首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
杨扬  王嵘  陈小勇 《生态学报》2023,43(11):4400-4410
榕属植物与其传粉小蜂组成了高度专一的专性共生关系(榕-蜂共生系统),如此高度紧密的互作关系被认为是驱动两者多样化的关键因素。榕-蜂共生系统主要依靠化学通讯完成相互识别,但目前仍不清楚化学通讯是如何维系现有共生关系并促进物种形成的。结合已有研究,系统梳理了榕-蜂共生系统化学通讯的基础与两者特异性识别的机制,阐述化学通讯在物种和种群层次对维持这一专性传粉关系的重要贡献,进而探讨化学通讯如何在协同成种和宿主转移成种两种模式中介导物种形成。最后,结合生理与多组学等技术展望榕-蜂共生系统的未来研究方向,为深入解析植物与昆虫协同进化的机制以及全球变化下物种的潜在响应模式提供重要参考。  相似文献   

2.
The study of chalcid wasps that live within syconia of fig trees (Moraceae, Ficus ), provides a unique opportunity to investigate the evolution of specialized communities of insects. By conducting cospeciation analyses between figs of section Galoglychia and some of their associated fig wasps, we show that, although host switches and duplication have evidently played a role in the construction of the current associations, the global picture is one of significant cospeciation throughout the evolution of these communities. Contrary to common belief, nonpollinating wasps are at least as constrained as pollinators by their host association in their diversification in this section. By adapting a randomization test in a supertree context, we further confirm that wasp phylogenies are significantly congruent with each other, and build a "wasp community" supertree that retrieves Galoglychia taxonomic subdivisions. Altogether, these results probably reflect wasp host specialization but also, to some extent, they might indicate that niche saturation within the fig prevents recurrent intrahost speciation and host switching. Finally, a comparison of ITS2 sequence divergence of cospeciating pairs of wasps suggests that the diversification of some pollinating and nonpollinating wasps of Galoglychia figs has been synchronous but that pollinating wasps exhibit a higher rate of molecular evolution.  相似文献   

3.
The ancient association of figs (Ficus spp.) and their pollinating wasps (fig wasps; Chalcidoidea, Hymenoptera) is one of the most interdependent plant–insect mutualisms known. In addition to pollinating wasps, a diverse community of organisms develops within the microcosm of the fig inflorescence and fruit. To better understand the multipartite context of the fig–fig wasp association, we used a culture-free approach to examine fungal communities associated with syconia of six species of Ficus and their pollinating wasps in lowland Panama. Diverse fungi were recovered from surface-sterilized flowers of all Ficus species, including gall- and seed flowers at four developmental stages. Fungal communities in syconia and on pollinating wasps were similar, dominated by diverse and previously unknown Saccharomycotina, and distinct from leaf- and stem endophyte communities in the same region. Before pollination, fungal communities were similar between gall- and seed flowers and among Ficus species. However, fungal communities differed significantly in flowers after pollination vs. before pollination, and between anciently diverged lineages of Ficus with active vs. passive pollination syndromes. Within groups of relatively closely related figs, there was little evidence for strict-sense host specificity between figs and particular fungal species. Instead, mixing of fungal communities among related figs, coupled with evidence for possible transfer by pollinating wasps, is consistent with recent suggestions of pollinator mixing within syconia. In turn, changes in fungal communities during fig development and ripening suggest an unexplored role of yeasts in the context of the fig–pollinator wasp mutualism.  相似文献   

4.
Host sanctions that reduce the relative fitness of uncooperative symbionts provide a mechanism that can limit cheating and thus stabilise mutualisms over evolutionary timescales. Sanctions have been demonstrated empirically in several mutualisms. However, if multiple individual symbionts interact with each host, the precision with which individual cheating symbionts are targeted by host sanctions is critical to their short‐ and long‐term effectiveness. No previous empirical study has directly addressed this issue. Here, we report the precision of host sanctions in the mutualism between fig trees and their pollinating wasps. Using field experiments and molecular parentage analyses, we show that sanctions in Ficus nymphaeifolia act at the level of entire figs (syconia), not at the level of the individual flowers within. Such fig‐level sanctions allow uncooperative wasps, which do not bring pollen, to avoid sanctions in figs to which other wasps bring pollen. We discuss the relevance of sanction precision to other mutualisms.  相似文献   

