首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper describes the characteristics of Na+-dependent d-glucose transport into liposomes made from soybean phospholipids into which have been reconstituted detergent-solubilized components from the rabbit renal proximal tubular brush border membrane. Conditions for optimal and quantitative reconstitution of glucose carriers are defined. Na+-dependent d-glucose uptake occurs via a saturable system with a Km of 0.125–0.135 mM, is responsive to the volume of the internal liposomal space, and shows ‘overshoot’ as seen in natural membranes. The rate of Na+-dependent d-glucose uptake and the magnitude of the ‘overshoot’ are proportional to the concentration of protein used in reconstitution.  相似文献   

2.
(1)‘Uptake’ of phlorizin by intestinal brush border membrane vesicles is stimulated, much as that of d-glucose, by the simultaneous presence of Naout+ and Δψ?0. However, phlorizin contrary to d-glucose, fulfills all criteria of a non-translocated ligand (i.e., of a fully competitive inhibitor) of the Na+,d-glucose cotransporter. (2) The stoicheiometry of Na+/phlorizin binding is 1, as shown by a Hill coefficient of approx. 1 in the Naout+-dependence of phlorizin binding. (3) The preferred order of binding at Δψ?0 is Na+ first, phlorizin second (4) The velocity of association of phlorizin to the cotransporter, but not the velocity of its dissociation therefrom, responds to Δψ. These observations while agreeing with the effect of Δψ?0 on the Kd of phlorizin binding in the steady-state time range, also confirm that the mobile part of the cotransporter bears a negative charge of 1. (5) A model is proposed describing the Na+,Δψ-dependent interaction of phlorizin with the cotransporter and agreeing with a more general model of Na+,d-glucose cotransport. (6) The kon, koff and Kd constants of phlorizin interaction with the Na+,d-glucose cotransporter are smaller in the kidney than in the small-intestinal brush border membrane, which results in a number of quantitative differences in the overall behaviour of the two systems.  相似文献   

3.
d-Glucose decreases phosphate reabsorption in rat proximal tubule. It is also postulated that some amino acids interact with phosphate reabsorption. To investigate the mechanism of these interactions, phosphate, d-glucose and l-alanine transport kinetics were measured in brush border membrane vesicles isolated from superficial rat kidney cortex by the calcium precipitation technique. At pH 7.4, Na+-dependent phosphate transport was inhibited in the presence of either d-glucose (39 mM) or l-alanine (2.4 mM). In this model, with d-glucose or with l-alanine the V value of the phosphate uptake was decreased, whereas the apparent Km for the phosphate uptake was not affected. However, some inhibition of phosphate transport was observed in the presence of l-glucose, d-alanine or d-glucose after phlorizin preincubation. A 30% Na+-dependent l-alanine (0.1 mM) transport inhibition was observed in the presence of 5 mM phosphate. d-Glucose (1 mM) was also inhibited by 20% when 5 mM phosphate was added to incubation medium. According to several authors, in our model, d-glucose decreased the l-alanine transport and vice versa. Moreover, when the membrane potential was abolished, a clear inhibition of d-glucose by l-alanine persisted. These multiple interactions could be explained by the accelerated dissipation of the Na+ gradient insofar as the rate of the Na+ uptake was increased with d-glucose, l-alanine or phosphate and since the absence of variations in membrane potential did not suppress these inhibitions.  相似文献   

4.
The effects of d-glucose addition to a glucose-free luminal perfusate were investigated in the proximal tubule of Necturus kidney, by electrophysiological techniques. The main findings are: (1) In the presence of sodium, d-glucose produces 10.5 mV ± 1.1 (S.E.) depolarization. (2) Phlorizin reduces the magnitude of this response to 2.1 ± 0.1 mV. (3) The glucose-evoked depolarization, ΔVG, does not alter the intracellular K+ activity nor is it affected by peritubular addition of ouabain. (4) Isosmotic reduction of Na+ concentration in luminal perfusate from 95 to 2 mmol/l (choline or Li+ substituting for Na+) does not change the magnitude of ΔVG; complete removal of sodium from the lumen lowers the value of ΔVG (3.2 ± 0.2 mV) but the response is not abolished. This observation suggests that the d-glucose carrier of renal tubules in Necturus is poorly specific with regard to the cotransported cation species.  相似文献   

