首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants and plant cells are emerging as promising alternatives for biopharmaceutical production with improved safety and efficiency. Plant cells are capable of performing post-translational modifications (PTMs) similar to those of mammalian cells and are safer than mammalian cells with regard to contamination by infectious pathogens, including animal viruses. However, a major obstacle to producing biopharmaceuticals in plants lies in the fact that plant-derived N-glycans include plant-specific sugar residues such as β1,2-xylose and α1,3-fucose attached to a pentasaccharide core (Man3GlcNAc2) as well as β1,3-galactose and α1,4-fucose involved in Lewis a (Lea) epitope formation that can evoke allergic responses in the human body. In addition, sugar residues such as α1,6-fucose, β1,4-galactose and α2,6-sialic acid, which are thought to play important roles in the activity, transport, delivery and half-life of biopharmaceuticals are absent among the N-glycans naturally found in plants. In order to take advantage of plant cells as a system in which to produce biopharmaceuticals development of plants producing N-glycan structures compatible with biopharmaceuticals is necessary. In this article we summarize the current state of biopharmaceutical production using plants as well as what is known about N-glycosylation processes occurring in the endoplasmic reticulum and Golgi apparatus in plants. Finally, we propose and discuss a strategy for and the associated technical barriers of producing customized N-glycans via removal of enzyme genes that add plant-specific sugar residues and introducing enzyme genes that add sugar residues absent in plants.  相似文献   

2.
A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic N-glycosylation. A major concern is the presence of beta 1,2-xylose and core alpha 1,3-fucose residues on complex N-glycans as these nonmammalian N-glycan residues may provoke unwanted side effects in humans. In this study we have investigated the potential antigenicity of plant-type N-glycans attached to a human monoclonal antibody (2G12). Using glyco-engineered plant lines as expression hosts, four 2G12 glycoforms differing in the presence/absence of beta 1,2-xylose and core alpha 1,3-fucose were generated. Systemic immunization of rabbits with a xylose and fucose carrying 2G12 glycoform resulted in a humoral immune response to both N-glycan epitopes. Furthermore, IgE immunoblotting with sera derived from allergic patients revealed binding to plant-produced 2G12 carrying core alpha 1,3 fucosylated N-glycan structures. Our results provide evidence for the adverse potential of nonmammalian N-glycan modifications present on monoclonal antibodies produced in plants. This emphasizes the need for the use of glyco-engineered plants lacking any potentially antigenic N-glycan structures for the production of plant-derived recombinant proteins intended for parenteral human application.  相似文献   

3.
In the past two decades plants have emerged as a valuable alternative for the production of pharmaceutical proteins. Since N-glycosylation influences functionality and stability of therapeutic proteins, the plant N-glycosylation pathway should be humanized. Here, we report the transient magnICON(?) expression of the erythropoietin fusion protein (EPO-Fc) in Nicotiana benthamiana plants that produce multi-antennary N-glycans without the plant-specific β1,2-xylose and α1,3-fucose residues in a stable manner (Nagels et al., 2011). The EPO-Fc fusion protein consists of EPO with a C-terminal-linked IgG-Fc domain and is used for pulmonary delivery of recombinant EPO to patients (Bitonti et al., 2004). Plant expressed EPO-Fc was quantified using a paramagnetic-particle chemiluminescent immunoassay and shown to be active in vitro via receptor binding experiments in HEK293T cells. Mass spectrometry-based N-glycan analysis confirmed the presence of multi-antennary N-glycans on plant-expressed EPO-Fc. The described research is the next step towards the development of a production platform for pharmaceutical proteins in plants.  相似文献   

