首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to study the antimicrobial activity of essential oils obtained from Thymus vulgaris (thyme) and Origanum vulgare (oregano) on phytopathogenic Pseudomonas species isolated from soybean. Strains with characteristics of P. syringae were isolated from leaves of soybean plants with blight symptoms. Ten of these could be identified in Group Ia of LOPAT as P. syringae. Six of these were confirmed as P. syringae using 16S rRNA, indicating the presence of these phytopathogenic bacteria in east and central Argentina. All the phytopathogenic bacteria were re‐isolated and identified from the infected plants. MIC values for thyme were 11.5 and 5.7 mg·ml?1 on P. syringae strains, while oregano showed variability in the inhibitory activity. Both essential oils inhibited all P. syringae strains, with better inhibitory activity than the antibiotic streptomycin. The oils were not bactericidal for all pseudomonads. Both oils contained high carvacrol (29.5% and 19.7%, respectively) and low thymol (1.5%). Natural products obtained from aromatic plants represent potential sources of molecules with biological activity that could be used as new alternatives for the treatment of phytopathogenic bacteria infections.  相似文献   

2.
Rhizosphere bacteria were isolated from roots of young and mature plants with known antagonism to phytopathogenic nematodes, including velvet bean (Mucuna deeringiana), castor bean (Ricinus communis), sword bean (Cannavalia ensiformis), and Abruzzi rye (Secale cereale). Isolates from antagonistic plants were compared to soybean isolates for the frequency of antagonism to the root-knot (Meloidogyne incognita) and soybean cyst (Heterodera schachtii) nematodes in a disease assay with soybean. Bacterial isolates were identified using fatty acid analysis, and isolates which exhibited a significant reduction in incidence of soybean damage from both nematodes were characterized physiologically. The bacterial taxa associated with antagonistic plants were markedly different from soybean bacteria. Isolates from soybean were predominantly Bacillus spp., while those from antagonistic plants included more coryneform and Gram-negative genera. Pseudomonas cepacia and Pseudomonas gladioli were predominant among Gram-negative bacteria on antagonistic plants but were not isolated from soybean. Four to six times the number of bacteria from antagonistic plants, compared to soybean, significantly reduced disease incidence of both nematodes. No single pattern of physiological reactions was common among all these bacteria, suggesting that multiple mechanisms accounted for the observed biological control. The results suggest that rhizospheres of antagonistic plants may be useful sources of potential biological control agents for phytopathogenic nematodes.  相似文献   

3.

Background  

White-rot fungi are primarily the major degraders of lignin, a major obstacle for commercial exploitation of plant byproducts to produce bioethanol and other industrially important products. However, to improve their efficacy for lignin degradation, it has become necessary to genetically modify these organisms using appropriate vectors. Agrobacterium tumefaciens, a soil phytopathogenic bacterium, generally transforms plants by delivering a portion of the resident Ti- plasmid, the T-DNA (transfer DNA). The trans-Kingdom gene transfer is initiated by the activity of Ti-plasmid encoded vir (virulence) genes in response to low-molecular-mass phenolic compounds such as acetosyringone. A. tumefaciens played a major role in plant genetic engineering and basic research in molecular biology, accounting for nearly 80% of the transgenic plants produced so far. Initially, it was believed that only dicotyledons, gymnosperms and a few monocotyledonous species could be transformed by this bacterium; but recent reports have totally changed this scenario by demonstrating that many 'recalcitrant' species not included in its natural host range can also be transformed, especially filamentous fungi.  相似文献   

4.
Nineteen phytopathogenic fluorescent Pseudomonas isolates were isolated from diseased witloof chicory (Cichorium intybus L. var. foliosum Hegi). They were compared with six Ps. fluorescens strains from culture collections, using SDS-PAGE of total cell proteins. The fluorescent pseudomonads examined showed seven different fingerprint types. The major group of phytopathogenic fluorescent pseudomonas revealed a fingerprint type which was frequently found on healthy chicory roots and leaves too. Some, but not all, of the isolates from healthy plants produced typical disease symptoms upon artificial inoculation of etiolated chicory leaves. Infectivity titrations showed a reduced efficiency of the latent pathogen PGSB-7228 to cause disease symptoms on the chicory leaves. The virulence of the latent pathogen is induced in the presence of wounded chicory tissue.  相似文献   

5.
To analyse the frequency of natural gene transfer from genetically modified maize to phytopathogenic bacterium Erwinia stewartii 1082, a marker rescue system based on the restoration of ampicillin resistance gene was used in in vitro and in planta transformation experiments. A set of three vectors containing defined deletions of the blaTEM116 ampicillin resistance gene in pBR322 was constructed. Recombinant strains of Erw. stewartii 1082 harboring these mutant plasmids were used for infection of transgenic maize plants. Restoration of ampicillin resistance was observed only in transformed electro-competent Erw. stewartii 1082 cells. Frequency of the resistance restoration was found to be dependent on the size of the transforming DNA. In addition, highly active non-specific endodeoxyribonuclease was detected in cell-free lysates of Erw. stewartii 1082, rapidly degrading linear DNA fragments. No ampicillin resistant Erw. stewartii 1082 transformants were observed during in planta experiments indicating that this pathogenic bacterium is not naturally transformable under the conditions tested in this study.  相似文献   

