首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The effect of the hydrolysis product Pi and the artificial substrate p-nitrophenyl phosphate (p-nitrophenyl-P) on ouabain binding to (Na+ + K+)-activated ATPase was investigated.The hypothesis that (Mg2+ + p-nitrophenyl-P)-supported ouabain binding might be due to Pi release and thus (Mg2+ + Pi)-supported could not be confirmed.The enzyme · ouabain complexes obtained with different substrates were characterized according to their dissociation rates after removal of the ligands facilitating binding. The character of the enzyme · ouabain complex is determined primarily by the monovalent ion present during ouabain binding, but, qualitatively at least, it is immaterial whether binding was obtained with p-nitrophenyl phosphate or Pi.The presence or absence of Na+ during binding has a special influence upon the character of the enzyme · ouabain complex. Without Na+ and in the presence of Tris ions the complex obtained with (Mg2+ + Pi) and that obtained with (Mg2+ + p-nitrophenyl-P) behaved in a nearly identical manner, both exhibiting a slow decay. High Na+ concentration diminished the level of Pi-supported ouabain binding, having almost no effect on p-nitrophenyl phosphate-supported binding. Both enzyme · ouabain complexes, however, now resembled the form obtained with (Na+ + ATP), as judged from their dissociation rates and the K+ sensitivity of their decay. The complexes obtained at a high Na+ concentration underwent a very fast decay which could be slowed considerably after adding a low concentration of K+ to the resuspension medium. The most stable enzyme · ouabain complex was obtained in the presence of Tris ions only, irrespective of whether p-nitrophenyl phosphate or Pi facilitated complex formation. The presence of K+ gave rise to a complex whose dissociation rate was intermediate between those of the complexes obtained in the presence of Tris and a high Na+ concentration.It is proposed that the different ouabain dissociation rates reflect different reactive state of the enzyme. The resemblance between the observations obtained in phosphorylation and ouabain binding experiments is pointed out.  相似文献   

2.
Chick brain microsomal ATPase was strongly inhibited by Cu2+. (Na+ + K+)-ATPase was more susceptible to low levels of Cu2+ than Mg2+-ATPase. The inhibition of (Na+ + K+)-ATPase could be partially protected from Cu2+ in the presence of ATP in the preincubation period. When Cu2+ (6 μM) was preincubated with the enzyme in the absence of ATP, only sulfhydryl-containing amino acids (d-penicillamine and l-cysteine) could reverse the inhibition. At lower concentrations of Cu2+ (< 1.4 μM), in the absence of ATP during preincubation, the inhibition could be completely reversed by the addition of 5 mM l-phenylalanine and l-histidine as well as d-penicillamine and l-cysteine.Kinetic analysis of action of Cu2+ (1.0 μM) on (Na+ + K+)-ATPase revealed that the inhibition was uncompetitive with respect to ATP. At a low concentration of K+ (5 mM), V with Na+ was markedly decreased in the presence of Cu2+ and Km was about twice that of the control. However, at high K+ concentration (20 mM), the Km for Na+ was not affected. At both low (25 mM) and high (100 mM) Na+, Cu2+ displayed non-competitive inhibition of the enzyme with respect to K+.On the basis of these data, we suggest that Cu2+ at higher concentrations (> 6 μM) inactivates the enzyme irreversibly, but that at lower concentrations (< 1.4 μM), Cu2+ interacts reversibly with the enzyme.  相似文献   

3.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 μM ATP and 50 μM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 μM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+-ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 μM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

4.
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+-dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187–3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabaininhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V]-vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution.  相似文献   

5.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

6.
(H+ + K+)-ATPase-enriched membranes were prepared from hog gastric mucosa by sucrose gradient centrifugation. These membranes contained Mg2+-ATPase and p-nitrophenylphosphatase activities (68 ± 9 μmol Pi and 2.9 ± 0.6 μmol p-nitrophenol/mg protein per h) which were insensitive to ouabain and markedly stimulated by 20 mM KCl (respectively, 2.2- and 14.8-fold). Furthermore, the membranes autophosphorylated in the absence of K+ (up to 0.69 ± 0.09 nmol Pi incorporated/mg protein) and dephosphorylated by 85% in the presence of this ion. Membrane proteins were extracted by 1–2% (w/v) n-octylglucoside into a soluble form, i.e., which did not sediment in a 100 000 × g × 1 h centrifugation. This soluble form precipitated upon further dilution in detergent-free buffer. Extracted ATPase represented 32% (soluble form) and 68% (precipitated) of native enzyme and it displayed the same characteristic properties in terms of K+-stimulated ATPase and p-nitrophenylphosphatase activities and K+-sensitive phosphorylation: Mg2+-ATPase (μmol Pi/mg protein per h) 32 ± 9 (basal) and 86 ± 20 (K+-stimulated); Mg2+-p-nitrophenylphosphatase (μmol p-nitrophenol/mg protein per h) 2.6 ± 0.5 (basal) and 22.2 ± 3.2 (K+-stimulated); Mg2+-phosphorylation (nmol Pi/mg protein) 0.214 ± 0.041 (basal) and 0.057 ± 0.004 (in the presence of K+). In glycerol gradient centrifugation, extracted enzyme equilibrated as a single peak corresponding to an apparent 390 000 molecular weight. These findings provide the first evidence for the solubilization of (H+ + K+)-ATPase in a still active structure.  相似文献   