5.
The obligate mutualism of figs and fig‐pollinating wasps has been one of the classic models used for testing theories of co‐evolution and cospeciation due to the high species‐specificity of these relationships. To investigate the species‐specificity between figs and fig pollinators and to further understand the speciation process in obligate mutualisms, we examined the genetic differentiation and phylogenetic relationships of four closely related fig‐pollinating wasp species (Blastophaga nipponica, Blastophaga taiwanensis, Blastophaga tannoensis and Blastophaga yeni) in Japan and Taiwan using genome‐wide sequence data, including mitochondrial DNA sequences. In addition, population structure was analysed for the fig wasps and their host species using microsatellite data. The results suggest that the three Taiwanese fig wasp species are a single panmictic population that pollinates three dioecious fig species, which are sympatrically distributed, have large differences in morphology and ecology and are also genetically differentiated. Our results illustrate the first case of pollinator sharing by host shift in the subgenus Ficus. On the other hand, there are strict genetic codivergences between allopatric populations of the two host–pollinator pairs. The possible processes that produce these pollinator‐sharing events are discussed based on the level and pattern of genetic differentiation in these figs and fig wasps.  相似文献   

6.
We isolated 18 microsatellites from Sycoscapter australis, a nonpollinating fig wasp that develops in figs of Ficus macrophylla, and assessed their variability in 20 wasps. We further optimized nine of these loci for use in three other Sycoscapter species that develop in Ficus rubiginosa figs and assessed their variability in 47-140 wasps per species. These are the first microsatellites developed for nonpollinating fig wasps and show sufficient polymorphism to become important tools in evolutionary and genetical studies of Sycoscapter wasps.  相似文献   

7.
In nursery pollination mutualisms, where pollinators reproduce within the inflorescence they pollinate, floral scents often play a major role in advertizing host location and rewards for the pollinator. However, chemical messages emitted by the plant that are responsible for the encounter of mutualist partners can also be used by parasites of these mutualisms to locate their host. Each species of Ficus (Moraceae) is involved in an obligatory nursery pollination mutualism with usually one pollinating fig wasp (Hymenoptera: Chalcidoidea: Agaonidae). In this interaction, volatile compounds emitted by receptive figs are responsible for the attraction of their specific pollinator. However, a large and diverse community of non-pollinating chalcidoid wasps can also parasitize this mutualism. We investigated whether the chemical message emitted by figs to attract their pollinator can promote the host specificity of non-pollinating fig wasps. We analysed the volatile compounds emitted by receptive figs of three sympatric Ficus species, namely, Ficus hispida L., Ficus racemosa L., and Ficus tinctoria G. Forster, and tested the attraction of the pollinator of F. hispida ( Ceratosolen solmsi marchali Mayr), and of one species of non-pollinating fig wasp [ Philotrypesis pilosa Mayr (Hymenoptera: Chalcidoidea: Pteromalidae)] to scents emitted by receptive figs of these three Ficus species. Analysis of the volatile compounds emitted by receptive figs revealed that the three Ficus species could be clearly distinguished by their chemical composition. Behavioural bioassays performed in a Y-tube olfactometer showed that both pollinator and parasite were attracted only by the specific odour of F. hispida . These results suggest that the use by non-pollinating fig wasps of a specific chemical message produced by figs could limit host shifts by non-pollinating fig wasps.  相似文献   