5.
The transport of the bile salt, glycodeoxycholate, was studied in vesicles derived from rat jejunal and ileal brush border membranes using a rapid filtration technique. The uptake was osmotically sensitive, linearly related to membrane protein and resembled d-glucose transport. In ileal, but not jejunal, vesicles glycodeoxycholate uptake showed a transient vesicle/medium ratio greater than 1 in the presence of an initial sodium gradient. The differences between glycodeoxycholate uptake in the presence and absence of a Na+ gradient yielded a saturable transport component. Kinetic analysis revealed a Km value similar to that described previously in everted whole intestinal segments and epithelial cells isolated from the ileum. These findings support the existence of a transport system in the brush border membrane that: (1) reflects kinetics and characteristics of bile salt transport in intact intestinal preparations, and (2) catalyzes the co-transport of Na+ and bile salt across the ileal membrane in a manner analogous to d-glucose transport.  相似文献   

6.
The uptake of d-glucose, 2-aminoisobutyric acid and glycine was studied with intestinal brush border membrane vesicles of a marine herbivorous fish: Boops salpa. The uptake of these three substances is stimulated by an Na+ electrochemical gradient (CoutCin). For glucose, an increase of the electrical membrane potential generated by a concentration gradient of the liposoluble anion, SCN?, increases the Na+-dependent transport. This responsiveness to the membrane potential was confirmed by valinomycin. Differently from glucose, uptake of glycine and 2-aminoisobutyric acid requires, besides the Na+ gradient, the presence of Cl? on the external side of the vesicles. In the absence of Cl?, amino acid uptake is not stimulated by the Na+ gradient and is not influenced by an electrical membrane potential generated by SCN? gradient (Cout>Cin) or by a K+ diffusion potential (Cin>Cout). This Cl? requirement differs from the Na+ requirement, since a Cl? gradient (Cout>Cin) does not result in an accumulation of glycine or 2-aminoisobutyric acid similar to that produced by an Na+ gradient.  相似文献   

7.
Influx and efflux of glycine have been examined as a function of external and internal Na+ concentrations, respectively, when ΔμNa = 0. With ΔμNa = 0 it was found that at comparable external and cellular Na+ levels, the Km for efflux was larger by an order of magnitude than the value for influx and the V for efflux was several times greater than the V for influx. For both fluxes the major effect of Na+ was to decrease the Km value. The observations are consistent with the conclusion that the Na+-dependent transport system is asymmetric per se. Influx and efflux of glycine were increased in a near linear manner by increasing the Na+ concentration from 13 to 100 mM, the half-time for glycine equilibration being a function of the Na+ concentration in absence of an electrochemical potential difference for Na+. In Na+-free media ([Na+] < 5 mM) equilibration of glycine between cells and medium was not achieved after 60 min at 25°C. With ΔμNa= 0, efflux (or uptake) of glycine was not affected by internal (or external) K+ between 20 and 120 mM suggesting that K+ plays no direct role in Na+-dependent transport of glycine in Ehrlich cells.  相似文献   

8.
With the aid of direct microfluorimetric determination of marker organic anions (fluorescein and uranin) accumulated in the proximal tubules the influence of Na+ in the bath medium on the active transport of these anions was studied. Kinetic analysis of the rate dependence of organic acid active transport into tubules on their concentration in the bath medium with a constant Na+ concentration permitted to define values of apparent Km and V for uranin and fluorescein transport in the medium with different Na+ content. It was shown that a decrease of Na+ concentration in the medium increases Km and lowers the V/Km ratio with uncharged V. By varying the Na+ concentration in the medium with a constant concentration of the marker anion the KmNa+ and VNa+ values for fluorescein and uranin transport were determined. A KmNa+ value for fluorescein in twice as much that for uranin. The 1/Km value for uranin transport is a linear function of Na+ concentration, while for fluorescein transport it is a quadratic one. Therefore it is concluded that two Na+ from the medium participate in active transfer of one fluorescein anion whereas only one Na+ from the medium is required for active transfer of one uranin anion. The run out of fluorescein from tubules preloaded with this acid is sharply reinforced by the Na+ omission from the medium. Thus, active transport of organic acids in proximal tubules of frog kidney is Na+-dependent, and Na+ from the medium is likely to participate directly in formation of a transport complex. When Na+ is absent in the medium a carrier fulfils a facilitated diffusion only.  相似文献   