4.
Structural analysis of the N-glycosylation of alfalfa proteins was investigated in order to evaluate the capacity of this plant to perform this biologically important post-translational modification. We show that, in alfalfa, N-linked glycans are processed into a large variety of mature oligosaccharides having core-xylose and core alpha(1,3)-fucose, as well as terminal Lewis(a) epitopes. In contrast, expression of the C5-1 monoclonal antibody in alfalfa plants results in the production of plant-derived IgG1 which is N-glycosylated by a predominant glycan having a alpha(1,3)-fucose and a beta(1,2)-xylose attached to a GlcNAc2Man3GlcNAc2 core. Since this core is common to plant and mammal N-linked glycans, it therefore appears that alfalfa plants have the ability to produce recombinant IgG1 having a N-glycosylation that is suitable for in vitro or in vivo glycan remodelling into a human-compatible plantibody. For instance, as proof of concept, in vitro galactosylation of the alfalfa-derived C5-1 mAb resulted in a homogenous plantibody harbouring terminal beta(1,4)-galactose residues as observed in the mammalian IgG.  相似文献   

5.
6.
Glycoengineering is increasingly being recognized as a powerful tool to generate recombinant glycoproteins with a customized N-glycosylation pattern. Here, we demonstrate the modulation of the plant glycosylation pathway toward the formation of human-type bisected and branched complex N-glycans. Glycoengineered Nicotiana benthamiana lacking plant-specific N-glycosylation (i.e. β1,2-xylose and core α1,3-fucose) was used to transiently express human erythropoietin (hEPO) and human transferrin (hTF) together with modified versions of human β1,4-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnTIII), α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnTIV) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnTV). hEPO was expressed as a fusion to the IgG-Fc domain (EPO-Fc) and purified via protein A affinity chromatography. Recombinant hTF was isolated from the intracellular fluid of infiltrated plant leaves. Mass spectrometry-based N-glycan analysis of hEPO and hTF revealed the quantitative formation of bisected (GnGnbi) and tri- as well as tetraantennary complex N-glycans (Gn[GnGn], [GnGn]Gn and [GnGn][GnGn]). Co-expression of GnTIII together with GnTIV and GnTV resulted in the efficient generation of bisected tetraantennary complex N-glycans. Our results show the generation of recombinant proteins with human-type N-glycosylation at great uniformity. The strategy described here provides a robust and straightforward method for producing mammalian-type N-linked glycans of defined structures on recombinant glycoproteins, which can advance glycoprotein research and accelerate the development of protein-based therapeutics.  相似文献   

7.
Protein therapeutics represent one of the most increasing areas in the pharmaceutical industry. Plants gain acceptance as attractive alternatives for high-quality and economical protein production. However, as the majority of biopharmaceuticals are glycoproteins, plant-specific N-glycosylation has to be taken into consideration. In Physcomitrella patens (moss), glyco-engineering is an applicable tool, and the removal of immunogenic core xylose and fucose residues was realized before. Here, we present the identification of the enzymes that are responsible for terminal glycosylation (α1,4 fucosylation and β1,3 galactosylation) on complex-type N-glycans in moss. The terminal trisaccharide consisting of α1,4 fucose and β1,3 galactose linked to N-acetylglucosamine forms the so-called Lewis A epitope. This epitope is rare on moss wild-type proteins, but was shown to be enriched on complex-type N-glycans of moss-produced recombinant human erythropoietin, while unknown from the native human protein. Via gene targeting of moss galactosyltransferase and fucosyltransferase genes, we identified the gene responsible for terminal glycosylation and were able to completely abolish the formation of Lewis A residues on the recombinant biopharmaceutical.  相似文献   