8.
The interaction between figs (Ficus, Moraceae) and fig-pollinating wasps (Chalcidoidea, Agaonidae) is one of the most specific mutualisms, and thus is a model system for studying coevolution and cospeciation. In this study we focused on figs and their associated fig-wasps found in the Ryukyu and Bonin (Ogasawara) Islands, Japan, because it has been suggested that breakdown in the specificity may occur in islands or at edge of a species' distribution. We collected 136 samples of 15 native fig species and 95 samples of 13 associated fig-wasps from all major islands in the Ryukyu Islands, including two fig species and one fig-wasp species endemic to the Bonin Islands. We performed molecular phylogenetic analyses using plastid DNA and nuclear ITS sequences for the figs and nuclear 28S rRNA and mitochondrial COI genes for the fig-wasps to investigate the interspecific phylogenies and intraspecific variation within the mutualism. Our phylogenetic analyses using multiple samples per species show the single clade of each fig (except the Bonin endemic species) and fig-pollinating wasp species. Fig species belonging to the same subgenera formed well-supported clades in both plastid and ITS trees, except for the subgenus Urostigma. Likewise, fig wasps emerging from host fig species belonging to the same subgenera formed mostly well supported clades in both 28S and COI trees. Host specificity between the figs and fig-wasps functions strictly in these islands. There was very little sequence variation within species, and that no major geographic structure was found. The two Bonin endemic species (F. boninsimae and F. nishimurae) or their common ancestor and the associated fig-wasps (Blastophaga sp.) are apparently derived from F. erecta and its associated fig-wasps (B. nipponica), respectively, and probably migrated from the Ryukyu Islands.  相似文献   

9.
Shift to mutualism in parasitic lineages of the fig/fig wasp interaction   总被引:4,自引:0,他引:4  
The interaction between Ficus and their pollinating wasps (Chalcidoidea, Agaonidae) represents a striking example of mutualism. Figs also host numerous non-pollinating wasps belonging to other chalcidoid families. We show that six species of Ficus that are passively pollinated by the agaonid genus Waterstoniella also host specific wasps belonging to the chalcidoid genera Diaziella (Sycoecinae) and Lipothymus (Otitesellinae). Both belong to lineages that are considered as parasites of the fig/fig wasp mutualism. We show that these wasps are efficient pollinators of their hosts. Pollen counts on wasps of a species of Diaziella hosted by Ficus paracamptophylla show that Diaziella sp. transports more pollen than the associated pollinator when emerging from its natal fig. Further, the number of pollinated flowers in receptive figs is best explained by the number of Diaziella plus the number of Waterstoniella that had entered it. Figs that were colonised by Diaziella always produced seeds: Diaziella does not overexploit its host. Similarly, figs of Ficus consociata that were colonised solely by a species of Lipothymus produced as many seeds as figs that were colonised only by the legitimate pollinator Waterstoniella malayana . Diaziella sp. and Lipothymus sp. seem to pollinate their host fig as efficiently as do the associated agaonid wasps. Previous studies, on actively pollinated Ficus species, have found that internally ovipositing non-agaonid wasps are parasites of such Ficus species. Hence, mode of pollination of the legitimate pollinator conditions the outcome of the interaction between internally ovipositing parasites and their host.  相似文献   

10.
Abstract. 1. A classical example of specialised pollination mutualisms is the relationship between fig trees and their pollinating wasps, in which each partner depends completely on the other for its reproduction; however the fig/fig wasp association is also the target of a great diversity of other species, ranging from specialised parasites to opportunistic foragers, among them ants.
2. The ant community and the sources of ant attraction observed on the Mediterranean fig tree Ficus carica were characterised.
3. A guild of ants attracted by homopterans tended on the plant was distinguished from a second guild composed of two co-dominant ant species ( Crematogaster scutellaris and Pheidole pallidula ) that prey mostly on pollinating wasps, abundant during certain parts of the fig cycle.
4. Foraging workers of C. scutellaris search for prey on the fig inflorescence (syconium), capturing pollinating wasps mostly at the peak of wasp emergence and at a rate estimated to reach 600 prey per day for an entire tree.
5. Detailed study of the predatory sequences displayed under experimental conditions showed that ant workers captured 100% of the pollinating wasps offered, while they captured only 5.5% of the parasitoid wasp specific to the pollinator. The respective impacts of the interaction on ants and on the figs are discussed, as well as several behavioural traits of predation by the dominant ant on pollinators.  相似文献   

