首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 782 毫秒
1.
Ceruloplasmin (ferroxidase) is a copper-binding protein known to promote Fe(2+) oxidation in plasma of mammals. In addition to its classical ferroxidase activity, ceruloplasmin is known to catalyze the oxidation of various substrates, such as amines and catechols. Assays based on cyclic hydroxylamine oxidation are used to quantify and detect free radicals in biological samples ex vivo and in vitro. We show here that human ceruloplasmin promotes the oxidation of the cyclic hydroxylamine 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) and related probes in Chelex-treated phosphate buffer and rat serum. The reaction is suppressed by the metal chelators DTPA, EDTA, and desferal, whereas heparin and bathocuproine have no effect. Catalase or superoxide dismutase additions do not interfere with the CPH-oxidation yield, demonstrating that oxygen-derived free radicals are not involved in the CPH oxidation mediated by ceruloplasmin. Plasma samples immunodepleted of ceruloplasmin have lower levels of CPH oxidation, which confirms the role of ceruloplasmin (ferroxidase) as a biological oxidizing agent of cyclic hydroxylamines. In conclusion, we show that the ferroxidase activity of ceruloplasmin is a possible biological source of artifacts in the cyclic hydroxylamine-oxidation assay used for reactive oxygen species detection and quantification.  相似文献   

2.
Self-reduction of an Fe3+-ADP-adriamycin complex under anaerobic conditions and reduction of ferricytochrome c by the complex under aerobic conditions were strongly inhibited by ceruloplasmin, but not by superoxide dismutase or albumin at the same protein concentration. Ceruloplasmin, a protein with ferroxidase activity, is able to catalyse oxidation of Fe2+ to the ferric state. The inhibitory activity of ceruloplasmin towards reactions stimulated by the complex suggests that Fe2+ is formed during the self-reduction process. As expected, the Fe3+-ADP-adriamycin complex stimulated lipid peroxidation in which the Fe2+ moiety was implicated. This stimulation was again effectively prevented by ceruloplasmin but not by superoxide dismutase.  相似文献   

3.
The comparison of protective effects of native ceruloplasmin (CP) and of preparation CP1 containing carbohydrate fragment GlcNAc(beta(1,4]GlcNAc which specifically binds on RBC (alpha(1,6)Fuc receptors showed that CP1 exhibits much more powerful protective effect on RBC in copper-induced lysis. It was found, however, that CP2 (native CP devoided of CP1) protected RBC as well as CP despite its inability of binding to RBC membrane. CP and CP1 in a similar way decrease copper concentration in RBC. It was shown that copper accumulation and GSH decrease in RBC are two independent and concurrent processes; the copper and GSH concentrations are not the factors determining RBC resistance to hemolysis. CP inhibits the reaction of superoxide radicals generation as a result of Cu interaction with -SH groups of RBC membrane; the effect is more pronounced than the effect of catalase or superoxide dismutase. CP and CP1 preparations equally inhibit this reaction. Apparently CP reception on RBC leads not only to membrane protection from superoxide and hydroxyl radicals but represents a more complex process.  相似文献   

