首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The assembly of individual proteasome subunits into catalytically active mammalian 20S proteasomes is not well understood. Using subunit-specific antibodies, we characterized both precursor and mature proteasome complexes. Antibodies to PSMA4 (C9) immunoprecipitated complexes composed of alpha, precursor beta and processed beta subunits. However, antibodies to PSMA3 (C8) and PSMB9 (LMP2) immunoprecipitated complexes made up of alpha and precursor beta but no processed beta subunits. These complexes possess short half-lives, are enzymatically inactive and their molecular weight is approximately 300 kDa. Radioactivity chases from these complexes into mature, long-lived approximately 700 kDa proteasomes. Therefore, these structures represent precursor proteasomes and are probably made up of two rings: one containing alpha subunits and the other, precursor beta subunits. The assembly of precursor proteasomes occurs in at least two stages, with precursor beta subunits PSMB2 (C7-I), PSMB3 (C10-II), PSMB7 (Z), PSMB9 (LMP2) and PSMB10 (LMP10) being incorporated before others [PSMB1 (C5), PSMB6 (delta), and PSMB8 (LMP7)]. Proteasome maturation (processing of the beta subunits and juxtaposition of the two beta rings) is accompanied by conformational changes in the (outer) alpha rings, and may be inefficient. Finally, interferon-gamma had no significant effect on the half-lives or total amounts of precursor or mature proteasomes.  相似文献   

2.
The comparative analysis of peptidase activities of extra- and intracellular proteasomes was carried out. Here we have shown that excreted proteasomes exhibit higher chymotrypsin-type and lower tripsin-like peptidase activities that cytoplasmic particles. Posttranslational modifications (PTMs) of 20S proteasomal subunits were revealed by immunoblotting techniques. We have observed the difference in PTMs of associated with enzymatic activities subunits beta2, beta5 and beta5 of extracellular and cytoplasmic proteasomes. Proteasomal subunits alpha2, 4, 7 and beta7 also had a variety of PTMs. The phosphorylation level of excreted proteasomes was lower compared to that of the intracellular ones. This observation strongly suggests the involvement of this PTM in the regulation of proteasomes excretion from cells.  相似文献   

3.
The 20S proteasome is a catalytic core of the 26S proteasome, a central enzyme in the degradation of ubiquitin-conjugated proteins. It is composed of 14 distinct gene products that form four stacked rings of seven subunits each, alpha(1-7)beta(1-7)beta(1-7)alpha(1-7). It is reported that the biogenesis of mammalian 20S proteasomes is assisted by proteasome-specific chaperones, named PAC1, PAC2, and hUmp1, but the details are still unknown. Here, we report the identification of a chaperone, designated PAC3, as a component of alpha rings. Although it can intrinsically bind directly to both alpha and beta subunits, PAC3 dissociates before the formation of half-proteasomes, a process coupled with the recruitment of beta subunits and hUmp1. Knockdown of PAC3 impaired alpha ring formation. Further, PAC1/2/3 triple knockdown resulted in the accumulation of disorganized half-proteasomes that are incompetent for dimerization. Our results describe a cooperative system of multiple chaperones involved in the correct assembly of mammalian 20S proteasomes.  相似文献   