11.
Insects show a multitude of symbiotic interactions that may vary in degree of specialization and structure. Gall-inducing insects and their parasitoids are thought to be relatively specialized organisms, but despite their ecological importance, the organization and structure of the interactions they establish with their hosts has seldom been investigated in tropical communities. Non-pollinating fig wasps (NPFW) are particularly interesting organisms for the study of ecological networks because most species strictly develop their offspring within fig inflorescences, and show a multitude of life history strategies. They can be gall-makers, cleptoparasites or parasitoids of pollinating or of other non-pollinating fig wasps. Here we analysed a set of non-pollinating fig wasp communities associated with six species of Ficus section Americanae over a wide area. This allowed us to investigate patterns of specialization in a diverse community composed of monophagous and polyphagous species. We observed that most NPFW species were cleptoparasites and parasitoids, colonizing figs several days after oviposition by pollinators. Most species that occurred in more than one host were much more abundant in a single preferential host, suggesting specialization. The food web established between wasps and figs shows structural properties that are typical of specific antagonistic relationships, especially of endophagous insect networks. Two species that occurred in all available hosts were highly abundant in the network, suggesting that in some cases generalized species can be more competitive than strict specialists. The Neotropical and, to a lesser extent, Afrotropical NPFW communities seem to be more generalized than other NPFW communities. However, evidence of host sharing in the Old World is quite limited, since most studies have focused on particular taxonomic groups (genera) of wasps instead of sampling the whole NPFW community. Moreover, the lack of quantitative information in previous studies prevents us from detecting patterns of host preferences in polyphagous species.  相似文献   

12.
 榕树(Ficus)及其传粉榕小蜂(Agaonidae)构成了高度专一的互惠共生体系。榕树的果实(以下简称榕果)内也寄生着一些非传粉小蜂。 绝大多数非传粉小蜂在榕果外把产卵器刺入果壁产卵到果腔内, 只有极少数种类能够进入果腔内产卵。在西双版纳地区, 钝叶榕(Ficus curtipes)上的杨氏榕树金小蜂(Diaziella yangi)类似于传粉者钝叶榕小蜂(Eupristina sp.), 它也是进入榕果内产卵繁殖后代的, 这就为比 较研究榕果内产卵小蜂与寄主榕树间的关系提供了材料。该文从形态学、行为学和生态学角度比较研究了这两种进入榕果内产卵的小蜂与寄主 钝叶榕之间的作用关系, 研究结果显示: 1)杨氏榕树金小蜂与钝叶榕小蜂的雌蜂头部形状存在趋同进化; 2)两种小蜂的产卵器的平均长度都比 雌花花柱长, 因而能把卵产在子房里; 3)钝叶榕小蜂从瘿花出来需要3~5 h, 交配需要17~19 min, 杨氏榕树金小蜂从瘿花出来只需18~20 min, 交配时间为20~30 s; 4)在自然群落中, 大约90%的雌花期榕果里都只进一只杨氏榕树金小蜂和一只钝叶榕小蜂, 杨氏榕树金小蜂能通过传粉来 增加榕树种子数量, 但对钝叶榕小蜂种群的繁衍造成了极显著的负面影响; 5)两种小蜂于同一时期进入榕果内繁殖, 子代同期成熟羽化, 发育 期与榕树雄花的发育期同步。研究表明: 进入榕果内繁殖的两种小蜂与寄主榕树之间存在着协同进化关系, 杨氏榕树金小蜂为榕树有效地传粉, 这可能是一个由寄生者向互惠方向进化的实例。  相似文献   

13.
1. Fig pollinating wasps (Agaonidae) enter Ficus inflorescences (figs), oviposit in some of the flowers, and pollinate in the process. Each larva completes its development within a single flower. In most cases, an inflorescence entered by a wasp will represent its only egg‐laying site. The mechanisms that prevent pollinating wasps from exploiting all the flowers inside a fig are not understood. In this study, hypotheses about flower use by pollinating fig wasps were tested by investigating egg deposition patterns in three species. 2. Either one or three wasps were introduced into figs. The figs were then harvested. Serial sections allowed assessment of the presence or absence of a wasp egg in a sample of flowers in each fig. The overall proportion of flowers with eggs and the spatial distribution of eggs were then compared in single wasp figs and three foundress figs. 3. In all species, the proportion of flowers with a wasp egg increased with foundress number but less than three‐fold. 4. In all species, at least in single foundress figs, flowers near the fig cavity were more likely to receive a wasp egg than were flowers near the fig wall. 5. In two species, when the number of foundresses was multiplied by three, there was an increase in the use of flowers near the fig wall, while in the third species, the increase was spread evenly among flowers. 6. Factors affecting wasp egg deposition patterns and the potential of investigating such patterns for studying the stability of the mutualism are discussed.  相似文献   