7.
Vesicles isolated from rat heart, particularly enriched in sarcolemma markers, were examined for their sidedness by investigation of side-specific interactions of modulators with the asymmetric (Na+ + K+)-ATPase and adenylate cyclase complex. The membrane preparation with the properties expected for inside-out vesicles showed the highest rate of ATP-driven Ca2+ transport. The Ca2+ pump was stimulated 1.7- and 2.1-fold by external Na+ and K+, respectively, the half-maximal activation occurring at 35 mM monovalent cation concentration. In vesicles loaded with Ca2+ by pump action in a medium containing 160 mM KCl, a slow spontaneous release of Ca2+ started after 2 min. The rate of this release could be dramatically increased by the addition of 40 mM NaCl to the external medium. In contrast, 40 mM KCl exerted no appreciable effect on vesicles loaded with Ca2+ in a medium containing 160 mM NaCl. Ca2+ movements were also studied in the absence of ATP and Mg2+. Vesicles containing an outwardly directed Na+ gradient showed the highest Ca2+ uptake activity. These findings suggested the operation of a Ca2+/Na+ antiporter in addition to the active Ca2+ pump in these sarcolemmal vesicles. A valinomycin-induced inward K+-diffusion potential stimulated the Na+- Ca2+ exchange, suggesting its electrogenic nature. If in the absence of ATP and Mg2+ the transmembrane Nai+/Nao+ gradient exceeded 160/15 mM concentrations, Ca2+ uptake could be stimulated by the addition of 5 mM oxalate, indicating Na+ gradient-induced Ca2+ uptake to be a translocation of Ca2+ to the lumen of the vesicle. A sarcoplasmic reticulum contamination, removed by further sucrose gradient fractionation, contained rather low Na+-Ca2+ exchange activity. This result suggests that the activity can be entirely accounted for by the sarcolemmal content of the cardiac membrane preparation.  相似文献   

8.
An orthovanadate-inhibited, nitrate-insensitive, phospholipid-requiring Mg2+-ATPase has been partially purified (approx. 40-fold) from microsomal preparations from 24 h germinated radish seedlings. The specific activity obtained was 10–13 μmol Pi · min?1 per mg protein, namely by 4- to 10-fold higher than that reported for the known similar enzyme preparations from corn and oat roots, and by 3- to 10-fold lower than that of the extensively purified plasmalemma enzymes from Neurospora and yeast. The partially purified activity was fairly specific for ATP, other nucleotide triphosphates being hydrolysed at less than 10% the rate with ATP; no activity was present towards ADP, AMP, p-nitrophenyl phosphate and other phosphate esters. The activity was strongly dependent on the presence of phospholipids with a marked preference for lysophosphatidylcholine, and showed an absolute requirement for Mg2+ or some other divalent cations (CO2+, Mn2+, Mg2+, Ni2+, Zn2+ in order of decreasing effectiveness); Ca2+ could not substitute for Mg2+ and was strongly inhibitory in its presence. K+, Rb+ and Na+ and also to a lesser extent NH4+ and Li+ were significantly stimulatory, while the anions NO3?, H2PO4?, Cl? and SO42? were ineffective. Orthovanadate, N,N′-dicyclohexylcarbodiimide, diethylstilbestrol, p-chloromercuribenzensulfonate, tetraiodofluorescein and tetrachlorotetraiodofluorescein were strongly inhibitory. The coincidence of the Km for ATP with that for Mg2+ suggested that ATP-Mg is the true substrate. Accordingly, the enzyme showed a normal Michaelis-Menten kinetics for ATP-Mg with an apparent Km of approx. 0.5 mM. The similarity of the characteristics of this enzyme with those of the plasmalemma enzymes from lower plants suggests its location at the plasma membrane, while some data ‘in vivo’ and in native sealed vesicle systems indicate its involvement in active proton transport.  相似文献   