4.
Meprin A and B are disulfide-linked, tetrameric metalloendopeptidases in renal brush border membranes. Meprin A contains 90-kDa subunits (alpha subunits) and is expressed in random-bred and some inbred strains of mice. Meprin B contains subunits of 110 kDa (beta subunits) in situ, and the enzyme from C3H mice, a strain that does not express alpha subunits, has been characterized. Evidence from this and previous studies indicate that beta subunits are expressed in all mouse strains. The tetrameric organization of these meprins was examined in brush border membrane fractions from a random-bred strain (ICR) and two inbred strains of mice (C57BL/6 and C3H/He). Lectin blotting using biotinylated concanavalin A revealed that membranes from the random-bred strain contained three oligomeric complexes of approximately 390, 440, and 490 kDa as determined after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in the absence of reducing agents. The subunits in all three oligomers were linked by disulfide bridges. Western blotting using an anti-alpha monoclonal antibody indicated that alpha subunits (90 kDa) were present in the 390- and 440-kDa complexes. Western blotting with a polyclonal antibody specific for beta subunits (110 kDa) indicated the presence of these subunits in the 440- and 490-kDa complexes. Electroelution of the individual oligomers followed by SDS-PAGE under reducing conditions confirmed that the 390- and 490-kDa molecules are homotetramers of alpha and beta subunits, respectively, and that the 440-kDa molecule is a heterotetramer consisting of disulfide-bridged alpha and beta subunits. C57BL/6 mice expressed both alpha and beta subunits and contained tetramers composed of alpha 4 and alpha 2 beta 2. C3H/He mice expressed only the 110-kDa beta subunits and the beta 4 oligomer. This type of multimeric organization of disulfide-linked subunits is unique for the known endopeptidases.  相似文献   

5.
Assembly of mammalian 20 S proteasomes from individual subunits is beginning to be investigated. Proteasomes are made of four heptameric rings in the configuration alpha7beta7beta7alpha7. By using anti-proteasome and anti-subunit-specific antibodies, we characterized the processing and assembly of the beta subunit C5. The C5 precursor (25 kDa) remains as a free non-assembled polypeptide in the cell. The conversion of the C5 precursor to mature C5 (23 kDa) occurs concomitantly with its incorporation into 15 S proteasome intermediate and 20 S mature proteasome complexes. This processing is dependent on proteasome activity and takes place in the cytosol. These results are not fully compatible with the hypothesis that postulates that assembly of proteasomes takes place via a "half-proteasome" intermediate that contains one full alpha-ring and one full beta-ring of unprocessed beta subunit precursors.  相似文献   

6.
Functional cardiac L-type calcium channels are composed of the pore-forming alpha(1C) subunit and the regulatory beta(2) and alpha(2)/delta subunits. To investigate possible developmental changes in calcium channel composition, we examined the temporal expression pattern of alpha(1C) and beta(2) subunits during cardiac ontogeny in mice and rats, using sequence-specific antibodies. Fetal and neonatal hearts showed two size forms of alpha(1C) with 250 and 220 kDa. Quantitative immunoblotting revealed that the rat cardiac 250-kDa alpha(1C) subunit increased about 10-fold from fetal days 12-20 and declined during postnatal maturation, while the 220-kDa alpha(1C) decreased to undetectable levels. The expression profile of the 85-kDa beta(2) subunit was completely different: beta(2) was not detected at fetal day 12, rose in the neonatal stage, and persisted during maturation. Additional beta(2)-stained bands of 100 and 90 kDa were detected in fetal and newborn hearts, suggesting the transient expression of beta(2) subunit variants. Furthermore, two fetal proteins with beta(4) immunoreactivity were identified in rat hearts that declined during prenatal development. In the fetal rat heart, beta(4) gene expression was confirmed by RT-PCR. Cardiac and brain beta(4) mRNA shared the 3 prime region, predicting identical primary sequences between amino acid residues 62-519, diverging however, at the 5 prime portion. The data indicate differential developmental changes in the expression of Ca(2+) channel subunits and suggest a role of fetal alpha(1C) and beta isoforms in the assembly of Ca(2+) channels in immature cardiomyocytes.  相似文献   