9.
The uptake of l-glutamic acid into brush-border membrane vesicles isolated from rat renal proximal tubules is Na+-dependent. In contrast to Na+-dependent uptake of d-glucose, pre-equilibration of the vesicles with K+ stimulates l-glutamic acid uptake. Imposition of a K+ gradient ([Ki+] > [Ko+]) further enhances Na+-dependent l-glutamic acid uptake, but leaves K+-dependent glucose transport unchanged. If K+ is present only at the outside of the vesicles, transport is inhibited. Intravesicular Rb+ and, to a lesser extent, Cs+ can replace intravesicular K+ to stimulate l-glutamic acid uptake. Changes in membrane potential incurred by the imposition of an H+-diffusion potential or anion replacement markedly affect Na+-dependent glutamic acid uptake only in the presence of K+. Experiments with a potential-sensitive cyanine dye also indicate that, in the presence of intravesicular K+ a charge movement is involved in Na+-dependent transport of l-glutamic acid.The data indicate that Na+-dependent l-glutamic acid transport can be additionally energized by a K+ gradient. Furthermore, intravesicular K+ renders Na+-dependent l-glutamic acid transport sensitive to changes in the transmembrane electrical potential difference.  相似文献   

10.
Light-induced Na+ efflux was observed in sub-bacterial particles of Halobacterium halobium loaded and suspended in 4 M NaCl solution. The Na+ efflux was not ATP driven, since ATPase inhibitors were without effect or even enhanced efflux at low light intensity. Uncouplers, on the other hand, inhibited Na+ efflux, the inhibition being complete at low light intensity. The Na+ efflux was accompanied by proton influx. Both processes were dependent on light intensity, unaffected or enhanced by ATPase inhibitors and similarly affected by uncouplers. Proton influx was not observed in particles loaded with 4 M KCl instead of 4 M NaCl. Na+ transport in the dark could be induced by artificial formation of a pH difference across the membrane; changing the sign of the pH difference reversed the direction of the Na+ transport. Proton influx in the dark followed the artificial formation of a sodium gradient ([Na+]in > [Na+]out). These results may be explained by a Na+/H+ antiport mechanism. The fluxes of Na+ and H+ were of comparable magnitude, but the initial rate of Cl? efflux in the same experiment was one-third of the initial rate of Na+ efflux. Consequently Cl? is not regarded as a participant in the Na+ efflux mechanism.  相似文献   

11.
The fall in transepithelial electrical resistance which accompanies aldosterone stimulation of short-circuit current (Isc) in toad urinary bladder has been studied further to evaluate the possible causal role of this response in hormonal stimulation of Na+ transport. A steady-state change in tissue conductance was found to depend upon both the simultaneous stimulation of transport by the steroid and the metabolic state of the tissue. Changes in metabolic state alone did not alter resistance. A sustained increase in Na+ transport, dependent on pretreatment with aldosterone and elicited by addition of glucose, could be obtained without a sustained decrease in resistance. Amiloride, an inhibitor of Na+ uptake, produced changes in Isc that were linearly correlated with its effects on tissue conductance. On the basis of the conductance-Isc relationship with amiloride, the Isc response to aldosterone was about two-fold higher than would be predicted from its effects on conductance alone. Despite the apparent lack of a simple quantitative dependence of the change in Isc on the change in conductance when the response is fully developed, the results suggest that conductance changes may mediate the initial or early stage of the response.  相似文献   

12.
In unfertilized eggs, the mechanism of valine uptake can be summarized as follows. It is saturable over the external concentration of valine and insensitive to the presence of external sodium, depletion of cellular energy supplies and intracellular acidosis. The activation energy for the transport reaction (16.3 kcal/mol) is within the range of values reported for active transport of small molecules. In fertilized eggs, the total rate of valine uptake can be divided into two components: (i) a Na+-insensitive uptake which accounts for about 7% of total absorption as shown by studies in Na+-free medium seems to possess the same characteristics as in unfertilized eggs, (ii) a Na+-dependent transport of valine which constitutes the main entry is formed about 5 min after fertilization. It follows Michaelis-Menten kinetics characterized by 15-fold increase in Vmax with no change in Km. These two mechanisms have characteristics in common, such as their insensitivity to metabolic energy supply, their energy of activation and their ability to concentrate valine. The relationship between the establishment of the Na+-dependent valine uptake and the ionic events triggered by fertilization is discussed.  相似文献   