8.
In recent years, plants have been developed as an alternative expression system to mammalian hosts for the production of therapeutic proteins. Many modifications to the plant glycosylation machinery have been made to render it more human because of the importance of glycosylation for functionality, serum half-life, and the safety profile of the expressed proteins. These modifications include removal of plant-specific β1,2-xylose and core α1,3-fucose, and addition of bisecting N-acetylglucosamine, β1,4-galactoses, and sialic acid residues. Another glycosylation step that is essential for the production of complex human-type glycans is the synthesis of multiantennary structures, which are frequently found on human N-glycans but are not generated by wild-type plants. Here, we report both the magnICON-based transient as well as stable introduction of the α1,3-mannosyl-β1,4-N-acetylglucosaminyltransferase (GnT-IV isozymes a and b) and α1,6-mannosyl-β1,6-N-acetylglucosaminyltransferase (GnT-V) in Nicotiana benthamiana plants. The enzymes were targeted to the Golgi apparatus by fusing their catalytic domains to the plant-specific localization signals of xylosyltransferase and fucosyltransferase. The GnT-IV and -V modifications were tested in the wild-type background, but were also combined with the RNA interference-mediated knockdown of β1,2-xylosyltransferase and α1,3-fucosyltransferase. Results showed that triantennary Gn[GnGn] and [GnGn]Gn N-glycans could be produced according to the expected activities of the respective enzymes. Combination of the two enzymes by crossing stably transformed GnT-IV and GnT-V plants showed that up to 10% tetraantennary [GnGn][GnGn], 25% triantennary, and 35% biantennary N-glycans were synthesized. All transgenic plants were viable and showed no aberrant phenotype under standard growth conditions.  相似文献   

9.
Plants possess some desirable characteristics to synthesize recombinant glycoproteins for pharma-ceutical application. However, the mammalian glycoproteins produced in plants are somewhat different from their natural counterparts in terms of N-glycoforms. The immunogenicity of plant-specific glyco-epitopes is the major concern in human therapy. Here, the distribution of N-glycans in different growth phases of tobacco BY2 cells and their immunogenicity in mice were determined. It was ob-served that the percentage of β1,2-xylose and α1,3-fucose in proteins of growing cells increased and the corresponding protein extracts caused accelerated immune response in mice. Based on this ob-servation, the recombinant erythropoietin in BY2 cells was expressed and characterized, and Western blot analysis showed that the recombinant erythropoietin contained a relatively small amount of plant-specific glyco-epitopes in the early phase of culture growth. This study may provide a simple but effective strategy for the production of therapeutic glycoproteins with human-like N-glycan structures in plant hosts to avoid a great allergenic risk.  相似文献   

10.
Maize is considered a promising alternative production system for pharmaceutically relevant proteins. However, like in all other plant species asparagine-linked oligosaccharides of maize glycoproteins are modified with beta1,2-xylose and core alpha1,3-fucose sugar residues, which are considered to be immunogenic in mammals. This altered N-glycosylation when compared to mammalian cells may reduce the potential of maize as a production system for heterologous glycoproteins. Here we report the cloning and characterization of the cDNA sequences coding for the maize enzymes beta1,2-xylosyltransferase (XylT) and core alpha1,3-fucosyltransferase (FucT). The cloned XylT and FucT cDNAs were shown to encode enzymatically active proteins, which were independently able to convert a mammalian acceptor glycoprotein into an antigen binding anti-plant N-glycan antibodies. The complete sequence of the XylT gene was determined. Evidence for the presence of at least three XylT and FucT gene loci in the maize genome was obtained. The identification of the two enzymes and their genes will allow the targeted downregulation or even elimination of beta1,2-xylose and core alpha1,3-fucose addition to recombinant glycoproteins produced in maize.  相似文献   

11.
Previously, we developed a transgenic tobacco BY2 cell line (GT6) in which glycosylation was modified by expressing human beta(1,4)-galactosyltransferase (betaGalT). In this study, we produced a mouse monoclonal antibody in GT6 cells, and determined the sugar chain structures of plant-produced antibodies. Galactose-extended N-linked glycans comprised 16.7%, and high-mannose-type and complex-type glycans comprised 38.5% and 35.0% of the total number of glycans, respectively. N-linked glycans with the plant-specific sugars beta(1,2)-xylose and alpha(1,3)-fucose comprised 9.8%. The introduction of human betaGalT into suspension cultured tobacco cells resulted in the production of recombinant proteins with galactose-extended glycans and decreased contents of beta(1,2)-xylose and alpha(1,3)-fucose.  相似文献   