7.
We have studied the influence of thyroid hormone status in vivo on expression of the genes encoding guanine nucleotide-binding regulatory protein (G protein) alpha-subunits Gs alpha, Gi alpha(2), Gi alpha(3), and both the 36-kDa form (beta 1) and the 35-kDa form (beta 2) of the beta-subunit in rat ventricle. The relative amounts of immunoactive Gi alpha(2) and Gi alpha(3) were greater in ventricular membranes from hypothyroid animals than from euthyroid animals (1.9- and 2.6-fold, respectively). A corresponding 2.3-fold increase in Gi alpha(2) mRNA was observed as well as a 1.5-fold increase in Gi alpha(3) mRNA. The relative amounts of immunoactive beta 1 and beta 2 polypeptides were also increased (2.8- and 1.8-fold, respectively) in the hypothyroid state and corresponded with comparable increases in the relative levels of beta 1 and beta 2 mRNAs. No difference was seen between the amounts of Gi alpha(2), Gi alpha(3), beta 1, and beta 2 in the euthyroid state and the hyperthyroid state. In contrast to these effects of thyroid hormone status on Gi alpha and beta, the steady-state amounts of Gs alpha protein and mRNA were not altered by thyroid hormone status. Thyroid hormone status did not alter sensitivity of adenylyl cyclase to stimulation by sodium fluoride or guanyl-5'-yl imidodiphosphate (GppNHp), nor did it influence GppNHp-induced inhibition of forskolin-stimulated enzyme activity. These results demonstrate that thyroid hormone status in vivo can regulate expression of specific G protein subunits in rat myocardium. However, the physiological consequences of these changes remain unclear.  相似文献   

8.
The predominant nicotinic acetylcholine receptor (nAChR) expressed in vertebrate brain is a pentamer containing alpha4 and beta2 subunits. In this study we have examined how temperature and the expression of subunit chimeras can influence the efficiency of cell-surface expression of the rat alpha4beta2 nAChR. Functional recombinant alpha4beta2 nAChRs, showing high affinity binding of nicotinic radioligands (K(d) = 41 +/- 22 pM for [(3)H]epibatidine), are expressed in both stably and transiently transfected mammalian cell lines. Despite this, only very low levels of alpha4beta2 nAChRs can be detected on the cell surface of transfected mammalian cells maintained at 37 degrees C. At 30 degrees C, however, cells expressing alpha4beta2 nAChRs show a 12-fold increase in radioligand binding (with no change in affinity), and a 5-fold up-regulation in cell-surface receptors with no increase in total subunit protein. In contrast to "wild-type" alpha4 and beta2 subunits, chimeric nicotinic/serotonergic subunits ("alpha4chi" and "beta2chi") are expressed very efficiently on the cell surface (at 30 degrees C or 37 degrees C), either as hetero-oligomeric complexes (e.g. alpha4chi+beta2 or alpha4chi+beta2chi) or when expressed alone. Compared with alpha4beta2 nAChRs, expression of complexes containing chimeric subunits typically results in up to 20-fold increase in nicotinic radioligand binding sites (with no change in affinity) and a similar increase in cell-surface receptor, despite a similar level of total chimeric and wild-type protein.  相似文献   

