首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Summary MicropropagatedRosa hybrida plantlets were simultaneously rooted and acclimatized under 100 and 200 μmol m−2 s−1 light for 2 wk. At the end of the first week of acclimatization, the plantlets were transferred onto a low water potential medium (from −0.06 MPa to −0.3 MPa). Dry weight was decreased by increased hight and low water potential. Photoinhibition of photosynthesis, expressed as a decrease in Fv/Fm ratio and ΦPSII and an increase in 1 −qp, occurred in plants grown under 200 μmol m−2 s−1. When high light (200 μmol m−2 s−1) and water stress were applied simultaneously, their effects on chlorophyll fluorescence parameters depended on stress duration; after 1 d of water stress, photoinhibition was more pronounced; after 7 d of stress, Fv/Fm ratio and ΦPSII were higher than after 1 d of stress; photoinhibition was reduced. This suggests that after a 1-d stress, the effect of water stress alone included a superimposed effect of photoinhibition to which the water-stressed plants were sensitized; after 7 d, plantlets had adapted to water stress. The photoprotective effects under high light might result in energy dissipative mechanisms linked to photochemical and nonphotochemical quenching other than CO2 fixation.  相似文献   

2.
The photon use efficiencies and maximal rates of photosynthesis in Dunaliella salina (Chlorophyta) cultures acclimated to different light intensities were investigated. Batch cultures were grown to the mid-exponential phase under continuous low-light (LL: 100 μmol photon m-2 s-1) or high-light (HL: 2000 μmol photon m-2 s-1) conditions. Under LL, cells were normally pigmented (deep green) containing ∼500 chlorophyll (Chl) molecules per photosystem II (PSII) unit and ∼250 Chl molecules per photosystem I (PSI). HL-grown cells were yellow-green, contained only 60 Chl per PSII and 100 Chl per PSI and showed signs of chronic photoinhibition, i.e., accumulation of photodamaged PSII reaction centers in the chloroplast thylakoids. In LL-grown cells, photosynthesis saturated at ∼200 μmol photon m-2 s-1 with a rate (Pmax) of ∼100 mmol O2 (mol Chl)-1 s-1. In HL-grown cells, photosynthesis saturated at much higher light intensities, i.e. ∼2500 μmol photon m-2 s-1, and exhibited a three-fold higher Pmax (∼300 mmol O2 (mol Chl)-1 s-1) than the normally pigmented LL-grown cells. Recovery of the HL-grown cells from photoinhibition, occurring prior to a light-harvesting Chl antenna size increase, enhanced Pmax to ∼675 mmol O2 (mol Chl)-1 s-1. Extrapolation of these results to outdoor mass culture conditions suggested that algal strains with small Chl antenna size could exhibit 2–3 times higher productivities than currently achieved with normally pigmented cells. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

4.
Summary Temporary immersion bioreactors are an efficient tool for plant mass propagation because they increase multiplication rate and plant quality. Little knowledge is available on the ecosystem and physiological behavior of plantlets when using this new culture technique. In order to evaluate the effects of the conditions on physiological change of pineapple plantlets, a factorial experiment was conducted, where axillary clusters were cultured under two levels of photosynthetic photon flux (PPF): 30 μmol m−2s−1 (low) and 225 μmol m−2s−1 (high), using two culture methods (conventional micropropagation in liquid medium and a temporary immersion bioreactor) during the elongation phase. CO2 concentration in the headspace volume container was measured during a whole cycle of temporary immersion (3h). At the time before the next immersion period, the levels of CO2 increased significantly to 14171 μmol mol−1 at high PPF. The maximal photosynthetic rate as well as the maximum quantum yield of photosystem II were low for plantlets cultivated in the femporary immersion bioreactor at high PPF. However, these plantlets showed large increases in sugar and nitrogen uptake and also increases in dry weight and foliar area. These results indicate that shoot growth did not totally depend on the photosynthesis process. In vitro pineapple plantlets appeared to use more nutrients in the culture medium than those from photosynthesis. In summary, temporary immersion bioreactor-derived plantlets showed remarkable nutrient uptake, indicating a higher photo-mixotrophic metabolism.  相似文献   