4.
A mononuclear (1:1) copper complex of curcumin, a phytochemical from turmeric, was synthesized and examined for its superoxide dismutase (SOD) activity. The complex was characterized by elemental analysis, IR, NMR, UV-VIS, EPR, mass spectroscopic methods and TG-DTA, from which it was found that a copper atom is coordinated through the keto-enol group of curcumin along with one acetate group and one water molecule. Cyclic voltammetric studies of the complex showed a reversible Cu(2+)/Cu(+) couple with a potential of 0.402 V vs NHE. The Cu(II)-curcumin complex is soluble in lipids and DMSO, and insoluble in water. It scavenges superoxide radicals with a rate constant of 1.97 x 10(5) M(-1) s(-1) in DMSO determined by stopped-flow spectrometer. Subsequent to the reaction with superoxide radicals, the complex was found to be regenerated completely, indicating catalytic activity in neutralizing superoxide radicals. Complete regeneration of the complex was observed, even when the stoichiometry of superoxide radicals was 10 times more than that of the complex. This was further confirmed by EPR monitoring of superoxide radicals. The SOD mimicking activity of the complex was determined by xanthine/xanthine oxidase assay, from which it has been found that 5 microg of the complex is equivalent to 1 unit of SOD. The complex inhibits radiation-induced lipid peroxidation and shows radical-scavenging ability. It reacts with DPPH radicals with rate constant 10 times less than that of curcumin. Pulse radiolysis-induced one-electron oxidation of the complex by azide radicals in TX-100 micellar solutions produced strongly absorbing ( approximately 500 nm) phenoxyl radicals, indicating that the phenolic moiety of curcumin remained intact on complexation with copper. The results confirm that the new Cu(II)-curcumin complex possesses SOD activity, free radical neutralizing ability, and antioxidant potential. Quantum chemical calculations with density functional theory have been performed to support the experimental observations.  相似文献   

5.
The electron-spin resonance method was applied to examine human plasma and red cells at a temperature of 77 degrees K and variation in the level of free radicals (FR) under the effect of adrenaline. In plasma, the signals of transferrin (g approximately 4.26), ceruloplasmin (g approximately 2.05), and FR (g approximately 2.0024-2.0029 and delta H 6-8 Oe) were registered, while in red cells, the signals of hemoglobin (g approximately 6.00), superoxide dismutase (g approximately 2.063), and flavosemiquinone (g approximately 2.0030-2.0040 and delta H 12-15 Oe). Addition of adrenaline entailed an increase in the level of FR and a lowering of the ceruloplasmin signal intensity in plasma. The level of FR in red cells was found to be elevated. The mechanisms of the phenomena described are discussed.  相似文献   

6.
Serum protein degradation by hypochlorite   总被引:1,自引:0,他引:1  
The structural integrity of serum proteins: albumin, immunoglobulin G, transferrin, ceruloplasmin and superoxide dismutase, and the functional activity of the latter two enzymes after their interaction with hypochlorite were studied. It was shown that the interaction between the proteins and hypochlorite resulted in protein injury and degradation of their native structure. In the case of ceruloplasmin and transferrin, a practically complete protein "dissipation" occurred, the albumin and superoxide dismutase structures being injured in a lesser degree. The inactivation of ceruloplasmin was slower than that of superoxide dismutase. The protein degradation by hypochlorite seems to be the main factor restricting the ability of the proteins to act as antiinflammatory drugs.  相似文献   

7.
Choi SY  Kwon HY  Kwon OB  Eum WS  Kang JH 《Biochimie》2000,82(2):175-180
We investigated the fragmentation of human ceruloplasmin induced by H2O2 to study its oxidative damage. When ceruloplasmin was incubated with H2O2, the frequency of the protein fragmentation increased in a proportion to the concentration of H2O2. It also increased in a time-dependent manner and was accompanied by gradual loss of the oxidase activity. Hydroxyl radical scavengers such as azide and mannitol inhibited the fragmentation of ceruloplasmin. The deoxyribose assay showed that hydroxyl radicals were generated in the reaction of ceruloplasmin with H2O2. Incubation of ceruloplasmin with H2O2 resulted in a time-dependent release of copper ions. The released copper ion may participate in a Fenton-like reaction to produce hydroxyl radical, which enhanced the fragmentation. The protection of the fragmentation by copper chelators such as diethylenetriaminepentaacetic acid and bathocuproine indicates a role for copper ion in the reaction. These results suggest that the fragmentation of ceruloplasmin induced by H2O2 is due to hydroxyl radicals formed by a copper-dependent Fenton-like reaction.  相似文献   