9.
The bifunctional reagents para-phenyldimaleimide and maleimidobenzoyl-N-hydroxysuccinimide ester were used to chemically cross-link the subunits of the transducin and cGMP phosphodiesterase (PDE) complexes of bovine rod photoreceptor cells. The cross-linked products were identified by Western immunoblotting using antisera against purified subunits of transducin (T alpha and T beta gamma) and PDE. Oligomeric cross-linked products of transducin subunits as large as (T alpha beta gamma)3 were observed in the latent form of transducin with bound GDP. In addition to the expected T alpha beta and T beta gamma cross-linked products, a (T alpha gamma)2 structure was detected. The close proximity of T alpha and T gamma suggests that T gamma may play a role in conferring the specificity of the interaction between T alpha and rhodopsin. Most of the oligomeric cross-linked structures between T alpha and T beta gamma were diminished in the activated form of transducin, with guanosine 5'-(beta, gamma-imidotriphosphate) (Gpp(NH)p) bound. However, cross-linking between T beta and T gamma was not altered. These results suggest that transducin exists as an oligomer in solution which dissociates upon the binding of Gpp(NH)p. To identify the possible interacting domains between the T alpha, T beta, and T gamma subunits, the cross-linked products were subjected to limited tryptic proteolysis. Several cross-linked tryptic peptides of transducin subunits were found and include the cross-linked products of the N terminus 15-kDa fragment of T beta and the C terminus 5-kDa fragment of T alpha, T gamma and the 12-kDa fragment of T alpha, T gamma and the 15-kDa as well as the 23-kDa fragments of T beta, and an intra-T alpha cross-linked product of the 2- and 21-kDa fragments. These results have allowed the construction of a topographical model for the transducin subunits. The organization of the subunits of PDE (P alpha, P beta, and P gamma) was also studied. The formation of the high molecular size cross-linked products of PDE resulted in the concurrent loss of the P beta and P gamma subunits, suggesting that they are in close proximity. Finally, the interaction between transducin and PDE was examined by chemical cross-linking of transducin-Gpp(NH)p and PDE. Two additional cross-linked products of 180 and 210 kDa were obtained which could be due to the cross-linking of T alpha or T beta with P alpha beta subunits.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Beta 2 subunit propeptides influence cooperative proteasome assembly   总被引:1,自引:0,他引:1  
Vertebrate proteasomes are structurally heterogeneous, consisting of both "constitutive" (or "standard") proteasomes and "immunoproteasomes." Constitutive proteasomes contain three ubiquitously expressed catalytic subunits, Delta (beta 1), Z (beta 2), and X (beta 5), whereas immunoproteasomes contain three interferon-gamma-inducible catalytic subunits, LMP2 (beta 1i), MECL (beta 2i), and LMP7 (beta 5i). We recently have demonstrated that proteasome assembly is biased to promote immunoproteasome homogeneity when both types of catalytic subunits are expressed in the same cell. This cooperative assembly is due in part to differences between the LMP7 (beta 5i) and X (beta 5) propeptides. In the current study we demonstrate that differences between the MECL (beta 2i) and Z (beta2) propeptides also influence cooperative assembly. Specifically, replacing the MECL propeptide with that of Z enables MECL incorporation into otherwise constitutive (Delta(+)/X(+)) proteasomes and facilitates X incorporation into otherwise immunoproteasomes (MECL(+)/LMP2(+)). We also show, using MECL(-/-) mice, that LMP2 incorporation does not require MECL, in contrast with previous suggestions that their incorporation is mutually codependent. These results enable us to refine our model for cooperative proteasome assembly by determining which combinations of inducible and constitutive subunits are favored over others, and we propose a mechanism for how propeptides mediate cooperative assembly.  相似文献   

11.
The molecular basis for binding of alpha-macroglobulin-proteinase complexes to the human two-chain 500/85-kDa (alpha/beta) alpha 2-macroglobulin (alpha 2M) receptor (alpha 2MR)/low density lipoprotein receptor-related protein was analyzed. Ligand blotting experiments showed that a 40-kDa protein, present in the affinity-purified alpha 2MR preparation, is bound to the alpha 2MR alpha-chain and released by heparin. Removal of the 40-kDa protein resulted in a 3-5-fold increase in binding of alpha 2M-trypsin. Nitrocellulose-immobilized pure two-chain alpha 2MR was incubated with human alpha 2M-trypsin, containing four identical subunits, and two monovalent ligands: rat alpha 1-inhibitor-3-chymotrypsin and the 18-kDa receptor binding fragment of the alpha 2M subunit. Binding of alpha 2M-trypsin to the alpha-chain of immobilized alpha 2MR was composed of a high (Kd = 40 pM at 4 degrees C) and a low (Kd = 2 nM) affinity component. alpha 1-Inhibitor-3-chymotrypsin bound to the same sites but with one component (Kd = 0.4 nM). Competition-inhibition experiments and dissociation experiments, using ligands with different valences, as well as experiments with alpha 2MR immobilized at different densities, led to the following model. The low (Kd = 2 nM) affinity of alpha 2M-proteinase is prevalent when only one of the four domains binds to alpha 2MR, i.e. when the receptor density is low or when neighboring receptors are occupied. The high (Kd = 40 pM) affinity is achieved by binding of at least two domains to adjacent receptors.  相似文献   

