首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An investigation was made to reveal the protective effects of veratric acid (VA), a phenolic acid against atherogenic diet-induced hyperlipidemic rats. Male albino Wistar rats were fed with atherogenic diet (4% cholesterol, 1% cholic acid, and 0.5% 2-thiouracil) daily for 30 days and treated with VA (40 mg/kg body weight) daily for a period of 30 days. Rats fed with atherogenic diet showed significant (P < 0.05) elevation in the level of plasma lipids, systolic and diastolic blood pressure, oxidative stress markers (thiobarbituric acid reactive substances, lipid peroxides) and significant (P < 0.05) reduction in the activities of enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic (vitamin C, vitamin E, and reduced glutathione) antioxidants in erythrocytes, plasma, and tissues (liver, kidney, and aorta). Oral administration of VA (40 mg/kg body weight) for 30 days to atherogenic diet fed rats markedly attenuates systolic, diastolic blood pressure and lipid peroxidation products. Further, VA treatment significantly improved enzymatic and non-enzymatic antioxidants levels and showed beneficial effects on lipid profile in atherogenic diet rats. All the above alterations were supported by histopathological observations. These results indicate that oral administration of VA ameliorates atherogenic diet-induced hyperlipidemia in rats by its free radical scavenging; improving the antioxidants and lipid lowering properties.  相似文献   

2.
The present study was undertaken to investigate the antihypertensive and antioxidant effects of sesamol on uninephrectomized deoxycorticosterone acetate (DOCA)-salt-induced hypertensive rats. Hypertension was induced in surgically single-kidney-removed (left) adult male albino Wistar rats, weighing 180–200 g, by injecting DOCA (25 mg/kg BW) subcutaneously twice a week for 6 weeks, with saline instead of tap water for drinking. Rats were treated with three different doses of sesamol (50, 100 and 200 mg/kg BW) post-orally by gavage daily for 6 weeks. Hypertension was revealed by increased systolic and diastolic blood pressure and the toxicity of DOCA-salt was determined using hepatic marker enzymes, aspartate aminotransferase, alanine aminotransferase, alkaline phospatase and gamma-glutamyl transpeptidase; and, lipid peroxidative markers, thiobarbituric acid reactive substances, lipid hydroperoxides and conjugated dienes were assayed. The activities of enzymatic antioxidants, superoxide dismutase, catalase and glutathione peroxidase and the levels of non-enzymatic antioxidants (vitamin C, vitamin E and reduced glutathione) were evaluated in erythrocytes, plasma and tissues. Post-oral administration of sesamol at the dosage of 50 mg/kg BW remarkably decreased systolic and diastolic blood pressure, hepatic marker enzyme activities and lipid peroxidation products and also enhanced the antioxidant activity. The biochemical observations were also supported by histopathological examinations of the rat liver, kidney and heart sections. These results suggest that sesamol possesses antihypertensive and antioxidant effects.  相似文献   

3.
Diabetes induced by streptozotocin (50 mg/kg body wt, i.p.) in the rats substantially increased the plasma glucose and malondialdehyde levels along with corresponding decrease in the antioxidants levels. Supplementation of vitamin E (200 mg/kg body wt., ip) for 5 weeks resulted in non-significant decrease in the blood glucose levels but plasma malondialdehyde levels were reduced to below normal levels. Plasma vitamin E, vitamin C, uric acid and red blood cell glutathione levels were also restored to near normal levels on vitamin E supplementation to diabetic rats as compared to control (diabetic) rats. The activities of antioxidant enzymes, catalase (EC 1.11.1.6), glutathione peroxidase (GSHPx EC 1.11.1.9), and glutathione reductase (GR EC 1.6.4.2) were also concomitantly restored to near normal levels by vitamin E supplementation to diabetic rats. The results clearly demonstrated that vitamin E supplementation augments the antioxidant defense mechanism in diabetes and provides evidence that vitamin E may have a therapeutic role in free radical mediated diseases.  相似文献   