8.
The superoxide radicals formed on NADPH-specific flavoprotein of liver microsomes can reduce cytochromes c, b5, and P-450. This reaction is inhibited under aerobic conditions by a low molecular weight analog of superoxide dismutase, e.g. the copper-tyrosine complex. The inhibitory effect of the complex is not observed under anaerobic conditions. Based on the results obtained a scheme of the electron transfer between the flavoprotein and haemoproteins involving superoxide radicals is proposed.  相似文献   

9.
The incorporation of tritiated thymidine into CCL-39 cells grown in the absence of fetal calf serum or other growth factors is greatly increased by low concentrations of ceruloplasmin. The stimulation is greater than observed with serum or thrombin. Addition of serum decreases the thymidine incorporation with ceruloplasmin to the level with serum alone. As with serum, the response to ceruloplasmin is high at both 20% and 1% oxygen, which is consistent with the action of ceruloplasmin as an oxidant with a high affinity for oxygen. Since transplasma membrane electron transport increases cell growth and thymidine incorporation, ceruloplasmin may act as a terminal oxidase for ferrous iron or ascorbate to stimulate transplasma membrane electron transport. The four electron transfer from ceruloplasmin to oxygen to form water will prevent peroxide formation at the cell surface. Alternatively, superoxide formation inside the cell or membrane could employ the superoxide dismutase function of ceruloplasmin to produce peroxide. Either mechanism would be consistent with the previously described stimulation of growth by external oxidants.  相似文献   

10.
Plant plasma membranes are known to produce superoxide radicals, while the production of the hydroxyl radical, previously detected in complex plant tissues, is thought to occur in the cell wall. The mechanism of production of superoxide radicals by plant plasma membranes is, however, under dispute. It is shown, using electron paramagnetic resonance spectroscopy with a 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide spin-trap capable of differentiating between radical species, that isolated purified plasma membranes from maize roots produce hydroxyl radicals besides superoxide radicals. The results argue in favour of superoxide production through an oxygen and diphenylene iodonium-sensitive, NADH-dependent superoxide synthase mechanism, as well as through other unidentified mechanism(s). The hydroxyl radical is produced by an oxygen-insensitive, NADH-stimulated mechanism, which is enhanced in membranes in which the superoxide synthase is incapacitated by substrate removal or inhibition.  相似文献   

11.
Hydrogen peroxide or superoxide anion radicals form a paramagnetic complex in the reaction with chromium(VI) oxide in an alkaline water solution at room temperature. The complex [Cr(OH)5O2]5- with the g-value equal to 1.9734 is believed to contain hydroxyl groups derived from the alkaline solution and dioxygen derived from hydrogen peroxide or superoxide anion radicals.  相似文献   

12.
Erythrocyte superoxide dismutase (erythrocuprein) levels were determined in cells from normal subjects and from patients with Wilson's disease. The concentration of this copper-containing enzyme was essentially identical in both groups, even though serum ceruloplasmin was markedly reduced, or absent, in Wilson's disease. The observed concentration of the dismutase confirms previous results by others using immunochemical procedures. Extended therapy with D-penicillamine resulted in a 25 to 43% decrease in superoxide dismutase activity, and an 81 to 99% decrease in serum ceruloplasmin. Our results indicate that erythrocuprein levels are independent of serum ceruloplasmin concentration.  相似文献   

13.
《Free radical research》2013,47(1):179-185
Carnosine, anserine and homocarnosine are natural compounds which are present in high concentrations (2–20 mM) in skeletal muscles and brain of many vertebrates. We have demonstrated in a previous work that these compounds can act as antioxidants, a result of their ability to scavenge peroxyl radicals, singlet oxygen and hydroxyl radicals. Carnosine and its analogues have been shown to be efficient chelating agents for copper and other transition metals. Since human skeletal muscle contains one-third of the total copper in the body (20–47 mmol/kg) and the concentration of carnosine in this tissue is relatively high, the complex of carnosine:copper may be of biological importance. We have studied the ability of the coppenarnosine (and other carnosine derivatives) complexes to act as superoxide dismutasc. The results indicate that the complex of copper:carnosine can dismute superoxide radicals released by neutrophils treated with PMA in an analogous mechanism to other amino acids and copper complexes. Copper:anserine failed to dismute superoxide radicals and coppwhomocarnosine complex was efficient when the cells were treated with PMA or with histone-opsonized streptococci and cytochalasine B. The possible role of these compounds to act as physiological antioxidants that possess superoxide dismutase activity is discussed.  相似文献   