5.
Photosynthetic properties of carnivorous plants have not been well characterized and the extent to which photosynthesis contributes to carbon gain in most carnivorous plants is also largely unknown. We investigated the photosynthetic light response in three carnivorous plant species, Drosera rotundifolia L. (sundew; circumpolar and native to northern British Columbia, Canada), Sarracenia leucophylla Rafin. (‘pitcher-plant’; S.E. United States), and D. capensis L. (sundew; Cape Peninsula, South Africa), using portable gas-exchange systems to explore the capacity for photosynthetic carbon gain in carnivorous plant species. Maximal photosynthetic rates (1.32–2.22 μmol m−2 s−1 on a leaf area basis) and saturating light intensities (100 to 200 μmol PAR m−2 s−1) were both low in all species and comparable to shade plants. Field or greenhouse-grown D. rotundifolia had the highest rates of photosynthesis among the three species examined. Dark respiration, ranging from −1.44 (S. leucophylla) to −3.32 (D. rotundifolia) μmol m−2 s−1 was high in comparison to photosynthesis in the species examined. Across greenhouse-grown plants, photosynthetic light compensation points scaled with light-saturated photosynthetic rates. An analysis of gas-exchange and growth data for greenhouse-grown D. capensis plants suggests that photosynthesis can account for all plant carbon gain in this species.  相似文献   

6.
Summary In vitro banana (Musa spp.) shoots were cultured under photomixotrophic (30 gl−1 sucrose and 0.2 h−1 number of air exchanges of culture vessels) and photoautotrophic (0 gl−1 sucrose and 3.9 h−1 number of air exchanges) conditions for 28 d in 370 cm3 Magenta boxes (GA7-type) containing 70 ml of half-strength Murashige and Skoog (MS) medium with 22.2 μM N6-benzyladenine (BA). The effects of varying CO2 concentration (475 or 1340 μmol mol−1) and light intensity (photosynthetic photon flux (PPF) of 100 or 200 μmol m−2 s−1) were investigated. Fresh and dry weights of banana shoots grown photomixotrophically were significantly greater on day 28 than those grown photoautotrophically. Photoautorophic shoots had a larger number of unfolded leaves and greater leaf area than photomixotrophic plants by days 14 and 28, regardless of CO2 concentration. The shoot fresh and dry weights on day 14 in photoautotrophic conditions were significantly greater at PPF of 200 μmol m−2 s−1 than at 100 μmol m−2 s−1. The increase in net photosynthetic rate of photoautotrophic banana shoots was significant compared with photomixotrophic shoots. The multiplication ratio of in vitro banana shoots grown photoautotrophically in a 28-d culture period was the greatest at 100 μmol m−2 s−1 PPF and 475 μmol mol−1 CO2.  相似文献   

7.
This work describes the long-term acclimation of the halotolerant microalga Dunaliella viridis to different photon irradiance, ranging from darkness to 1500 μmol m−2 s−1. In order to assess the effects of long-term photoinhibition, changes in oxygen production rate, pigment composition, xanthophyll cycle and in vivo chlorophyll fluorescence using the saturating pulse method were measured. Growth rate was maximal at intermediate irradiance (250 and 700 μmol m−2 s−1). The increase in growth irradiance from 700 to 1500 μmol m−2 s−1 did not lead to further significant changes in pigment composition or EPS, indicating saturation in the pigment response to high light. Changes in Photosystem II optimum quantum yield (Fv/Fm) evidenced photoinhibition at 700 and especially at 1500 μmol m−2 s−1. The relation between photosynthetic electron flow rate and photosyntetic O2 evolution was linear for cultures in darkness shifting to curvilinear as growth irradiance increased, suggesting the interference of the energy dissipation processes in oxygen evolution. Carbon assimilation efficiencies were studied in relation to changes in growth rate, internal carbon and nitrogen composition, and organic carbon released to the external medium. All illuminated cultures showed a high capability to maintain a C:N ratio between 6 and 7. The percentage of organic carbon released to the external medium increased to its maximum under high irradiance (1500 μmol m−2 s−1). These results suggest that the release of organic carbon could act as a secondary dissipation process when the xanthophyll cycle is saturated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Zhang Z  Jia Y  Gao H  Zhang L  Li H  Meng Q 《Planta》2011,234(5):883-889
By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m−2 s−1) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m−2 s−1) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F v/F m) and the content of active P700 (ΔI/I o) significantly decreased after chilling treatment under 200 μmol m−2 s−1 light. After the leaves were transferred to 25°C, F v/F m recovered quickly under both 200 and 15 μmol m−2 s−1 light. ΔI/I o recovered quickly under 15 μmol m−2 s−1 light, but the recovery rate of ΔI/I o was slower than that of F v/F m. The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I o was severely suppressed by 200 μmol m−2 s−1 light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.  相似文献   

