescued the replication defect of an MCMV strain with deletions of both m142 and m143. Moreover, m142 and m143 bound to each other and interacted with PKR. By contrast, an activation of the OAS/RNase L pathway by MCMV was not detected in the presence or absence of m142 and m143, suggesting that these viral proteins have little or no influence on this pathway. Consistently, an m142- and m143-deficient MCMV strain replicated to high titers in fibroblasts lacking PKR but did not replicate in cells lacking RNase L. Hence, the PKR-mediated antiviral response is responsible for the essentiality of m142 and m143.  相似文献   

16.
Autophagy is a programmed homeostatic response to diverse types of cellular stress that disposes of long-lived proteins, organelles, and invading microbes within double-membraned structures called autophagosomes. The 2′,5′-oligoadenylate/RNase L system is a virus-activated host RNase pathway that disposes of or processes viral and cellular single-stranded RNAs. Here we report that activation of RNase L during viral infections induces autophagy. Accordingly, infections with encephalomyocarditis virus or vesicular stomatitis virus led to higher levels of autophagy in wild-type mouse embryonic fibroblasts (MEF) than in RNase L-null MEF. Similarly, direct activation of RNase L with a 2′,5′-oligoadenylate resulted in p62(SQSTM1) degradation, LC3BI/LC3BII conversion, and appearance of autophagosomes. To determine the effect of RNase L-mediated autophagy on viral replication, we compared viral yields in wild-type and RNase L-null MEF in the absence or presence of either chemical inhibitors of autophagy (bafilomycin A1 or 3-methyladenine) or small interfering RNA (siRNA) against ATG5 or beclin-1. At a low multiplicity of infection, induction of autophagy by RNase L during the initial cycle of virus growth contributed to the suppression of virus replication. However, in subsequent rounds of infection, autophagy promoted viral replication, reducing the antiviral effect of RNase L. Our results indicate a novel function of RNase L as an inducer of autophagy that affects viral yields.  相似文献   

17.
Apoptosis of viral infected cells appears to be one defense strategy to limit viral infection. Interferon can also confer viral resistance by the induction of the 2-5A system comprised of 2'-5' oligoadenylate synthetase (OAS), and RNase L. Since rRNA is degraded upon activation of RNase L and during apoptosis and since both of these processes serve antiviral functions, we examined the role RNase L may play in cell death. Inhibition of RNase L activity, by transfection with a dominant negative mutant, blocked staurosporine-induced apoptosis of NIH3T3 cells and SV40-transformed BALB/c cells. In addition, K562 cell lines expressing inactive RNase L were more resistant to apoptosis induced by decreased glutathione levels. Hydrogen peroxide-induced death of NIH3T3 cells did not occur by apoptosis and was not dependent upon active RNAse L. Apoptosis regulatory proteins of the Bcl-2 family did not exhibit altered expression levels in the absence of RNase L activity. RNase L is required for certain pathways of cell death and may help mediate viral-induced apoptosis.  相似文献   

18.
Retrotransposons are mobile genetic elements, and their mobility can lead to genomic instability. Retrotransposon insertions are associated with a diverse range of sporadic diseases, including cancer. Thus, it is not a surprise that multiple host defense mechanisms suppress retrotransposition. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)-RNase L system is a mechanism for restricting viral infections during the interferon antiviral response. Here, we investigated a potential role for the OAS-RNase L system in the restriction of retrotransposons. Expression of wild type (WT) and a constitutively active form of RNase L (NΔ385), but not a catalytically inactive RNase L mutant (R667A), impaired the mobility of engineered human LINE-1 (L1) and mouse intracisternal A-type particle retrotransposons in cultured human cells. Furthermore, WT RNase L, but not an inactive RNase L mutant (R667A), reduced L1 RNA levels and subsequent expression of the L1-encoded proteins (ORF1p and ORF2p). Consistently, confocal immunofluorescent microscopy demonstrated that WT RNase L, but not RNase L R667A, prevented formation of L1 cytoplasmic foci. Finally, siRNA-mediated depletion of endogenous RNase L in a human ovarian cancer cell line (Hey1b) increased the levels of L1 retrotransposition by ∼2-fold. Together, these data suggest that RNase L might function as a suppressor of structurally distinct retrotransposons.  相似文献   

19.
Previous studies have demonstrated that the murine coronavirus mouse hepatitis virus (MHV) nonstructural protein 2 (ns2) is a 2′,5′-phosphodiesterase that inhibits activation of the interferon-induced oligoadenylate synthetase (OAS)-RNase L pathway. Enzymatically active ns2 is required for efficient MHV replication in macrophages, as well as for the induction of hepatitis in C57BL/6 mice. In contrast, following intranasal or intracranial inoculation, efficient replication of MHV in the brain is not dependent on an enzymatically active ns2. The replication of wild-type MHV strain A59 (A59) and a mutant with an inactive phosphodiesterase (ns2-H126R) was assessed in primary hepatocytes and primary central nervous system (CNS) cell types—neurons, astrocytes, and oligodendrocytes. A59 and ns2-H126R replicated with similar kinetics in all cell types tested, except macrophages and microglia. RNase L activity, as assessed by rRNA cleavage, was induced by ns2-H126R, but not by A59, and only in macrophages and microglia. Activation of RNase L correlated with the induction of type I interferon and the consequent high levels of OAS mRNA induced in these cell types. Pretreatment of nonmyeloid cells with interferon restricted A59 and ns2-H126R to the same extent and failed to activate RNase L following infection, despite induction of OAS expression. However, rRNA degradation was induced by treatment of astrocytes or oligodendrocytes with poly(I·C). Thus, RNase L activation during MHV infection is cell type specific and correlates with relatively high levels of expression of OAS genes, which are necessary but not sufficient for induction of an effective RNase L antiviral response.  相似文献   

20.
The antiviral and antitumor actions of interferons are caused, in part, by a remarkable regulated RNA cleavage pathway known as the 2-5A/RNase L system. 2′-5′ linked oligoadenylates (2-5A) are produced from ATP by interferon-inducible synthetases. 2-5A activates pre-existing RNase L, resulting in the cleavage of RNAs within single-stranded regions. Activation of RNase L by 2-5A leads to an antiviral response, although precisely how this happens is a subject of ongoing investigations. Recently, RNase L was identified as the hereditary prostate cancer 1 gene. That finding has led to the discovery of a novel human retrovirus, XMRV. My scientific journey through the 2-5A system recounts some of the highlights of these efforts. Knowledge gained from studies on the 2-5A system could have an impact on development of therapies for important viral pathogens and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号