13.
Studies of the localization of the Na+-dependent sugar transport in monolayers of LLC PK1 cells show that the uptake of a methyl α-d-glucoside, a nonmetabolizable sugar which shares the glucose-galactose transport system, occurs mainly from the apical side of the monolayer. Kinetics of [3H]phlorizin binding to monolayers of LLC PK1 cells were also measured. These studies demonstrate the presence of two distinct classes of receptor sites. The class comprising high affinity binding sites had a dissociation constant (Kd) of 1.2 μM and a concentration of high affinity receptors of 0.30 μmol binding sites per g DNA. The other class involving low affinity sites had a Kd of 240 μM with the number of binding sites equal to 12 μmol/g DNA. Phlorizin binding at high affinity binding sites is a Na+-dependent process. Binding at the low affinity sites on the contrary is Na+-independent. The mode of action of Na+ on the high affinity binding sites was to increase the dissociation constant without modifying the number of binding sites. The Na+ dependence and the matching of Kd for high affinity binding sites with the Ki of phlorizin for the inhibition of methyl α-d-glucoside strongly suggest that the high affinity phlorizin binding site is, or is part of the methyl α-d-glucoside transport system. Binding studies from either side of the monolayer also show that the binding of phlorizin at the Na+ dependent high affinity binding sites occurs mainly from the apical rather than the basolateral side. The specific location of the Na+-dependent sugar transport system in the apical membrane of LLC PK1 cells is, therefore, another expression of the functional polarization of epithelial cells that is retained under tissue culture condition. In addition, since this sugar transport almost disappears after the cells are brought into suspension, it can be used as a marker to study the development of the apical membrane in this cell line.  相似文献   

14.
Parathyroid hormone (PTH) and calcitonin exert well known effects on the renal tubule which are thought to involve specific hormone receptors and adenyl cyclase. In the intestine, it is not clear whether the action of PTH and calcitonin is only indirect or also direct, and their mechanisms of action are much less well established. In the present study, possibly direct effects of PTH and calcitonin on Na+ transport in isolated intestinal epithelial cells of rats were investigated. In the presence of bovine PTH (1.2 I.U./ml) in the incubation medium, the Na+ efflux rate constant (oKNa) of isolated enterocytes was significantly reduced when compared to that in control experiments with the hormone vehicle only. The mean depression of oKNa induced by bovine PTH was 26% as compared to the control (100%) and to that induced by ouabain (4.0mM) which was 44%. No depressant effect of bovine PTH on oKNa was observed when the isolated enterocytes were incubated with ouabain (4.0 mM). Thus, bovine PTH appeared to inhibit the ouabain-sensitive Na+ pump. When incubating the isolated epithelial cells in an EGTA-containing Ca2+-free medium, bovine PTH lost its capacity to inhibit (oKNa). Thus, the presence of extracellular Ca2+ appeared necessary for the inhibitory effect of bovine PTH. In contrast to its effect on oKNa, bovine PTH induced no change in net Na+ uptake by isolated enterocytes. Moreover, no significant effect on enterocyte Na+ transport could be demostrated for salmon or porcine calcitonin at two different concentrations in the incubation medium. Neither bovine PTH nor salmon calcitonin induced significant changes in enterocyte cyclic AMP or cyclic GMP concentrations. It was concluded that bovine PTH, but not calcitonin, exerted a direct inhibitory effect on the ouabain-sensitive oKNa of isolated rat enterocytes. The effect of bovine PTH occured without measurable activation of the cyclic nucleotide system but needed the presence of Ca2+ in the incubation medium to be operative.  相似文献   

15.
16.
The Michaelis-Menten parameters, JM and Km of the initial 1-min fluxes of uptake of l-phenylalanine and of α-aminoisobutyric acid were determined for extracellular concentrations of Na+ ranging from 0.5 to 110 mequiv/l for Ehrlich ascites tumor cells. The maximal initial flux, JM, decreased with decrease in extracellular Na+ for both α-aminoisobutyric acid and phenylalanine but the Km for α-aminoisobutyric acid increased markedly as the Na+ concentration fell whereas the Km for phenylalanine decreased. Cycloleucine behaved like phenylalanine.The data provides strong evidence that the Na+-independent flux of phenylalanine is an exchange diffusion flux that can be varied by changing the intracellular level of amino acids such as phenylalanine. For phenylalanine, cyclolcucine, and methionine this exchange diffusion flux appears to be additive with the Na+-dependent initial flux. α-Aminoisobutyric acid also has an exchange diffusion that is Na+-independent but it has a high Km and is not additive with the Na+-dependent flux.  相似文献   