9.
Photosynthetic Response of Carrots to Varying Irradiances   总被引:7,自引:3,他引:4  
Kyei-Boahen  S.  Lada  R.  Astatkie  T.  Gordon  R.  Caldwell  C. 《Photosynthetica》2003,41(2):301-305
Response to irradiance of leaf net photosynthetic rates (P N) of four carrot cultivars: Cascade, Caro Choice (CC), Oranza, and Red Core Chantenay (RCC) were examined in a controlled environment. Gas exchange measurements were conducted at photosynthetic active radiation (PAR) from 100 to 1 000 μmol m−2 s−1 at 20 °C and 350 μmol (CO2) mol−1(air). The values of P N were fitted to a rectangular hyperbolic nonlinear regression model. P N for all cultivars increased similarly with increasing PAR but Cascade and Oranza generally had higher P N than CC. None of the cultivars reached saturation at 1 000 μmol m−2 s−1. The predicted P N at saturation (P Nmax) for Cascade, CC, Oranza, and RCC were 19.78, 16.40, 19.79, and 18.11 μmol (CO2) m−2 s−1, respectively. The compensation irradiance (I c) occurred at 54 μmol m−2 s−1 for Cascade, 36 μmol m−2 s−1 for CC, 45 μmol m−2 s−1 for Oranza, and 25 μmol m−2 s−1 for RCC. The quantum yield among the cultivars ranged between 0.057–0.033 mol(CO2) mol−1(PAR) and did not differ. Dark respiration varied from 2.66 μmol m−2 s−1 for Cascade to 0.85 μmol m−2 s−1 for RCC. As P N increased with PAR, intercellular CO2 decreased in a non-linear manner. Increasing PAR increased stomatal conductance and transpiration rate to a peak between 600 and 800 μmol m−2 s−1 followed by a steep decline resulting in sharp increases in water use efficiency. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The activity of 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (DS-Mn, DS-Co), phenylalanine ammonia-lyase (PAL), and chalcone synthase (CHS) was monitored at various light intensities (dark, 8.88 μmol m−2 s−1, 88.8 μmol m−2 s−1) using a strawberry cell suspension culture. DS-Mn, PAL, and CHS were found to increase significantly (p>0.05) under light intensitie of 88.8 μmol m−2 s−1 compared to those of 8.88 μmol m−2 s−1 and dark. The activity of DS-Mn, PAL, and CHS were maximum at 88.8 μmol m−2 s−1. Anthocyanin content reached a maximum after 48–60 h of culturing at 88.8 μmol m−2 s−1. DS-Co showed greater activity than DS-Mn during cell culturing, but showed no correlation with anthocyanin production and light intensity. The CHS gene expression was continuous at a light intensity of 88.8 μmol m−2 s−1. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
Light irradiation had remarkable effects on callus growth of Oldenlandia affinis with an optimum intensity of 35 μmol m−2 s−1. Biosynthesis of kalata B1, the main cyclic peptide in O. affinis, was induced and triggered with rising irradiation intensities. The highest concentration of kalata B1, 0.49 mg g−1 DW characterised by the maximum productivity of 3.88 μg per litre and day was analysed at 120 μmol m−2 s−1, although callus growth was repressed. The light saturation point was established to be 35 μmol m−2 s−1, where kalata B1 productivity was in a similar order (3.41 μg per day) due to the higher growth index. O. affinis suspension cultures were shown to accumulate comparable specific kalata B1 concentrations in a delayed growth associated production pattern. These were dependent on irradiation intensity (0.16 mg g−1 at 2 μmol m−2 s−1; 0.28 mg g−1 at 35 μmol m−2 s−1). The batch cultivation process resulted in a maximum productivity of 27.30 μg per litre and day with culture doubling times of 1.16 d−1. Submers operation represented a 8-fold product enhancement compared to callus cultivation.  相似文献   