4.
Quercitrin, a bio flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were induced diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in pancreas, liver, and kidney. Histopathological studies were carried out in these tissues. A significant (P < 0.05) increase in the levels of fasting plasma glucose and lipid peroxidative products (thiobarbituric acid reactive substances and lipid hydroperoxides) and a significant (P < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase), and nonenzymic antioxidants (reduced glutathione, vitamin C, and E) in diabetic pancreas, liver, and kidney were observed. Oral administration of quercitrin (30 mg/kg) for a period of 30 days significantly (P < 0.05) decreased fasting plasma glucose, increased insulin levels, and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with quercitrin (30 mg/kg) showed no significant (P < 0.05) effect on any of the parameters studied. Histopathological studies of the pancreas, liver, and kidney showed the protective role of quercitrin. Thus, our study clearly shows that quercitrin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

5.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

6.
Objective: To examine the effect of galangin on hyperglycemia-mediated oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods: Diabetes was induced by intraperitoneal administration of low-dose STZ (40?mg/kg body weight (BW)) into male albino Wistar rats. Galangin (8?mg/kg BW) or glibenclamide (600?µg/kg BW) was given orally, once daily for 45 days to normal and STZ-induced diabetic rats.

Results: Diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes. The levels of insulin and non-enzymatic antioxidants (vitamin C, vitamin E, reduced glutathione) and the activity of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase (GST)) were decreased significantly in diabetic control rats. These altered plasma glucose, insulin, lipid peroxidation products, enzymatic and non-enzymatic antioxidants ions were reverted to near-normal level after the administration of galangin and glibenclamide.

Conclusion: The present study shows that galangin decreased oxidative stress and increased antioxidant status in diabetic rats, which may be due to its antidiabetic and antioxidant potential.  相似文献   

7.
The objective of the study was to investigate the role of Umbelliferone (UMB) on lipid peroxidation, nonenzymic and enzymic antioxidants in the plasma and liver of streptozotocin (STZ)-induced diabetic rats. Adult male albino rats of Wistar strain, weighing 180-200 g, were induced diabetes by administration of STZ (40 mg/kg b.wt.) intraperitoneally. The normal and diabetic rats were treated with UMB (30 mg/kg b.wt.) dissolved in 10% dimethyl sulfoxide (DMSO) for 45 days. Diabetic rats had an elevation in the levels of lipid peroxidation markers (thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD)), and a reduction in nonenzymic antioxidants (vitamin C and reduced glutathione (GSH) except vitamin E in the plasma and liver, and enzymic antioxidants (superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in the liver. Decreased level of beta-carotene and increased level of ceruloplasmin (Cp) were observed in the plasma of diabetic rats. Treatment with UMB and glibenclamide brought back lipid peroxidation markers, nonenzymic and enzymic antioxidants to near normalcy. Since UMB treatment decreases lipid peroxidation markers and enhances antioxidants' status it can be considered as a potent antioxidant.  相似文献   

8.
The present study was designed to investigate the antihypertensive and antioxidant effect of Melothria maderaspatana leaf extract (MME) on sham-operated and DOCA-salt (deoxycorticosterone acetate) induced hypertensive rats. Administration of DOCA-salt significantly increased the systolic (from 127 to 212 mm Hg) and diastolic (from 91 to 174 mm Hg) blood pressure compared to sham-operated control rats, while treatment with MME significantly reduced the systolic (from 212 to 135 mm Hg) and diastolic (from 174 to 96 mm Hg) blood pressure compared to hypertensive control. In DOCA-salt rats, the plasma and tissue concentration of thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxide (LOOH) significantly increased and administration of MME significantly reduced these parameters towards the levels in sham-operated control. In hypertensive rats, activities of the enzymatic antioxidants such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and levels of non-enzymatic antioxidants such as vitamin C, vitamin E and reduced glutathione (GSH) decreased significantly in the plasma and tissues. Administration of MME returned the enzymatic and non-enzymatic antioxidants towards sham-operated control. MME shows both antihypertensive and antioxidant properties in DOCA-salt hypertensive rats and, among the three different doses tested, 200 mg/kg caused the maximum effect.  相似文献   