14.
1. The parasitic chalcidoid wasps associated with the species-specific and obligatory pollination mutualisms between Ficus spp. and their agaonid wasp pollinators provide a good model to study the functional organization of communities. 2. However, communities of non-pollinating fig wasps (NPFWs) remain little characterized, and their functioning and evolutionary dynamics are still poorly understood. 3. We studied the communities of NPFWs associated with the monoecious F. racemosa and the dioecious F. hispida. Associated with these two fig species are a total of seven wasp species belonging to three genera. These species present contrasts in life history traits and in timing of oviposition. The species studied are thus broadly representative of the communities of NPFWs associated specifically with fig-pollinator mutualisms. 4. In our study systems, there is temporal segregation of oviposition time among members of NPFW communities. 5. We tested the role of volatile chemicals in the attraction of NPFWs associated with these two fig species, and tried to determine if chemical mediation can explain the organization of the communities. 6. We conducted odour choice tests using a Y-tube olfactometer. All the NPFWs studied were shown to use volatile chemicals produced by the fig to locate their host. Furthermore, the signals used by each species depended on the phenological stage of the fig they exploit. 7. Results demonstrated that the pattern of oviposition results from the utilization of volatile signals produced by figs that vary in their composition at different stages of fig development. Thus, chemical mediation allows resource partitioning in the NPFW communities associated with fig-pollinator mutualisms, and suggests hypotheses to explain coexistence in other parasite communities.  相似文献   

15.
Fig pollinating wasps and most non-pollinator wasps apply secretions from their poison sacs into oviposited flowers that appear necessary to the formation of the galls that their developing offspring consume. Thus, both eggs and poison sac secretions appear to be essential for wasp reproduction, but the relative investment in each is unknown. We measured relative investment in poison sac and egg production in pollinating and non-pollinating wasps associated with seven species of monoecious Panamanian figs representing both active and passive pollination syndromes. We then collected similar data for four fig hosts in China, where some wasp species in the genus Eupristina have lost the ability to pollinate (“cheaters”). All wasps examined possessed large poison sacs, and we found a strong positive correlation between poison sac size and absolute egg production. In the Panamanian species, the relative poison sac to egg investment was highest in the externally ovipositing non-pollinator wasps, followed by active pollinators, then by passive pollinators. Further, pollinator wasps of fig species with demonstrated host sanctions against “cheating” wasps showed higher investment in the poison sac than wasps of species without sanctions. In the Chinese samples, relative investment in the poison sac was indistinguishable between pollinators and “cheaters” associated with the same fig species. We suggest that higher relative investment in poison sac across fig wasp species reflects higher relative difficulty in initiating formation of galls and subsequently obtaining resources from the fig. We discuss the implications for the stability of the fig–wasp mutualism, and for the ability of non-pollinators to exploit this mutualism.  相似文献   

16.
17.
榕-蜂共生系统是桑科榕属(Ficus)植物与传粉榕小蜂专一互惠形成的生态学关系。但是,也有一些非传粉的小蜂出现在这个系统中,对榕-蜂共生系统可能产生较大的影响。西双版纳的聚果榕(Ficus racemosa)树上主要有5种非传粉小蜂,分别在榕果发育的不同阶段从果外向果内产卵。在传粉榕小蜂进果之前的花前期,Platyneura testaceApocrypta sp.和P. mayri这3种非传粉小蜂先后到果外产卵繁殖后代,对榕-蜂共生系统造成显著影响,尤其是影响传粉榕小蜂的繁殖。在传粉榕小蜂进果之后的间花期,P. mayriA. westwoodiP. agraensis这3种非传粉小蜂相继到果外产卵,它们虽然能减少种子形成和传粉榕小蜂繁殖的数量,但最终没有对榕-蜂共生系统造成显著的影响。造瘿类的P. mayri可在花前期和间花期产卵繁殖,在花前期产卵时它主要是影响传粉榕小蜂的繁殖,而在间花期产卵时它则更多地是影响种子的生产。  相似文献   