12.
The relationship between O2-based gross photosynthesis (GP) and in vivo chlorophyll fluorescence of Photosystem II-based electron transport rate (ETR) as well as the relationship between effective quantum yield of fluorescence (ΦPSII) and quantum yield of oxygen evolution (ΦO_2) were examined in the green algae Ulva rotundata and Ulva olivascens and the red alga Porphyra leucosticta collected from the field and incubated for 3 days at 100 μmol m−2 s−1 in nutrient enriched seawater. Maximal GP was twice as high in Ulva species than that measured in P. leucosticta. In all species ETR was saturated at much higher irradiance than GP. The initial slope of ETR versus absorbed irradiance was higher than that of GP versus absorbed irradiance. Only under absorbed irradiances below saturation or at values of GP <2 μmol O2 m−2 s−1 a linear relationship was observed. In the linear phase, calculated O2 evolved /ETR molar ratios were closed to the theoretical value of 0.25 in Ulva species. In P. leucosticta, the estimated GP was associated to the estimated ETR only at high irradiances. ETR was determined under white light, red light emitting by diodes and solar radiation. In Ulva species the maximal ETR was reached under red light and solar radiation whereas in P. leucosticta the maximal ETR was reached under white light and minimal under red light. These results are in agreement with the known action spectra for photosynthesis in these species. In the case of P. leucosticta, GP and ETR were additionally determined under saturating irradiance in algae pre-incubated for one week under white light at different irradiances and at white light (100 μmol m−2 s−1) enriched with far-red light. GP and growth rate increased at a growth irradiance of 500 μmol m−2 s−1 becoming photoinhibited at higher irradiances, while ETR increased when algae were exposed to the highest growth irradiance applied (2000 μmol m−2 s−1). The calculated O2 evolved /ETR molar ratios were close to the theoretical value of 0.25 when algae were pre-incubated under 500–1000 μmol m−2 s−1. The enrichment by FR light provoked a decrease in both GP and ETR and an increase of nonphotochemical quenching although the irradiance of PAR was maintained at a constant level. In addition to C assimilation, other electron sinks, such as nitrogen assimilation, affected the GP–ETR relationship. The slopes of GP versus ETR or ΦPSII versus ΦO_2 were lower in the algae with the highest N assimilation capacity, estimated as nitrate reductase activity and internal nitrogen contents, i.e., Ulva rotundata and Porphyra leucosticta, than that observed in U. olivascens. The possible mechanisms to explain this discrepancy between GP and ETR are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

14.
The purpose of this study was to clarify effects of anthocyanins on photosynthesis and photoinhibition in green and red leaves of Oxalis triangularis. Gas analysis indicated that green plants had the highest apparent quantum yield for CO2 assimilation [0.051 vs. 0.031 μmol(CO2) μmol−1(photon)] and the highest maximum photosynthesis [10.07 vs. 7.24 μmol(CO2) m−2 s−1], while fluorescence measurements indicated that red plants had the highest PSII quantum yield [0.200 vs. 0.143 μmol(e) μmol−1(photon)] and ETRmax [66.27 vs. 44.34 μmol(e) m−2 s−1]. Red plants had high contents of anthocyanins [20.11 mg g−1(DM)], while green plants had low and undetectable levels of anthocyanin. Red plants also had statistically significantly (0.05>p>0.01) lower contents of xanthophyll cycle components [0.63 vs. 0.76 mg g−1(DM)] and higher activities of the reactive oxygen scavenging enzyme ascorbate peroxidase [41.2 vs. 10.0 nkat g−1(DM)]. Anthocyanins act as a sunscreen, protecting the chloroplasts from high light intensities. This shading effect causes a lower photosynthetic CO2 assimilation in red plants compared to green plants, but a higher quantum efficiency of photosystem II (PSII). Anthocyanins contribute to photoprotection, compensating for lower xanthophyll content in red plants, and red plants are less photoinhibited than green plants, as illustrated by the Fv/Fm ratio.  相似文献   