9.
Rutin, a polyphenolic flavonoid, was investigated for its antioxidant potential in streptozotocin (STZ)-induced diabetic rats. Rats were rendered diabetic by a single intraperitoneal injection of streptozotocin (50 mg/kg). The levels of fasting plasma glucose and insulin were estimated. Lipid peroxidative products and antioxidants were estimated in liver, kidney and brain. Histopathological studies were carried out in these tissues. A significant (p < 0.05) increase in the levels of fasting plasma glucose, lipid peroxidative products (thiobarbituric acid reactive substances [TBARS] and lipid hydroperoxides [HP]) and a significant (p < 0.05) decrease in plasma insulin, enzymic antioxidants (superoxide dismutase [SOD], catalase, glutathione peroxidase [GPx] and glutathione reductase [GRx]) and nonenzymic antioxidants (reduced glutathione [GSH], vitamin C and E) in diabetic liver, kidney and brain were observed. Oral administration of rutin (100 mg/kg) for a period of 45 days significantly (p < 0.05) decreased fasting plasma glucose, increased insulin levels and improved the antioxidant status of diabetic rats by decreasing lipid peroxidative products and increasing enzymic and nonenzymic antioxidants. Normal rats treated with rutin (100 mg/kg) showed no significant (p < 0.05) effect on any of the parameters studied. Histopathological studies of the liver, kidney and brain showed the protective role of rutin. Thus, our study clearly shows that rutin has antioxidant effect in STZ-induced experimental diabetes.  相似文献   

10.
This study was designed to show the effects of onion on blood pressure in N(G)-nitro-L-arginine methyl ester (L-NAME) induced-hypertensive rats and stroke prone spontaneously hypertensive rats (SHRSP) using dried onion at 5% in their diets. For the experiment with L-NAME induced-hypertensive rats, male 6-weeks-old Sprague-Dawley rats were given tap water containing L-NAME to deliver 50 mg/kg BW/day. In this experiment, we found distinct antihypertensive effects of onion on the L-NAME induced-hypertensive rats and the SHRSP. Dietary onion decreased the thiobarbituric acid reactive substances (TBARS) in plasma in these hypertensive rats. Also, onion increased the nitrate/nitrite (products of nitric oxide (NO)) excreted in urine and the NO synthase (NOS) activity in the kidneys in SHRSP. These results suggested that the increased NO caused by the greater NOS activity, and additionally by the increased saving of NO by the antioxidative activity of onion, was one of the cause of the antihypertensive effect of onion in SHRSP. In the L-NAME induced hypertensive rats, onion did not significantly block the inhibition of NOS activity by L-NAME, and decreased nitrate/nitrite excretion in urine was not restored. The mechanism of the antihypertensive effect of onion probably involves increased saving of NO by antioxidative activity of onion in L-NAME induced-hypertensive rats.  相似文献   

11.
The present study was carried out to assess the effect of chloroform insoluble fraction of ethanolic extract of Tridax procumbens (TP) against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced hepatitis in rats. Induction of rats with D-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight) led to a marked increase in lipid peroxidation as measured by thiobarbituric acid reactive substances (TBARS) in liver. Further there was a decline in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferase and the levels of non-enzymic antioxidants namely reduced glutathione, vitamin C and vitamin E. These biochemical alterations were normalised upon pretreatment with TP extract. Thus, the above results suggest that TP (300 mg/kg body weight orally for 10 days) is very effective in allievating the D-GalN/LPS-induced oxidative stress suggesting its antioxidant property.  相似文献   

12.
The prevalence of insulin resistance syndrome increases during menopause with the overproduction of reactive oxygen species and impairment of the free radical scavenger function. Therefore, we investigated the effects of 17β-estradiol (E(2)) and vitamin E, as an antioxidant, on lipid peroxidation and antioxidant levels in the brain cortex and liver of ovariectomized rats as well as on insulin resistance in those rats. Forty female Sprague-Dawley rats, 3?months of age and weighing 231.5?± 9.4 g, were divided into 4 groups: sham, ovariectomized (OVX), OVX treated with E(2) (40 μg/kg subcutaneously), and OVX treated with E(2) and vitamin E (100?mg/kg intraperitoneally). The 4 groups received the appropriate treatment every day for 8?weeks. Levels of glutathione, glutathione peroxidase, superoxide dismutase , catalase, and malondialdehyde in the brain cortex and liver of ovariectomized rats were measured. Also, fasting plasma insulin, glucose, and homeostatis model assessment of insulin resistance (HOMA-IR) were determined. Malondialdehyde increased and antioxidants (glutathione, glutathione peroxidase, catalase, superoxide dismutase) decreased in the brain cortex and liver of OVX rats. Also, fasting glucose, insulin, and HOMA-IR increased in OVX rats. E(2) and E(2) plus vitamin E decreased malondialdehyde and increased antioxidants in the brain cortex and liver of OVX rats. Moreover, they decreased fasting glucose, insulin, and HOMA-IR in ovariectomized rats. This study demonstrates that E(2) and E(2) plus vitamin E supplementation to OVX rats may improve insulin resistance, strengthen the antioxidant system, and reduce lipid peroxidation.  相似文献   