12.
Regulation of proteasome complexes by gamma-interferon and phosphorylation   总被引:7,自引:0,他引:7  
Rivett AJ  Bose S  Brooks P  Broadfoot KI 《Biochimie》2001,83(3-4):363-366
Proteasomes play a major role in non-lysosomal proteolysis and also in the processing of proteins for presentation by the MHC class I pathway. In animal cells they exist in several distinct molecular forms which contribute to the different functions. 26S proteasomes contain the core 20S proteasome together with two 19S regulatory complexes. Alternatively, PA28 complexes can bind to the ends of the 20S proteasome to form PA28-proteasome complexes and PA28-proteasome-19S hybrid complexes have also been described. Immunoproteasome subunits occur in 26S proteasomes as well as in PA28-proteasome complexes. We have found differences in the subcellular distribution of the different forms of proteasomes. The gamma-interferon inducible PA28 alpha and beta subunits are predominantly located in the cytoplasm, while 19S regulatory complexes (present at significant levels only in 26S complexes) are present in the nucleus as well as in the cytoplasm. Immunoproteasomes are greatly enriched at the endoplasmic reticulum (ER) where they may facilitate the generation of peptides for transport into the lumen of the ER. We have also investigated the effects of gamma-interferon on the levels and subcellular distribution of inducible subunits and regulator subunits. In each case gamma-interferon was found to increase the level but not to alter the distribution. Several subunits of proteasomes are phosphorylated including alpha subunits C8 (alpha7) and C9 (alpha3), and ATPase subunit S4 (rpt2). Our studies have shown that gamma-interferon treatment decreases the level of phosphorylation of proteasomes. We have investigated the role of phosphorylation of C8 by casein kinase II by site directed mutagenesis. The results demonstrate that phosphorylation at either one of the two sites is essential for the association of 19S regulatory complexes and that the ability to undergo phosphorylation at both sites gives the most efficient incorporation of C8 into the 26S proteasome.  相似文献   

13.
Kinesin undergoes a 9 S to 6 S conformational transition.   总被引:6,自引:0,他引:6  
Addition of NaCl or KCl in the presence of 50 nM ATP induces a shift in the sedimentation coefficient (apparent S20,w) of kinesin from 9.4 S at low ionic strength to 6.5 S at high ionic strength. The midpoint for the transition occurs at ionic strength values of 0.39, 0.25, and 0.18 for pH values of 6.3, 6.9, and 8.3, respectively. Gel filtration experiments indicate that the transition to the 6.5 S species is accompanied by a decrease in the diffusion coefficient. Under all conditions which were tested, the 64-kDa beta subunits comigrate with the 120-kDa alpha subunits without any evidence for dissociation of the alpha 2 beta 2 complex. These results are consistent with the change in sedimentation coefficient being due to a conformational transition between a folded form at low ionic strength and an extended form at high ionic strength. This conformational transition is not significantly affected by the nature of the nucleotide bound at the active site since similar results are obtained both in the presence of excess EDTA, which removes the bound ADP, and after replacement of the bound ADP with adenosine 5'-(beta,gamma-imino)triphosphate. The alpha 2 form of kinesin, which lacks the beta subunits, undergoes a similar transition between a 6.7 S form at low ionic strength and a 5.1 S form at high ionic strength with a midpoint for the transition at an ionic strength of 0.5 at pH 6.9. Electron microscopic observation also indicates a transition between a folded conformation at low ionic strength and an extended conformation at high ionic strength for both the alpha 2 beta 2 and alpha 2 species.  相似文献   