14.
The identification of possible copper ligands in human ceruloplasmin was carried out by the computer similarity analysis for sequences of ceruloplasmin and several other copper oxidases: azurin, plastocyanin, superoxide dismutase, tyrosinase and hemocyanin. It follows from the analysis of inter- and intramolecular homology that copper active sites of different types appeared to be in close contacts within the ceruloplasmin molecule.  相似文献   

15.
Lipid peroxidation is an important process in oxygen toxicity. Free radicals inflict this damage by attacking polyunsaturated fatty acids, thus setting off a deleterious chain reaction that ultimately results in their disintegration into malondialdehye, 4 hydroxy-2-nonenal and other harmful by-products. Peroxidation of lipids has been implicated in several diseases including systemic lupus erythematosus (SLE). SLE is an autoimmune disorder with unknown aetiology, characterized by the presence of autoantibodies to self-antigens. There is a significant increase in the production of free radicals like superoxide and hydroxyl radicals in SLE. Indices of lipid peroxidation, like conjugated dienes, malondialdehyde, 8-isoprostaglandin F2 alpha are significantly elevated in SLE. Increased ceruloplasmin levels and decreased transferrin levels in the sera of SLE patients have also been described. The activities of the antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase and the amounts of the antioxidant reduced glutathione are also significantly altered in this disease. In addition, there are significant changes in the essential fatty acid profile in the sera of those affected with the disease. In animal models of the disease, immunization of mice with peptides derived from autoantigens induces SLE like disease. Immunization with an oxidatively modified autoantigen led to the rapid development of autoimmunity compared to immunization with the unmodified autoantigen. Thus, oxidative damage appears to play an important role in SLE pathogenesis.  相似文献   

16.
The present study was designed to investigate the effects of nickel chloride on dietary iron deficiency in rats. The degree of iron deficiency was relatively moderate, but a more generalized anemia occurred in iron deficiency, in absence of nickel chloride. Moderate iron deficiency anemia induced increased lactate-dehydrogenase activity of serum and bone marrow, perhaps related to the decreased production of energy by oxidative means. Nickel chloride, perhaps for its ability to change iron absorption, for the maintenance of bone marrow metabolism and for to increase ceruloplasmin activity, inhibited the alteration on hemoglobin synthesis. Furthermore, nickel chloride possibly for its action on copper content and Cu-Zn superoxide-dismutase activity, inhibits the shortening of the red cell life span, caused by superoxide radicals.  相似文献   

17.
Like superoxide dismutase (SOD), human ceruloplasmin (Cp) scavenges superoxide anion radicals injected into the solution with the aid a high-voltage generator, hydrogen peroxide being the product of reaction. The O2-/H2O2 ratio is close to 2:1. The dismutase activity of Cp is about 1500 times lower than that of Cu, Zn-SOD isolated from human erythrocytes. The dismutation of O2- accomplished by SOD, "free" copper ions, native Cp or partly copper-depleted Cp, is inhibited with equal efficiency by cyanide. All the copper ions of the multicopper catalytic center of Cp are not essentially required for the dismutation of O2-, since the enzyme depleted of all type 2 Cu2+ and partly of type 1 Cu2+ lost none of its dismutase activity. Type 1 copper ions of Cp seem to play the leading role in the one-electron transfer occurring upon dismutation of O2-.  相似文献   