9.
Fluorescein isothiocyanate was used to covalently label the gastric (H+ + K+)-ATPase. FITC treatment of the enzyme inhibited the ATPase activity while largely sparing partial reactions such as the associated p-nitrophenylphosphatase activity. ATP protected against inhibition suggesting the ligand binds at or near an ATP binding site. At 100% inhibition the stoichiometry of binding was 1.5 nmol FITC per mg Lowry protein a value corresponding to maximal phosphoenzyme formation. Binding occurred largely to a peptide of 6.2 isoelectric point, although minor labelling of a peptide of pI 5.6 was also noted. Fluorescence was quenched by K+, Rb+ and Tl+ in a dose-dependent manner, and the K0.5 values of 0.28, 0.83 and 0.025 mM correspond rather well to the values required for dephosphorylation at a luminal site. Vanadate, a known inhibitor of the gastric ATPase produced a slow Mg2+-dependent fluorescent quench. Ca2+ reversed the K+-dependent loss of fluorescence and inhibited it when added prior to K+. This may relate to the slow phosphorylation in the presence of ATP found when Ca2+ was substituted for Mg2+ and the absence of K+-dependent dephosphorylation. The results with FITC-modified gastric ATPase provide evidence for a conformational change with K+ binding to the enzyme.  相似文献   

10.
The specific activity of (Na+ + Mg2+)-dependent ATPase is three times greater in the microsomes of sea-water eels than in freshwater eels; the specific activity is one quarter of that of (Na+ + K+ + Mg2+)-dependent ATPase in both cases.(Na+ + Mg2+)-dependent ATPase is optimally active in a medium containing 8 mM NaCl, 4 mM MgCI2, 4 mM ATP, pH 8.8 and at 30 °C; the enzyme is inhibited by ouabain, by NaCl concentrations > 100 mM and by treatment with urea.It is concluded that the (Na+ + Mg2+)-dependent ATPase activity of gills arises from the presence of a (Na+ + K+ + Mg2+)-dependent ATPase.  相似文献   

11.
The mechanisms of activation of renal (Na+ + K+)-ATPase by administration of the synthetic glucocorticoid hormone, dexamethasone, have been investigated in adrenalectomized rats. Chronic treatment with dexamethasone (1–5 mg/100 g body wt. daily for 5 days) stimulated (Na+ + K+)-ATPase specific activity in crude homogenated and microsomal fractions of renal cortex (by approx. 100–150%) and renal medulla (by approx. 100%). Acute treatment with dexamethasone (0.5–10 mg/100 g body wt.) also stimulated enzyme activity in crude homogenates and microsomal fractions of renal cortex and medulla (by approx. 40–50%). Stimulation was dose dependent and occurred within 2h after hormone treatment. In vitro addition of dexamethasone (10?4–10?8 M) to microsomal fractions did not modify the specific activity of (Na+ + K+)-ATPase. Stimulation of (Na+ + K+)-ATPase activity by acute and chronic administration of the hormone was demonstrated whether specific activities were expressed as a function of cellular protein or cellular DNA. Dexamethasone treatment increased the ratios protein:DNA and, to a lesser extent, the ratios RNA:DNA. However, these effects were mainly due to a reduction in the renal contents of DNA, which suggests that the observed enzyme activation is not due to an action of the hormone on renal hypertrophy. Dexamethasone also reduced cellular DNA contents in the liver. The characteristics of the activation process were essentially similar after treatment with single or multiple doses of the hormone. There were increases in the value for Na+ (approx. 100%), K+ (approx. 40%) and ATP (approx. 160%). The Km values for Na+ (approx. 17 mM) and K+ (approx. 1.8 mM) were unchanged and there was a small increase in the Km value for ATP (0.7 mM as against 1.7 mM). There was no difference in the Hill coefficients for the three substrates. The levels of the high-energy Pi intermediate of the (Na+ + K+)-ATPase reaction were augmented by dexamethasone treatment and the increased levels were quantitatively correlated with the observed stimulation of (Na+ + K+)-ATPase specific activity. The apparent turnover numbers of the reaction remained unchanged. The specific activity of the ouabain-sensitive p-nitrophenylphosphatase increased proportionally to the increase in (Na+ + K+)-ATPase specific activity. Enzyme activation by acute dexamethasone treatment occurred in the absence of changes in glomerular filtration rate and tubular Na+ excretion.These results indicate that (Na+ + K+)-ATPase activation by acute and chronic dexamethasone treatment represents an increase in the number of enzyme units with little or no change in the kinetic properties (affinity, cooperativity) of the enzyme. In addition, the information presented suggests a direct regulatory effect of glucocorticoid hormones on the activity of renal (Na+ + K+)-ATPase and is inconsistent with the concept that changes in Na+ loads mediate the effects of these hormones on enzyme activity. Instead, the results suggests a primary role for glucocorticoid hormones in the renal regulation of Na+ homeostasis.  相似文献   