14.
Expression of urinary-type plasminogen activator (uPA) and its receptor (uPAR) is correlated with matrix proteolysis, cell adhesion, motility, and invasion. To evaluate the functional link between adhesion and proteolysis in gingival keratinocytes (pp126), cells were treated with immobilized integrin antibodies to induce integrin clustering. Clustering of alpha(3) and beta(1) integrin subunits, but not alpha(2), alpha(5), alpha(6), or beta(4), enhanced uPA secretion. Bead-immobilized laminin-5 and collagen I, two major alpha(3)beta(1) ligands, also induced uPA expression. Coordinate regulation of the serpin plasminogen activator inhibitor 1 was also apparent; however, a net increase in uPA activity was predominant. alpha(3)beta(1) integrin clustering induced extracellular signal-regulated kinase 1/2 phosphorylation, and both uPA induction and extracellular signal-regulated kinase activation were blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor PD98059. Integrin aggregation also promoted a dramatic redistribution of uPAR on the cell surface to sites of clustered alpha(3)beta(1) integrins. Co-immunoprecipitation of beta(1) integrin with uPAR provided further evidence that protein-protein interactions between uPAR and beta(1) integrin control uPAR distribution. As a functional consequence of uPA up-regulation and uPA-mediated plasminogen activation, the globular domain of the laminin-5 alpha(3) subunit, a major pp126 matrix protein, was proteolytically processed from a 190-kDa form to a 160-kDa species. Laminin-5 containing the 160-kDa alpha(3) subunit efficiently nucleates hemidesmosome formation and reduces cell motility. Together, these data suggest that multivalent aggregation of the alpha(3)beta(1) integrin regulates proteinase expression, matrix proteolysis, and subsequent cellular behavior.  相似文献   

15.
The structure of the mammalian 20S proteasome at 2.75 A resolution   总被引:12,自引:0,他引:12  
The 20S proteasome is the catalytic portion of the 26S proteasome. Constitutively expressed mammalian 20S proteasomes have three active subunits, beta 1, beta 2, and beta 5, which are replaced in the immunoproteasome by interferon-gamma-inducible subunits beta 1i, beta 2i, and beta 5i, respectively. Here we determined the crystal structure of the bovine 20S proteasome at 2.75 A resolution. The structures of alpha 2, beta 1, beta 5, beta 6, and beta 7 subunits of the bovine enzyme were different from the yeast enzyme but enabled the bovine proteasome to accommodate either the constitutive or the inducible subunits. A novel N-terminal nucleophile hydrolase activity was proposed for the beta 7 subunit. We also determined the site of the nuclear localization signals in the molecule. A model of the immunoproteasome was predicted from this constitutive structure.  相似文献   

16.
The human NAD-dependent isocitrate dehydrogenase (IDH), with three types of subunits present in the ratio of 2alpha:1beta:1gamma, requires a divalent metal ion to catalyze the oxidative decarboxylation of isocitrate. With the aim of identifying ligands of the enzyme-bound Mn(2+), we mutated aspartates on the alpha, beta, or gamma subunits. Mutagenesis target sites were based on crystal structures of metal-isocitrate complexes of Escherichia coli and pig mitochondrial NADP-IDH and sequence alignments. Aspartates replaced by asparagine or cysteine were 206, 230, and 234 of the alpha subunit and those corresponding to alpha-Asp-206: 217 of the beta subunit and 215 of the gamma subunit. Each expressed, purified mutant enzyme has two wild-type subunits and one subunit with a single mutation. Specific activities of WT, alpha-D206N, alpha-D230C, alpha-D234C, beta-D217N, and gamma-D215N enzymes are 22, 29, 1.4, 0.2, 7.3 and 3.7 micromol of NADH/min/mg, respectively, whereas alpha-D230N and alpha-D234N enzymes showed no activity. The K(m,Mn(2+)) for alpha-D230C and gamma-D215N are increased 32- and 100-fold, respectively, along with elevations in K(m,isocitrate). The K(m,NAD) of alpha-D230C is increased 16-fold, whereas that of beta-D217N is elevated 10-fold. For all the mutants K(m,isocitrate) is decreased by ADP, indicating that these aspartates are not needed for normal ADP activation. This study demonstrates that alpha-Asp-230 and alpha-Asp-234 are critical for catalytic activity, but alpha-Asp-206 is not needed; alpha-Asp-230 and gamma-Asp-215 may interact directly with the Mn(2+); and alpha-Asp-230 and beta-Asp-217 contribute to the affinity of the enzyme for NAD. These results suggest that the active sites of the human NAD-IDH are shared between alpha and gamma subunits and between alpha and beta subunits.  相似文献   