15.
In vitro regenerated shoots of Spathiphyllum from bioreactor were hydroponically cultured for 30 days. The response of plant growth and photosynthesis to different substrates, photosynthetic photon flux (PPF), nutrient scheduling and electrical conductivity (EC) of hydroponic solution were studied. The best plant growth response was observed in perlite based substrates with moderate PFF (70–100μmol m−2 s−1). Highest fresh weight, dry weight, shoot length, root length, root number and photosynthetic characteristics (chlorophyll, carotenoids and Fv/Fm) was observed in continuous immersion system. Plant growth responses, photosynthetic rate, stomatal conductance and transpiration rate were also found to be affected by EC levels. The optimum EC of a balanced nutrient solution was recorded as 1.2 dS m−1. Photosynthetic activity was also characterized in terms of photochemical efficiency using measurements of chlorophyll fluorescence. Fv/Fm (it is a measure of the intrinsic or maximum efficiency of PSII i.e. the quantum efficiency if all PSII centers were open) also decreased significantly in plants grown under higher EC level; a decrease in this parameter indicates down regulation of photosynthesis or photoinhibition. Antioxidant defense enzymes such as catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), glutathione reductase (GR) and monodehydroascorbate reductase (MDHAR) significantly elevated in the leaves and roots of plantlets at higher EC levels. This increase could reflect a defense response to the cellular damage provoked by higher EC levels in the nutrient solution.  相似文献   

16.
Exposure of winter rye leaves grown at 20°C and an irradiance of either 50 or 250 μmol m−2 s−1 to high light stress (1600 μmol m−2 s−1, 4 h) at 5°C resulted in photoinhibition of PSI measured in vivo as a 34% and 31% decrease in ΔA820/A820 (P700+). The same effect was registered in plants grown at 5°C and 50 μmol m−2 s−1. This was accompanied by a parallel degradation of the PsaA/PsaB heterodimer, increase of the intersystem e pool size as well as inhibition of PSII photochemistry measured as Fv/Fm. Surprisingly, plants acclimated to high light (800 μmol m−2 s−1) or to 5°C and moderate light (250 μmol m−2 s−1) were fully resistant to photoinhibition of PSI and did not exhibit any measurable changes at the level of PSI heterodimer abundance and intersystem e pool size, although PSII photochemistry was reduced to 66% and 64% respectively. Thus, we show for the first time that PSI, unlike PSII, becomes completely resistant to photoinhibition when plants are acclimated to either 20°C/800 μmol m−2 s−1 or 5°C/250 μmol m−2 s−1 as a response to growth at elevated excitation pressure. The role of temperature/light dependent acclimation in the induction of selective tolerance to PSI photoinactivation is discussed.  相似文献   

17.
Maximum quantum yields (QY) of photosynthetic electron flows through PSI and PSII were separately assessed in thylakoid membranes isolated from leaves of Cucumis sativus L. (cucumber) that had been chilled in various ways. The QY(PSI) in the thylakoids prepared from the leaves treated at 4° C in moderate light at 220 mol quanta·m–2·s–1 (400–700 nm) for 5 h, was about 20–30% of that in the thylakoids prepared from untreated leaves, while QY(PSII) decreased, at most, by 20% in response to the same treatment. The decrease in QY(PSI) was observed only when the leaves were chilled at temperatures below 10° C, while such a marked temperature dependency was not observed for the decrease in QY(PSII). In the chilling treatment at 4° C for 5 h, the quantum flux density that was required to induce 50% loss of QY (PSI) was ca. 50 umol quanta·m–2·s–1. When the chilling treatment at 4° C in the light was conducted in an atmosphere of N2, photoinhibition of PSI was largely suppressed, while the damage to PSII was somewhat enhanced. The ferricyanide-oxidised minus ascorbate-reduced difference spectra and the light-induced absorbance changes at 700 nm obtained with the thylakoid suspension, indicated the loss of P700 to extents that corresponded to the decreases in QY(PSI). Accordingly, the decreases in QY(PSI) can largely be attributed to destruction of the PSI reaction centre itself. These results clearly show that, at least in cucumber, a typical chillingsensitive plant, PSI is much more susceptible to aerobic photoinhibition than PSII.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - P700 primary electron donor of PSI - PPFD photosynthetically active photon flux density - QY quantum yield We are grateful to invaluable comments by Prof. S. Katoh, K. Hikosaka and the members of our laboratory. We also thank A. Aoyama for technical assistance. This work was partly supported by the grants from the Ministry of Education, Science, and Culture, Japan, to I. Terashima (#03740342 and #04640621).  相似文献   