12.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min?1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min?1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min?1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 μM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3?. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

13.
14.
The (Na+ + K+)-stimulated ATPase activity decreases with increasing pressure and a plot of the logarithm of the activity versus pressure shows a change in slope at a defined breakpoint pressure (Pb). The value of Pb increases linearly with increasing temperature. A dTdP value of 27.7 ± 0.4 (S.D.) K/1000 atm is obtained. This is in very good agreement with the pressure shift for the melting transitions in phospholipids and aliphatic chains. This strongly indicates that an aliphatic chain melting process is involved in the breakpoint in the Arrhenius plot and pressure dependence of (Na+ + K+)-ATPase. The p-nitrophenyl phosphatase activity of this enzyme also decreases with pressure. In this case the plot of the logarithm of the activity versus pressure is linear without a break-point. The temperature dependence for (Na+ + K+)-ATPase was also studied in the presence of fluidizing drugs: desipramine and benzylalcohol. The presence of these drugs had no effect on the inflection point in the Arrhenius plot.  相似文献   

15.
The expressions for the kinetic constants corresponding to the steady state model for hydrolysis of ATP catalyzed by (Na+ + K+)-ATPase proposed recently are analyzed with the object of determining the rate constants. The theoretical background for the necessary procedures is described. The results of this analysis are: (1) A small class (four) of rate constants are determined directly by the previously published values of the kinetic constants. (2) For a somewhat larger class of rate constants upper and lower bounds may be established. For several rate constants the upper and lower bounds differ by less than a factor 1.6 (for the ‘(Na+ + K+)-enzyme’, i.e. the enzyme activity with K+ and millimolar substrate concentration) and 1.2 (for the ‘Na+-enzyme’, i.e. the activity at micromolar substrate concentrations). (3) Experiments on inhibition by K+ of the Na+-enzyme at various Mg2+ concentrations are reported and analyzed. With the additional assumption that the rate constants governing the addition to ATP of Mg2+ is independent of whether or not ATP is bound to an enzyme molecule, a set of consistent values for all the 23 rate constants in the mechanism may be obtained. (4) The values of some rate constants lend further support to the contention discussed in a previous paper that the enzyme hydrolyzes ATP along two kinetically distinct pathways, depending on the presence of K+ and on the concentration of substrate, without the necessity of having more than one active substrate site per enzyme unit at any time. (5) The results show that while the two enzyme forms, the ‘Na+-enzyme’ E1 and the “K+-enzyme” E2K, add substrate with (second order) rate constants of the same order of magnitude (differing only by a factor of four in favor of the former), the rate constants for the reverse processes differ by a factor of 100, being largest for the K+-enzyme. This is the main reason for the large difference in the Michaelis constants for the two forms reported previously. (6) Compatibility of the model with the well-known rapid dephosphorylation of the phosphorylated enzyme in the presence of K+ requires the presence, at non-zero steady state concentration, of an enzyme-potassium-phosphate intermediate, which is acid labile and is therefore not detected as a phosphorylated enzyme using conventional methods.  相似文献   

16.
A ouabain-insensitive Mg2+-ATPase present in a microsomal fraction prepared from the dog submandibular gland was studied. This Mg2+-ATPase was inhibited by increasing concentrations of NaCl, KCl, RbCl and CsCl. The addition of an osmotically equal amount of sucrose was without effect. This inhibition was obtained over a pH range of from 6.3 to 8.8. The Mg2+-ATPase present in microsomes treated with NaI showed a similar inhibition. These results indicate that it is advisable to keep the ionic strength constant in solutions used to obtain (Na++K+)-ATPase activities.  相似文献   

17.
A method is described for purification of (N+, K+)-ATPase which yields approximately 60 mg of enzyme from 800 g of cardiac muscle with specific activities ranging from 340 to 400 μmol inorganic phosphate/mg protein per h (units/mg). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated the presence of a major 94 000 dalton polypeptide and four or five lesser components, one of which was a glycoprotein with an apparent molecular weight of 58 000. The enzyme preparation bound 600–700 pmol of [3H]ouabain/mg protein when incubated in the presence of either Mg2+ plus Pi or Mg2+ plus ATP plus Na+, and incorporated more than 600 pmol 32P/mg protein when incubated with γ-32P-labeled ATP in the presence of Mg2+ and Na+. The preparation is approximately 35% pure.  相似文献   