17.
The effect of uremia on renal cortex cytoplasmic proteasomes was examined by comparing proteasomes isolated from 5/6th nephrectomy rats 3-months post-surgery and age-matched control rats with normal renal function. ATP-dependent proteasome activity was reduced 50% in chronic renal failure rats (CRF) 3-months post-surgery compared to age-matched control rats. Trypsin-like (T-like) proteasome activity was decreased 90% compared to 70% for caspase-like activity (PGPHase) and 30% for chymotrypsin-like activity (C-like). ATP-independent proteasome activity was decreased 60% in CRF rats 3-months post-surgery. ATP-independent renal cortex proteasome T-like activity in CRF rats was 4% of age-matched control rats. C-like and PGPHase activities were 60% and 50% of age-matched controls, respectively. Uremia was associated with decreased 26S proteasome beta subunits. CRF rat 26S proteasomes had decreased levels of beta1, beta3, alpha4, and alpha7 abundances. Compared to age-matched control rats with normal renal function, CRF rats had a 25% increase in ubiquitinated cytoplasmic proteins. Decreased renal cytoplasmic proteasome activity may play a role in renal tubule hypertrophy common to renal diseases associated with decreased functioning nephrons.  相似文献   

18.
Subtypes of insulin-growth factor I (IGF-I) receptors, including hybrid receptors containing insulin receptor alpha beta dimers associated with IGF-I receptor alpha beta dimers, have been described in a number of systems. The molecular basis of the multiple subtypes and their functional significance is not understood. Ligand-dependent phosphorylation of insulin and IGF-I receptors and immunoprecipitation with antipeptide and monoclonal antibodies have been used to characterize the subpopulations of these receptors in the human KB cell line. IGF-I receptors exhibit beta subunits of 95 and 102 kDa in these cells. IGF-I receptors containing 102-kDa beta subunits are immunoprecipitated by the IGF-I receptor-specific antibody alpha-IR3. Antibody alpha-IR3 does not appear to recognize a hybrid receptor in these cells. However, an antipeptide antibody against the carboxyl-terminal domain of the insulin receptor (AbP5) immunoprecipitates a population of receptors phosphorylated in response to IGF-I (1 nM) which contains both 95- and 102-kDa beta subunits. These receptors must be hybrid complexes because AbP5 does not recognize the 102-kDa beta subunit directly. The inability of antibody alpha-IR3 to recognize these complexes suggests that their IGF-I receptor alpha subunits must differ from typical IGF-I receptor alpha subunits either in primary sequence or conformation. Therefore, KB cells may contain more than one type of IGF-I receptor alpha subunit. Hybrid IGF-I receptors can also be distinguished from homotypic IGF-I receptors by their responsiveness to IGF-II. Stimulation of autophosphorylation in hybrid IGF-I receptors by IGF-I is 3-4-fold greater than that seen in response to IGF-II. In contrast, IGF-I and IGF-II are nearly equipotent in stimulating autophosphorylation in the alpha-IR3-reactive receptor population. This suggests the existence of functionally distinct receptor subtypes which may differ in their ability to mediate the biological effects of IGF-II.  相似文献   