18.
Tropical plants are sensitive to chilling temperatures above zero but it is still unclear whether photosystem I (PSI) or photosystem II (PSII) of tropical plants is mainly affected by chilling temperatures. In this study, the effect of 4°C associated with various light densities on PSII and PSI was studied in the potted seedlings of four tropical evergreen tree species grown in an open field, Khaya ivorensis, Pometia tomentosa, Dalbergia odorifera, and Erythrophleum guineense. After 8 h chilling exposure at the different photosynthetic flux densities of 20, 50, 100, 150 μmol m−2 s−1, the maximum quantum yield of PSII (F v /F m) in all of the four species decreased little, while the quantity of efficient PSI complex (P m) remained stable in all species except E. guineense. However, after chilling exposure under 250 μmol m−2 s−1 for 24 h, F v /F m was severely photoinhibited in all species whereas P m was relative stable in all plants except E. guineense. At the chilling temperature of 4°C, electron transport from PSII to PSI was blocked because of excessive reduction of primary electron acceptor of PSII. F v /F m in these species except E. guineense recovered to ~90% after 8 h recovery in low light, suggesting the dependence of the recovery of PSII on moderate PSI and/or PSII activity. These results suggest that PSII is more sensitive to chilling temperature under the moderate light than PSI in tropical trees, and the photoinhibition of PSII and closure of PSII reaction centers can serve to protect PSI.  相似文献   

19.
Igamberdiev AU  Shen T  Gardeström P 《Planta》2006,224(1):196-204
Mitochondrial contribution to photosynthetic metabolism during the transition from low light (25–100 μmol quanta m−2 s−1, limiting photosynthesis) to high light (500 μmol quanta m−2 s−1, saturating photosynthesis) was investigated in protoplasts from barley (Hordeum vulgare) leaves. After the light shift, photosynthetic oxygen evolution rate increased rapidly during the first 30–40 s and then declined up to 60–70 s after which the rate increased to a new steady-state after 80–110 s. Rapid fractionation of protoplasts was used to follow changes in sub-cellular distribution of key metabolites during the light shift and the activation state of chloroplastic NADP-dependent malate dehydrogenase (EC 1.1.1.82) was measured. Although oligomycin (an inhibitor of the mitochondrial ATP synthase) affected the metabolite content of protoplasts following the light shift, the first oxygen burst was not affected. However, the transition to the new steady-state was delayed. Rotenone (an inhibitor of mitochondrial complex I) had similar, but less pronounced effect as oligomycin. From the analysis of metabolite content and sub-cellular distribution we suggest that the decrease in oxygen evolution following the first oxygen burst is due to phosphate limitation in the chloroplast stroma. For the recovery the control protoplasts can utilize ATP supplied by mitochondrial oxidative phosphorylation to quickly overcome the limitation in stromal phosphate and to increase the content of Calvin cycle metabolites. The oligomycin-treated protoplasts were deficient in cytosolic ATP and thereby unable to support Calvin cycle operation. This resulted in a delayed capacity to adjust to a sudden increase in light intensity.  相似文献   

20.
The effects of temperature, irradiance, and daylength on Sargassum horneri growth were examined at the germling and adult stages to discern their physiological differences. Temperature–irradiance (10, 15, 20, 25, 30°C × 20, 40, 80 μmol photons m−2s−1) and daylength (8, 12, 16, 24 h) experiments were carried out. The germlings and blades of S. horneri grew over a wide range of temperatures (10–25°C), irradiances (20–80 μmol photons m−2s−1), and daylengths (8–24 h). At the optimal growth conditions, the relative growth rates (RGR) of the germlings were 21% day−1 (25°C, 20 μmol photons m−2s−1) and 13% day−1 (8 h daylength). In contrast, the RGRs of the blade weights were 4% day−1 (15°C, 20 μmol photons m−2s−1) and 5% day−1 (12 h daylength). Negative growth rates were found at 20 μmol photons m−2s−1 of 20°C and 25°C treatments after 12 days. This phenomenon coincides with the necrosis of S. horneri blades in field populations. In conclusion, we found physiological differences between S. horneri germlings and adults with respect to daylength and temperature optima. The growth of S. horneri germlings could be enhanced at 25°C, 20 μmol photons m−2s−1, and 8 h daylength for construction of Sargassum beds and restoration of barren areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号