13.
Oxidative stress has been suggested as a contributory factor in development and complication of diabetes. The aim of the study was to evaluate the effect of diosmin (DS) in oxidative stress in streptozotocin-nicotinamide (STZ-NA)-induced diabetic rats by measuring the lipid peroxidation (LPO) as well as the ameliorative properties. Experimental diabetes was induced by a single intraperitoneal (i.p) injection of STZ (45 mg/kg body weight (b.w.)) dissolved in 0.1 mol/L citrate buffer (pH 4.5), 15 min after the i.p administration of NA (110 mg/kg b.w.). Diabetic rats exhibited increased plasma glucose with significant decrease in plasma insulin levels. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and the levels of low-molecular weight antioxidants vitamin C, vitamin E and reduced glutathione (GSH) were decreased while increases in the levels of LPO markers were observed in liver and kidney tissues of diabetic control rats as compared to normal control rats. Oral treatment with DS (100mg/kg/day) for a period of 45 days showed significant ameliorative effects on all the biochemical parameters studied. Biochemical findings were supported by histological studies. These results indicated that DS has potential ameliorative effects in addition to its antidiabetic effect in type 2 diabetic rats.  相似文献   

14.
Kang DG  Hur TY  Lee GM  Oh H  Kwon TO  Sohn EJ  Lee HS 《Life sciences》2002,70(22):2599-2609
A pharmacological inhibition of nitric oxide synthase (NOS) in rats for 4-6 weeks produces renal vasoconstriction, renal dysfunction, and severe hypertension. The present study was aimed at investigating whether Cudrania tricuspidata (C. tricuspidata) water extract ameliorates N(G)-Nitro-L-arginine methylester (L-NAME)-induced hypertension. Treatment of L-NAME (60 mg/L drinking water, 4 weeks) causes a sustained increase in systolic blood pressure (SBP). The concentration of plasma NO metabolites and NO/cGMP productions in the vascular tissues of the L-NAME-treated group were significantly reduced as compared with those in the control. C. tricuspidata water extract blocked increase of SBP in the L-NAME-treated group and restored SBP to normal level. Futhermore, C. tricuspidata water extract was able to preserve the vascular NO/cGMP production and plasma NO metabolites concentration. However, there are no changes in the expression of ecNOS and iNOS of thoracic aorta among the rats of control, L-NAME-treated group, and L-NAME and C. tricuspidata water extract co-treated group. The urinary sodium level, urine volume, and creatinine clearance were significantly higher in rats co-treated with C. tricuspidata water extract and L-NAME than in L-NAME-treated group. Taken together, these results suggest that C tricuspidata water extract prevents the increase of SBP in the L-NAME-induced hypertension that may have been caused by enhanced generation of vascular NO/cGMP.  相似文献   

15.
Protective effects of NOS inhibitors and free radical scavengers in cerebral ischemia are well documented. The present study was undertaken to determine the possible effects of NOS inhibition on brain antioxidants. Levels of both enzymatic [glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD)] and non-enzymatic [reduced glutathione (GSH)] antioxidants following nitric oxide synthase (NOS) inhibition by N(G)-nitro-L-arginine methyl ester (L-NAME), D-NAME or 7-nitroindazole (7-NI) have been investigated. NOS activity and antioxidant levels in the rat cerebellum and medulla were estimated 1 h after treatment with L-NAME (10, 30 and 100 mg/kg, i.p.), D-NAME (100 mg/kg, i.p.) or 7-NI (25 mg/kg, i.p.). L-NAME and 7-NI inhibited NOS activity in a dose-dependent manner. D-NAME also exhibited significant NOS inhibition. The activity of SOD and the GSH level remained unaltered following NOS inhibition. However, L-NAME and D-NAME at 100 mg/kg attenuated GPx activity in the cerebellum, though 7-NI had no effect. L-NAME inhibited catalase activity in medulla only at 30 mg/kg, but had no effect in cerebellum. However, 7-NI (25 mg/kg), D-NAME and L-NAME at 100 mg/kg did not affect catalase activity in the rat brain. Thus, NOS inhibition by the three agents did not have major effects on brain antioxidant levels.  相似文献   