12.
Arabidopsis N-glycosylation mutants with enhanced salt sensitivity show reduced immunoreactivity of complex N-glycans. Among them, hybrid glycosylation 1 (hgl1) alleles lacking Golgi α-mannosidase II are unique, because their glycoprotein N-glycans are hardly labeled by anti-complex glycan antibodies, even though they carry β1,2-xylose and α1,3-fucose epitopes. To dissect the contribution of xylose and core fucose residues to plant stress responses and immunogenic potential, we prepared Arabidopsis hgl1 xylT double and hgl1 fucTa fucTb triple mutants by crossing previously established T-DNA insertion lines and verified them by mass spectrometry analyses. Root growth assays revealed that hgl1 fucTa fucTb but not hgl1 xylT plants are more salt-sensitive than hgl1, hinting at the importance of core fucose modification and masking of xylose residues. Detailed immunoblot analyses with anti-β1,2-xylose and anti-α1,3-fucose rabbit immunoglobulin G antibodies as well as cross-reactive carbohydrate determinant-specific human immunoglobulin E antibodies (present in sera of allergy patients) showed that xylose-specific reactivity of hgl1 N-glycans is indeed reduced. Based on three-dimensional modeling of plant N-glycans, we propose that xylose residues are tilted by 30° because of untrimmed mannoses in hgl1 mutants. Glycosidase treatments of protein extracts restored immunoreactivity of hgl1 N-glycans supporting these models. Furthermore, among allergy patient sera, untrimmed mannoses persisting on the α1,6-arm of hgl1 N-glycans were inhibitory to immunoreaction with core fucoses to various degrees. In summary, incompletely trimmed glycoprotein N-glycans conformationally prevent xylose and, to lesser extent, core fucose accessibility. Thus, in addition to N-acetylglucosaminyltransferase I, Golgi α-mannosidase II emerges as a so far unrecognized target for lowering the immunogenic potential of plant-derived glycoproteins.  相似文献   

13.
In plants, the only known outer-chain elongation of complex N-glycans is the formation of Lewis a [Fuc alpha1-4(Gal beta1-3)GlcNAc-R] structures. This process involves the sequential attachment of beta1,3-galactose and alpha1,4-fucose residues by beta1,3-galactosyltransferase and alpha1,4-fucosyltransferase. However, the exact mechanism underlying the formation of Lewis a epitopes in plants is poorly understood, largely because one of the involved enzymes, beta1,3-galactosyltransferase, has not yet been identified and characterized. Here, we report the identification of an Arabidopsis thaliana beta1,3-galactosyltransferase involved in the biosynthesis of the Lewis a epitope using an expression cloning strategy. Overexpression of various candidates led to the identification of a single gene (named GALACTOSYLTRANSFERASE1 [GALT1]) that increased the originally very low Lewis a epitope levels in planta. Recombinant GALT1 protein produced in insect cells was capable of transferring beta1,3-linked galactose residues to various N-glycan acceptor substrates, and subsequent treatment of the reaction products with alpha1,4-fucosyltransferase resulted in the generation of Lewis a structures. Furthermore, transgenic Arabidopsis plants lacking a functional GALT1 mRNA did not show any detectable amounts of Lewis a epitopes on endogenous glycoproteins. Taken together, our results demonstrate that GALT1 is both sufficient and essential for the addition of beta1,3-linked galactose residues to N-glycans and thus is required for the biosynthesis of Lewis a structures in Arabidopsis. Moreover, cell biological characterization of a transiently expressed GALT1-fluorescent protein fusion using confocal laser scanning microscopy revealed the exclusive location of GALT1 within the Golgi apparatus, which is in good agreement with the proposed physiological action of the enzyme.  相似文献   