19.
N(alpha)-acetylation, catalyzed co-translationally with N(alpha)-acetyltransferase (NAT), is the most common modifications of eukaryotic proteins. In yeast, there are at least three NATs: NAT1, MAK3, and NAT3. The 20 S proteasome subunits were purified from the normal strain and each of the deletion mutants, nat1, mak3, and nat3. The electrophoretic mobility of these subunits was compared by two-dimensional gel electrophoresis. Shifts toward the alkaline side of the gel and unblocking of the N terminus of certain of the subunits in one or another of the mutants indicated that the alpha1, alpha2, alpha3, alpha4, alpha7, and beta3 subunits were acetylated with NAT1, the alpha5 and alpha6 subunits were acetylated with MAK3, and the beta4 subunit was acetylated with NAT3. Furthermore, the Ac-Met-Phe-Leu and Ac-Met-Phe-Arg termini of the alpha5 and alpha6 subunits, respectively, extended the known types of MAK3 substrates. Thus, nine subunits were N (alpha)-acetylated, whereas the remaining five were processed, resulting in the loss of the N-terminal region. The 20 S proteasomes derived from either the nat1 mutant or the normal strain were similar in respect to chymotrypsin-like, trypsin-like, and peptidylglutamyl peptide hydrolyzing activities in vitro, suggesting that N(alpha)-acetylation does not play a major functional role in these activities. However, the chymotrypsin-like activity in the absence of sodium dodecyl sulfate was slightly higher in the nat1 mutant than in the normal strain.  相似文献   

20.
The association kinetics of CO binding to site-directed mutants of human deoxyhemoglobin were measured by stopped-flow rapid mixing techniques at pH 7.0, 20 degrees C. Hemoglobin tetramers were constructed from one set of native subunits and one set of mutated partners containing His(E7) to Gly, Val(E11) to Ala, or Val(E11) to Ile substitutions. The reactivity of beta Cys93 with p-hydroxymercuribenzoate was measured to ensure that the mutant deoxyhemoglobins were capable of forming T-state quaternary conformations. Time courses for the complete binding of CO were measured by mixing the deoxygenated proteins with a 5-fold excess of ligand in the absence and presence of inositol hexaphosphate. Association rate constants for the individual alpha and beta subunits in the T-state conformation were assigned by measuring time courses for the reaction of a small, limiting amount of CO with a 20-fold excess of deoxyhemoglobin (i.e. Hb4 + CO----Hb4(CO)). The effects of the E7 and E11 mutations in T-state alpha subunits were qualitatively similar to those observed for the same subunit in the R-state (Mathews, A.J., Rohlfs, R.J., Olson, J.S., Tame, J., Renaud, J-P., and Nagai, K. (1989) J. Biol. Chem. 264, 16573-16583). The alpha His58(E7) to Gly and Val62(E11) to Ala substitutions caused 80- and 3-fold increases, respectively, in k'CO for T-state alpha subunits, and the alpha Val62(E11) to Ile mutation caused a 3-fold decrease. The beta His63(E7) to Gly and Val67(E11) to Ala substitutions produced 70- and 8-fold increases, respectively, in k'CO for T-state beta subunits whereas these same mutations caused little effect on the rate of CO binding to R-state beta subunits. The beta Val67(E11) to Ile mutation produced the same large effect, a 23-fold reduction in k'CO, in both quaternary conformations of beta subunits. These kinetic results can be interpreted qualitatively in terms of differences between the alpha and beta subunits in the deoxy and liganded crystal structures of human hemoglobin (Perutz, M.F. (1990) Annu. Rev. Physiol. 52, 1-25). Both the structural and functional data suggest that the distal portion of the beta heme pocket is tightly packed in deoxyhemoglobin whereas the CO binding site in R-state beta subunits is much more open. In contrast, the distal portion of the alpha heme pocket is restricted sterically in both quaternary states.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号