17.
Analysis of the cation composition of growing Mycoplasma mycoides var. Capri indicates that these organisms have a high intracellular K+ concentration (Ki: 200–300 mM) which greatly exceeds that of the growth medium, and a low Na+ concentration (Nai+: 20 mM). Unlike Nai+, Ki+ varies with cell aging.The K+ transport properties studied in washed organisms resuspended in buffered saline solution show that cells maintain a steady and large K+ concentration gradient across their membrane at the expense of metabolic energy mainly derived from glycolysis. In starved cells, Ki+ decreases and is partially compensated by a gain in Na+. This substitution completely reverses when metabolic substrate is added (K+ reaccumulation process). Kinetic analysis of K+ movement in cells with steady K+ level shows that most of K+ influx is mediated by an autologous K+-K+ exchange mechanism. On the other hand, during K+ reaccumulation by K+-depleted cells, a different mechanism (a K+ uptake mechanism) with higher transport capacity and affinity drives the net K+ influx. Both mechanisms are energy-dependent.Ouabain and anoxia have no effect on K+ transport mechanisms; in contrast, both processes are completely blocked by dicyclohexylcarbodiimide, an inhibitor of the Mg2+-dependent ATPase activity.  相似文献   

18.
The kinetics of isotopic Na+ flows was studied in urinary bladders of toads from the Dominican Republic. Initial studies of the potential dependence of passive serosal to mucosal 22Na+ efflux demonstrated the absence of isotope interaction and/or other coupling with passive Na+ flow. The electrical current I and mucosal to serosal 22Na+ influx were then measured with transmembrane potential clamped at Δψ = 0, 25, 50, 75 or 100 mV. Subsequent elimination of active Na+ transport mucosal amiloride permitted calculation of the rates of active Na+ transport JNaa and active and passive influx JNaNa and JNaa and JNap. The results indicate that for Dominican toad bladders mounted in chambers only Na+ contributes significantly to transepithelial active ion transport; hence JNaa = Ja. Ja was abolished at Δψ = E = 96.3 ± 1.9 (S.E.) mV. As Δψ approached E, active efflux Ja became demonstrable. At Δ = 100 mV, Ja exceeded Ja, so that Ja was negative. Experimental values of Ja agreed well with theoretical values predicted by a thermodynamic formulation: Jexpa = 0.985 Jtheora (r = 0.993). The dependence of Ja on Δψ is curvilinear.  相似文献   

19.
The active transport of neutral amino acids into Streptomyces hydrogenans is inhibited by external Na+. There is no indication that in these cells amino acid accumulation is driven by an inward gradient of Na+. The extent of transport inhibition by Na+ depends on the nature of the amino acid. It decreases with increasing chain length of the amino acid molecules i.e. with increasing non-polar properties of the side chain. Kinetic studies show that Na+ competes with the amino acid for a binding site at the amino acid carrier. There is a close relation between the Ki values for Na+ and the number of C atoms of the amino acids. Other cations also inhibit neutral amino acid uptake competitively; the effectiveness decreases in the order Li+ > Na+ > K+ > Rb+ > Cs+. Anions do not have a significant effect on the uptake of neutral amino acids. After prolonged incubation of the cells with 150 mM Na+, in addition to the competitive inhibition of transport Na+ induces an increase in membrane permeability for amino acids.  相似文献   

20.
The Na+-independent leucine transport system is resolved into two components by their different affinity (Km about 44 μM and 8.0 mM) for leucine in the Chang liver cell. Treatment of the cells with N-ethylmaleimide (1 mM) specifically stimulates the high-affinity component of the Na+-independent system by greatly increasing its Vmax value, whereas the Vmax value of the low-affinity component is markedly lowered. The stimulatory effect of N-ethylmaleimide on leucine transport is reduced by prior treatment of the cells with 2,4-dinitrophenol, but this phenomenon seems to be irrelevant to the ATP-depleting action of the uncoupler. The treatment with 2,4-dinitrophenol has been found not to be inhibitory on the subsequent Na+-independent leucine uptake itself. Treatment with dibucaine, a phospholipid-interacting drug, also reduces to varying degrees (depending on its concentration) the stimulatory effect of N-ethylmaleimide on the subsequent leucine uptake, although pretreatment with dibucaine can stimulate the Na+-independent leucine uptake itself. We conclude that the stimulatory effect of N-ethylmaleimide on leucine transport is not correlated with the energy level of cell, but involves the perturbation of the membrane bilayer structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号