18.
The obligate mutualism between fig trees and their fig wasp pollinators, together with the general tendency for each host species to be pollinated by one fig wasp species, led to the hypothesis that these two lineages have cospeciated. The pollinators of African figs of section Galoglychia form a diverse group of genera whose species seem to be less constrained to a specific host than other pollinating fig wasp genera. Various authors have suggested remarkably different phylogenetic relationships between the seven genera associated with section Galoglychia. These uncertainties concerning the classification make it difficult to understand the historical patterns of association between these wasps and their hosts. The phylogenetic tree for the pollinators was reconstructed with 28S, COI and ITS2 DNA sequence data and compared with morphological classification of the hosts. Pollinator genera were monophyletic in all analyses. However, the relative position of some genera remains unresolved. Investigation of host−fig association suggests that there have been frequent host jumps between host subsections. This indicates that cospeciation between fig trees and fig wasps is not as stringent as previously assumed. In addition, pollinators of the genus Alfonsiella associated with three host figs (Ficus craterostoma, F. stuhlmannii and F. petersii) are morphologically very similar in South Africa. We investigated the possibility that these pollinators form a complex of species with host‐based genetic differentiation. Molecular analyses supported the distinction of the pollinator of F. craterostoma as a good species, but the pollinators of F. stuhlmannii and F. petersii clustered within the same clade, suggesting that these two host species share a single pollinator, Alfonsiella binghami. Based on both molecular data and morphological re‐evaluation, a new Alfonsiella species is described, Alfonsiella pipithiensis sp. nov., which is the pollinator of F. craterostoma in southern Africa. A key to both females and males of all described species of Alfonsiella is provided.  相似文献   

19.
The fig (Moraceae) and pollinating fig wasp (Agaonidae) mutualism is best known as a model system for the study of coevolution in plant–pollinator interactions and its central role in shaping vertebrate communities in tropical forests. Figs also host myriad antagonistic parasitic fig wasps which impose costs on both partners threatening mutualism stability. Spatiotemporal variation in parasitic wasp abundance is a key factor in mitigating these effects. Because fig wasps are temperature sensitive and likely vary in their ability to traverse environmental gradients, we expect community assemblages and abundance of both pollinating and non-pollinating fig wasps to respond to changes along an elevational gradient. In the present study, we compare the fig wasp communities and abundance of three fig species growing along the slopes of the Mount Wilhelm altitudinal gradient in Papua New Guinea. We quantified wasps from over 100 male fig trees and calculated seed set for 55 female trees along each of the species’ distribution on the transect. Our results show that the abundance of both pollinating and non-pollinating fig wasps follow a mid-elevation peak, consistent with fig species richness found in the same transect. The patterns, however, are different according to the host's species distribution. Seed set remained relatively constant along the gradient for all species with some decrease along higher elevations, potentially affecting connectivity along the gradient. As suggested for insects in general, temperature and habitat diversity appear to play a fundamental role in the species richness and abundance of fig wasps.  相似文献   

20.
Recent studies on the obligate interaction between fig trees and their pollinating agaonid wasps have focused on population aspects and wasp?Cseed exploitation at the level of the inflorescence. Detailed studies on larval and gall development are required to more fully understand how resources are exploited and adaptations fine-tuned by each partner in nursery pollination mutualisms. We studied the larval development of the active pollinating fig wasp, Pegoscapus sp., and the galling process of individual flowers within the figs of its monoecious host, Ficus citrifolia, in Brazil. The pollinator development is strongly dependent on flower pollination. Figs entered by pollen-free wasps were in general more likely to abort. Retained, unpollinated figs had both higher larval mortality and a lower number of wasps. Pegoscapus sp. larvae are adapted to plant development, with two contrasting larval feeding strategies proceeding alongside gall development. The first two larval stages behave as ovary parasites. Later larval stages feed on hypertrophied endosperm. This indicates that a successful galling process relies on endosperm, and also reveals why pollination would be a prerequisite for the production of high-quality galls for this Pegoscapus species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号