14.
15.
Plants are known to be efficient hosts for the production of mammalian therapeutic proteins. However, plants produce complex N-glycans bearing β1,2-xylose and core α1,3-fucose residues, which are absent in mammals. The immunogenicity and allergenicity of plant-specific N-glycans is a key concern in mammalian therapy. In this study, we amplified the sequences of 2 plant-specific glycosyltransferases from Nicotiana tabacum L. cv Bright Yellow 2 (BY2), which is a well-established cell line widely used for the expression of therapeutic proteins. The expression of the endogenous xylosyltranferase (XylT) and fucosyltransferase (FucT) was downregulated by using RNA interference (RNAi) strategy. The xylosylated and core fucosylated N-glycans were significantly, but not completely, reduced in the glyco-engineered lines. However, these RNAi-treated cell lines were stable and viable and did not exhibit any obvious phenotype. Therefore, this study may provide an effective and promising strategy to produce recombinant glycoproteins in BY2 cells with humanized N-glycoforms to avoid potential immunogenicity.  相似文献   

16.
Plants synthesize N-glycans containing the antigenic sugars α(1,3)-fucose and β(1,2)-xylose. Therefore it is important to monitor these N-glycans in monoclonal antibodies produced in plants (plantibodies). We evaluated several techniques to characterize the N-glycosylation of a plantibody produced in tobacco plants with and without the KDEL tetrapeptide endoplasmic reticulum retention signal which should inhibit or drastically reduce the addition of α(1,3)-fucose and β(1,2)-xylose. Ammonium hydroxide/carbonate-based chemical deglycosylation and PNGase A enzymatic release were investigated giving similar 2-aminobenzamide-labeled N-glycan HPLC profiles. The chemical release does not generate peptides which is convenient for MS analysis of unlabeled pool but its main drawback is that it induces degradation of α1,3-fucosylated N-glycan reducing terminal sugar. Three analytical methods for N-glycan characterization were evaluated: (i) MALDI-MS of glycopeptides from tryptic digestion; (ii) negative-ion ESI-MS/MS of released N-glycans; (iii) normal-phase HPLC of fluorescently labeled glycans in combination with exoglycosidase sequencing. The MS methods identified the major glycans, but the HPLC method was best for identification and relative quantitation of N-glycans. Negative-mode ESI-MS/MS permitted also the correct identification of the linkage position of the fucose residue linked to the inner core N-acteylglucosamine (GlcNAc) in complex N-glycans.  相似文献   

17.
Primary structures of the N-glycans of two major pollen allergens (Lol p 11 and Ole e 1) and a major peanut allergen (Ara h 1) were determined. Ole e 1 and Ara h 1 carried high mannose and complex N-glycans, whereas Lol p 11 carried only the complex. The complex structures all had a beta(1,2)-xylose linked to the core mannose. Substitution of the proximal N-acetylglucosamine with an alpha(1, 3)-fucose was observed on Lol p 11 and a minor fraction of Ole e 1 but not on Ara h 1. To elucidate the structural basis for IgE recognition of plant N-glycans, radioallergosorbent test analysis with protease digests of the three allergens and a panel of glycoproteins with known N-glycan structures was performed. It was demonstrated that both alpha(1,3)-fucose and beta(1,2)-xylose are involved in IgE binding. Surprisingly, xylose-specific IgE antibodies that bound to Lol p 11 and bromelain did not recognize closely related xylose-containing structures on horseradish peroxidase, phytohemeagglutinin, Ole e 1, and Ara h 1. On Lol p 11 and bromelain, the core beta-mannose is substituted with just an alpha(1,6)-mannose. On the other xylose-containing N-glycans, an additional alpha(1,3)-mannose is present. These observations indicate that IgE binding to xylose is sterically hampered by the presence of an alpha(1,3)-antenna.  相似文献   