16.
Many individuals with cardiovascular diseases undergo periodic exercise conditioning with or with out medication. Therefore, this study investigated the interaction of exercise training and chronic nitric oxide synthase (NOS) inhibitor (Nitro-L-Arginine Methyl Ester, L-NAME) treatment on blood pressure and its correlation with aortic nitric oxide (NO), antioxidant defense system and oxidative stress parameters in rats. Fisher 344 rats were divided into four groups: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) L-NAME (10 mg/kg, subcutaneous for 8 weeks) and (4) ET + L-NAME. Blood pressure (BP) was monitored weekly for 8 weeks with tail-cuff method. The animals were sacrificed 24 h after last treatments and thoracic aortic rings were isolated and analyzed. Exercise conditioning resulted in a significant increase in respiratory exchange ratio (RER), aortic NO production, NO synthase activity and inducible iNOS protein expression. Training significantly enhanced aortic GSH levels, GSH/GSSG ratio and up-regulation of aortic CuZn-SOD, Mn-SOD, catalase (CAT) glutathione peroxidase (GSH-Px) activity and protein expression and significantly decreased aortic lipid peroxidation. Chronic L-NAME administration resulted in a significant depletion of aortic NO, NOS activity, endothelial (eNOS) and iNOS protein expression, GSH level, GSH/GSSG ratio, down-regulation of aortic antioxidant enzyme activities and protein expressions. Aortic xanthine oxidase (XO) activity significantly increased with increased lipid peroxidation and protein oxidation after L-NAME administration. The biochemical changes were accompanied by increased in BP. Interaction of training and chronic NOS inhibitor treatment resulted in normalization of BP and aortic antioxidant enzyme activity and protein expression, up-regulation of aortic GSH/GSSG ratio, NO levels, Mn-SOD protein expression, depletion of GSSG, protein oxidation and lipid peroxidation. The data suggest that training attenuated the oxidative injury caused by chronic NOS inhibitor treatment by up-regulating the NO and antioxidant systems and lowering the BP in rats.  相似文献   

17.
Effect of methanolic extract of fruits of P. longum (PLM) on the biochemical changes, tissue peroxidative damage and abnormal antioxidant levels in adriamycin (ADR) induced cardiotoxicity in Wistar rats was investigated. PLM was administered to Wistar albino rats in two different doses, by gastric gavage (250 mg/kg and 500 mg/kg) for 21 days followed by ip ADR (15 mg/kg) on 21st day. ADR administration showed significant decrease in the activities of marker enzymes aspartate transaminase, alanine transaminase, lactate dehydrogenase and creatine kinase in heart with a concomitant increase in their activities in serum. A significant increase in lipid peroxide levels in heart of ADR treated rats was also observed. Pretreatment with PLM ameliorated the effect of ADR on lipid peroxide formation and restored activities of marker enzymes. Activities of myocardial antioxidant enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase along with reduced glutathione were significantly lowered due to cardiotoxicity in rats administered with ADR. PLM pretreatment augmented these endogenous antioxidants. Histopathological studies of heart revealed degenerative changes and cellular infiltrations in rats administered with ADR and pretreatment with PLM reduced the intensity of such lesions. The results indicate that PLM administration offers significant protection against ADR induced oxidative stress and reduces the cardiotoxicity by virtue of its antioxidant activity.  相似文献   

18.
We investigated the chemopreventive potential of luteolin on hepatic and circulatory lipid peroxidation and antioxidant status during 1,2-dimethylhydrazine induced colon carcinogenesis in rats. Rats were given a weekly subcutaneous injection of DMH at a dose of 20 mg/kg body weight for 15 weeks. Luteolin (0.2 mg/kg body weight/everyday p.o.) was given at the initiation and also at the postinitiation stages of carcinogenesis to DMH treated rats. The animals were sacrificed at the end of 30 weeks. Enhanced lipid peroxidation in the liver and circulation of tumor bearing rats was accompanied by a significant decrease in the levels of plasma and hepatic reduced glutathione (GSH), glutathione peroxidase (GPx), glutathione-S-transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), vitamin C, vitamin E and beta-carotene in DMH treated rats as compared to the control rats. Intragastric administration of luteolin (0.2mg/kg body weight) to DMH-treated rats significantly reduced the incidence and size of tumor in the colon, reduced lipid peroxidation levels and enhanced the plasma and hepatic activities of GSH, GPx, GST, GR, SOD, CAT, vitamin C, vitamin E and beta-carotene. Thus the chemopreventive efficacy of luteolin against colon carcinogenesis is evidenced by our preliminary studies which showed decreased incidence of tumors and the antiperoxidative and antioxidant effect of luteolin. Further study on the exact mechanism of action of luteolin in preventing colon carcinogenesis is yet to be elucidated.  相似文献   