18.
(1) The fluorescence of eosin Y in the presence of (Na+ + K+)-ATPase is enhanced by Mg2+. The enhancement by Mg2+ is larger than that obtained with Na+ (Skou, J.C. and Esmann, M. (1981) Biochim. Biophys. Acta 647, 232–240). Mg2+ shifts the excitation maximum from 518 to 524 nm, the emission maximum from 538 to 542 nm. Also a shoulder appears at about 490 nm on the excitation curve, as was also observed with Na+. (2) The Mg2+-dependent enhancement of fluorescence can be reversed by K+ as well as by ATP. In the presence of Mg2+ + Pi (i.e. under conditions of phosphorylation), the fluorescence enhancement can be reversed by ouabain. With Mg2+ and a low concentation of K+ (i.e. conditions for vanadate binding), the enhancement of fluorescence can be reversed by vanadate. (3) There is a low-affinity binding of eosin which increases with the Mg2+ concentration. This is observed as a slight increase in the fluorescence when the excitation wavelength is above 520 nm. The low-affinity binding is K+-, ATP-, ouabain- and vanadate-insensitive. (4) Scatchard analysis of the binding experiments suggests that there are two high-affinity eosin-binding sites per 32P-labelling site in the presence of 5 mM Mg2+ both of which are ouabain-, vanadate- and ATP-sensitive. With 5 M Mg2+ + 0.25 Pi, the Kd values are 0.14 μM and 1.3 μM, respectively. With 5 mM Mg2+, 150 mM Na+, the Kd values are 0.45 μM and 3.2 μM, respectively. With 5 mM Mg2+, the addition of K+ gives a pronounced decrease in affinity but does not decrease the number of binding sites (which remains at two per 32P-labelling site). With 5 mM Mg2+ + 150 mM K+, the affinities of the two binding sites become identical, at a Kd of 17 μM. (5) The rate of conformational transitions was measured using the stopped-flow method. The rate of the transition from the Mg2+-form to the K+-form is high. Oligomycin has only a small (if any) effect on the rate. Addition of Na+ in the presence of Mg2+ does not appreciably change the rate of conversion to the K+-form, giving a rate constant of about 110 s?. However, the addition of oligomycin in the presence of Mg2+ + Na+ had a profound effect: the rate of conversion to the K+-form was decreased by a factor of 2000 to about 0.063 s?1. This suggests that the conformation with Mg2+ alone is different from the conformation with Na+ alone. (6) The effects of K+, ouabain, vanadate and ATP on the high-affinity binding of eosin suggest that the two eosin molecules bound per 32P-labelling site are bound to ATP sites.  相似文献   

19.
20.
Fluorescein isothiocyanate (FITC) reactivity with the (Na+ + K+)-ATPase was studied at pH 6.5 and 9.0. Reaction with FITC is nearly complete in 30 min and is irreversible at both pH values. Differential inhibition of enzyme activity is observed at the two pH values as follows: at pH 6.5 the maximal inhibition reached is only 35–45% of the ATPase or p-nitrophenylphosphatase activities, whereas at pH 9.0 ATPase activity can be completely inhibited while maximal phosphatase inhibition is ca. 50%. At all concentrations of FITC tested, more FITC is incorporated into the enzyme at pH 9.0 than at 6.5. At both pH values NaCl increases the inhibition due to FITC while KCl protects against the inhibition. ATP protects the enzyme at both pH values with a K0.5 in the range of 8–20 μm. Enzyme that is partially inactivated at either pH shows no significant change in the K0.5 values for Na+ or K+ or in the Km app for ATP or p-nitrophenylphosphate for the remaining activity. The binding of 48VO4 is not changed by reaction with FITC at either pH, while [3H]ouabain binding is inhibited after reaction at pH 9.0 only in the presence of Mg+2 + Na+ + ATP. [3H]Ouabain binding in the presence of Mg+2 + inorganic phosphate is not inhibited by FITC reaction. Enzyme reacted at both pH values exhibits the expected fluorescein fluorescence (λex = 490, λem = 520) but only with enzyme reacted at pH 9.0 is fluorescence quenching by K+ or reversal by Na+ observed. These results suggest that different classes of amino groups react with FITC at the two pH values tested, and that these groups have distinct roles in the different activities of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号