18.
We have compared the site-by-site N-glycosylation status of human lactoferrin (Lf) produced in maize, a monocotyledon, and in tobacco, used as a model dicotyledon. Maize and tobacco plants were stably transformed and recombinant Lf was purified from both seeds and leaves. N-glycopeptides were generated by trypsin digestion of recombinant Lf and purified by reverse-phase HPLC. The N-glycosylation pattern of each site was determined by mass spectrometry. Our results indicated that the N-glycosylation patterns of recombinant Lf produced in maize and tobacco share common structural features. In particular, both N-glycosylation sites of each recombinant Lf are mainly substituted by typical plant paucimannose-type N-glycans, with beta1,2-xylose and alpha1,3-linked fucose at the proximal N-acetylglucosamine. However, tobacco Lf shows a significant amount of processed N-glycans with one or two beta1,2GlcNAc linked to the trimannose core, which are weakly expressed in maize Lf. Finally, no Lewisa epitope was observed on tobacco Lf.  相似文献   

19.
The rice α-amylase 3D promoter system, which is activated under sucrose-starved conditions, has emerged as a useful system for producing recombinant proteins. However, using rice as the production system for therapeutic proteins requires modifications of the N-glycosylation pattern because of the potential immunogenicity of plant-specific sugar residues. In this study, glyco-engineered rice were generated as a production host for therapeutic glycoproteins, using RNA interference (RNAi) technology to down-regulate the endogenous α-1,3-fucosyltransferase (α-1,3-FucT) and β-1,2-xylosyltransferase (β-1,2-XylT) genes. N-linked glycans from the RNAi lines were identified, and their structures were compared with those isolated from a wild-type cell suspension. The inverted-repeat chimeric RNA silencing construct of α-1,3-fucosyltransferase and β-1,2-xylosyltransferase (Δ3FT/XT)-9 glyco-engineered line with significantly reduced core α-1,3-fucosylated and/or β-1,2-xylosylated glycan structures was established. Moreover, levels of plant-specific α-1,3-fucose and/or β-1,2-xylose residues incorporated into recombinant human granulocyte/macrophage colony-stimulating factor (hGM-CSF) produced from the N44 + Δ3FT/XT-4 glyco-engineered line co-expressing ihpRNA of Δ3FT/XT and hGM-CSF were significantly decreased compared with those in the previously reported N44-08 transgenic line expressing hGM-CSF. None of the glyco-engineered lines differed from the wild type with respect to cell division, proliferation or ability to secrete proteins into the culture medium.  相似文献   

20.
N-Glycosylation of a mouse IgG expressed in transgenic tobacco plants   总被引:11,自引:0,他引:11  
Since plants are emerging as an important system for the expression of recombinant glycoproteins, especially those intended for therapeutic purposes, it is important to scrutinize to what extent glycans harbored by mammalian glycoproteins produced in transgenic plants differ from their natural counterpart. We report here the first detailed analysis of the glycosylation of a functional mammalian glycoprotein expressed in a transgenic plant. The structures of the N-linked glycans attached to the heavy chains of the monoclonal antibody Guy's 13 produced in transgenic tobacco plants (plantibody Guy's 13) were identified and compared to those found in the corresponding IgG1 of murine origin. Both N-glycosylation sites located on the heavy chain of the plantibody Guy's 13 are N-glycosylated as in mouse. However, the number of Guy's 13 glycoforms is higher in the plant than in the mammalian expression system. Despite the high structural diversity of the plantibody N-glycans, glycosylation appears to be sufficient for the production of a soluble and biologically active IgG in the plant system. In addition to high-mannose-type N-glycans, 60% of the oligosaccharides N-linked to the plantibody have beta(1, 2)-xylose and alpha(1, 3)-fucose residues linked to the core Man3GlcNAc2. These plant-specific oligosaccharide structures are not a limitation to the use of plantibody Guy's 13 for topical immunotherapy. However, their immunogenicity may raise concerns for systemic applications of plantibodies in human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号