18.
This work tested the hypotheses that splanchnic oxidant generation is important in determining heat tolerance and that inappropriate.NO production may be involved in circulatory dysfunction with heat stroke. We monitored colonic temperature (T(c)), heart rate, mean arterial pressure, and splanchnic blood flow (SBF) in anesthetized rats exposed to 40 degrees C ambient temperature. Heating rate, heating time, and thermal load determined heat tolerance. Portal blood was regularly collected for determination of radical and endotoxin content. Elevating T(c) from 37 to 41.5 degrees C reduced SBF by 40% and stimulated production of the radicals ceruloplasmin, semiquinone, and penta-coordinate iron(II) nitrosyl-heme (heme-.NO). Portal endotoxin concentration rose from 28 to 59 pg/ml (P < 0.05). Compared with heat stress alone, heat plus treatment with the nitric oxide synthase (NOS) antagonist N(omega)-nitro-L-arginine methyl ester (L-NAME) dose dependently depressed heme-.NO production and increased ceruloplasmin and semiquinone levels. L-NAME also significantly reduced lowered SBF, increased portal endotoxin concentration, and reduced heat tolerance (P < 0.05). The NOS II and diamine oxidase antagonist aminoguanidine, the superoxide anion scavenger superoxide dismutase, and the xanthine oxidase antagonist allopurinol slowed the rates of heme-.NO production, decreased ceruloplasmin and semiquinone levels, and preserved SBF. However, only aminoguanidine and allopurinol improved heat tolerance, and only allpourinol eliminated the rise in portal endotoxin content. We conclude that hyperthermia stimulates xanthine oxidase production of reactive oxygen species that activate metals and limit heat tolerance by promoting circulatory and intestinal barrier dysfunction. In addition, intact NOS activity is required for normal stress tolerance, whereas overproduction of.NO may contribute to the nonprogrammed splanchnic dilation that precedes vascular collapse with heat stroke.  相似文献   

19.
The kinetics of decay in absorbance at 610 nm in the reaction of cysteine with ceruloplasmin was biphasic under anaerobic conditions. Admission of oxygen to the bleached ceruloplasmin restored the blue color to about 75 % of the original value. However, under aerobic or anaerobic conditions an initial bleaching corresponded to a 25 % decrease in blue color. This change was irreversible and remained after removal of excess cysteine from the reaction mixture by dialysis. There was no correlation between transient and steady-state kinetic parameters. Circular dichroism measurements showed a characteristic reduction in the negative band at 450 nm, which is specific for type 1b copper. Isolation and further studies on cysteine-modified ceruloplasmin with a lower A610/A280 ratio showed < 10% reduction in enzyme activity toward p-phenylenediamine and o-dianisidine. Evidence is also presented that ceruloplasmin catalyzes the oxidation of cysteine with a one-electron reduction of oxygen and the formation of superoxide ion, which is then converted to H2O2 by ceruloplasmin. The effect of superoxide dismutase and catalase also confirms the presence of superoxide and H2O2. In sum, these data show that a permanent reduction of type 1b copper occurred when cysteine was used as a substrate. We conclude that there is a single electron transfer from cysteine directly to oxygen using one specific copper of ceruloplasmin, type 1b.  相似文献   

20.
Ceruloplasmin (CP) is the major plasma antioxidant and copper transport protein. In a previous study, we showed that the aggregation of human ceruloplasmin was induced by peroxyl radicals. We investigated the effects of antioxidant dipeptides carnosine, homocarnosine and anserine on peroxyl radical-mediated ceruloplasmin modification. Carnosine, homocarnosine and anserine significantly inhibited the aggregation of CP induced by peroxyl radicals. When CP was incubated with peroxyl radicals in the presence of three compounds, ferroxidase activity, as measured by the activity staining method, was protected. All three compounds also inhibited the formation of dityrosine in peroxyl radicals-treated CP. The results suggest that carnosine and related compounds act as peroxyl radical scavenger to protect the protein modification. It is proposed that carnosine and related peptides might be explored as potential therapeutic agents for pathologies that involve CP modification mediated by peroxyl radicals generated in the lipid peroxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号