19.
Orally administered nitrite exerts antihypertensive effects associated with increased gastric nitric oxide (NO) formation. While reducing agents facilitate NO formation from nitrite, no previous study has examined whether antioxidants with reducing properties improve the antihypertensive responses to orally administered nitrite. We hypothesized that TEMPOL (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl) could enhance the hypotensive effects of nitrite in hypertensive rats by exerting antioxidant effects (and enhancing NO bioavailability) and by promoting gastric nitrite-derived NO generation. The hypotensive effects of intravenous and oral sodium nitrite were assessed in unanesthetized freely moving rats with L-NAME (Nω-nitro-L-arginine methyl ester; 100 mg/kg; po)-induced hypertension treated with TEMPOL (18 mg/kg; po) or vehicle. While TEMPOL exerted antioxidant effects in hypertensive rats, as revealed by lower plasma 8-isoprostane and vascular reactive oxygen species levels, this antioxidant did not affect the hypotensive responses to intravenous nitrite. Conversely, TEMPOL enhanced the dose-dependent hypotensive responses to orally administered nitrite, and this effect was associated with higher increases in plasma nitrite and lower increases in plasma nitrate concentrations. In vitro experiments using electrochemical and chemiluminescence NO detection under variable pH conditions showed that TEMPOL enhanced nitrite-derived NO formation, especially at low pH (2.0 to 4.0). TEMPOL signal evaluated by electron paramagnetic resonance decreased when nitrite was reduced to NO under acidic conditions. Consistent with these findings, increasing gastric pH with omeprazole (30 mg/kg; po) attenuated the hypotensive responses to nitrite and blunted the enhancement in plasma nitrite concentrations and hypotensive effects induced by TEMPOL. Nitrite-derived NO formation in vivo was confirmed by using the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (C-PTIO), which blunted the responses to oral nitrite. Our results showed that TEMPOL promotes nitrite reduction to NO in the stomach and enhanced plasma nitrite concentrations and the hypotensive effects of oral sodium nitrite through mechanisms critically dependent on gastric pH. Interestingly, the effects of TEMPOL on nitrite-mediated hypotension cannot be explained by increased NO formation in the stomach alone, but rather appear more directly related to increased plasma nitrite levels and reduced nitrate levels during TEMPOL treatment. This may relate to enhanced nitrite uptake or reduced nitrate formation from NO or nitrite.  相似文献   

20.
Abstract

Protective effects of NOS inhibitors and free radical scavengers in cerebral ischemia are well documented. The present study was undertaken to determine the possible effects of NOS inhibition on brain antioxidants. Levels of both enzymatic [glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD)] and non-enzymatic [reduced glutathione (GSH)] antioxidants following nitric oxide synthase (NOS) inhibition by NG-nitro-L-arginine methyl ester (L-NAME), D-NAME or 7-nitro-indazole (7-NI) have been investigated. NOS activity and antioxidant levels in the rat cerebellum and medulla were estimated 1 h after treatment with L-NAME (10, 30 and 100 mg/kg, i.p.), D-NAME (100 mg/kg, i.p.) or 7-NI (25 mg/kg, i.p.). L-NAME and 7-NI inhibited NOS activity in a dose-dependent manner. D-NAME also exhibited significant NOS inhibition. The activity of SOD and the GSH level remained unaltered following NOS inhibition. However, L-NAME and D-NAME at 100 mg/kg attenuated GPx activity in the cerebellum, though 7-NI had no effect. L-NAME inhibited catalase activity in medulla only at 30 mg/kg, but had no effect in cerebellum. However, 7-NI (25 mg/kg), D-NAME and L-NAME at 100 mg/kg did not affect catalase activity in the rat brain. Thus, NOS inhibition by the three agents did not have major effects on brain antioxidant levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号