6.
The aim of this study was to find the antifungal activities of seven essential oils from some Iranian medicinal plants that have maximum (100%) inhibition effect on the mycelium growth of postharvest phytopathogenic fungi. Among 20 examined species belonging to three families, only 7 species could stop the mycelium growth of phytopathogenic fungi. The selected plants include Trachyspermum ammi, Zataria multiflora Boiss., Satureia hortensis, Caryophillum aromaticus, Menthe piperita, Cuminum cyminum L. and Carum carvi, and fungi include Aspergillus flavus, Botrytis cinerea, Penicillium italicum, Penicillium expansum, Penicillium commune, Rhizopus stolonifer and Rhizopus lyococcus. The results showed that the essential oil of these plants could stop the mycelium growth at 500 ppm, but could not completely inhibit the spore germination, however reduced the spore germination to 80–90%. Among the fungi Rhizopus stolonifer and Rhizopus lyococcus are more resistant to the inhibition effects of essential oils. Among the plants, Cuminum cyminum L. and Carum carvi were slightly weaker than other plants. Also except for Cuminum cyminum L. and Carum carvi, the essential oils of other plants had fungicide effect while these two plants in most cases had fugistatic effect. The results showed that these essential oils can be used as an effective alternative control method.  相似文献   

7.
8.
Six medicinal plants such as Amaranthus spinosus, Barbeya oleoides, Clutia lanceolata, Lavandula pubescens, Maerua oblongifolia and Withania somnifera collected from different locations in the southwestern part of Saudi Arabia were tested for antifungal activities against five plant pathogenic fungi causing serious diseases of vegetable crops. These fungi were Alternaria brassicae, Alternaria solani, Botrytis fabae, Fusarium solani and Phytophthora infestans. Aqueous plant extracts reduced mycelial growth and inhibited spore germination of all fungi tested. It is clear that the aqueous extract of Lavandula pubescens leaves was the best for controlling all phytopathogenic fungi under study. These results suggested that medicinal plant extracts play an important role in controlling the phytopathogenic fungi.  相似文献   

9.
Summary We transformed tomato (Lycopersicon esculentum L.) by using Agrobacterium rhizogenes containing two independent plasmids: the wild-type Ri-plasmid, and the vector plasmid, pARC8. The T-DNA of the vector plasmid contained a marker gene (Nos/Kan) encoding neomycin phosphotransferase which conferred resistance to kanamycin in transformed plant cells. Transgenic plants (R 0) with normal phenotype were regenerated from transformed organogenic calli by the punctured cotyledon transformation method. Southern blot analysis of the DNA from these transgenic plants showed that one or two copies of the vector plasmid T-DNA, but none of the Ri-plamid T-DNA, were integrated into the plant genome. Different transgenic plants derived from the same callus clone showed an identical DNA banding pattern, indicating the non-chimeric origin of these plants. We also transformed tomato by using A. tumefaciens strain LBA4404 containing a disarmed Ti-plasmid (pAL4404), and a vector plasmid (pARC8). Transgenic plants derived via A. tumefaciens transformation, like those via A. rhizogenes, contained one to two copies of the integrated vector T-DNA. The kanamycin resistance trait in the progeny (R 1) of most transgenic plants segregated at a ratio of 3:1, suggesting that the vector T-DNAs were integrated at a single site on a tomato chromosome. In some cases, the expression of the marker gene (Nos/Kan) seemed to be suppressed or lost in the progeny.  相似文献   

10.
Chitinase, capable of degrading the cell walls of invading phytopathogenic fungi, plays an important role in plant defense response, particularly when this enzyme is overexpressed through genetic engineering. In the present study, Brassica plant (Brassica juncea L.) was transformed with chitinase gene tagged with an overexpressing promoter 35 S CaMV. The putative transgenics were assayed for their inhibitory activity against Alternaria brassicae, the inducer of Alternaria leaf spot of Brassica both in vitro and under polyhouse conditions. In in vitro fungal growth inhibition assays, chitinase inhibited the fungal colony size by 12-56% over the non-trangenic control. The bioassay under artificial epiphytotic conditions revealed the delay in the onset of disease as well as reduced lesion number and size in 35S-chitinase Brassica as compared to the untransformed control plants.Received: 23 September 2002 / Accepted: 24 October 2002  相似文献   

11.
《Luminescence》2003,18(4):207-213
In this study we describe an ef?cient stable genetic transformation of the phytopathogenic bacterium Erwinia amylovora using a recombinant expression vector encoding the ?re?y luciferase gene of Photinus pyralis, which is further controlled by IPTG‐inducible promoter. Stably transformed E. amylovora cells maintain the same infectivity as the wild‐type strain and, after induction with IPTG, produce luciferase. Luminescence produced by the action of luciferase on an exogenous substrate was easily detectable by a simple and rapid bioluminescent assay (BL). The transformed E. amylovora strain maintains the same high emission level, even after passage in pears, until about 15 days post‐infection. Our ?ndings therefore show that the luciferase assay can be conveniently used to follow the bacterial movement in plant tissue and its dissemination in controlled environments.  相似文献   

12.
Populations of rhizosphere microflora of plants which have demonstrated an antagonism toward phytopathogenic nematodes, including velvet bean (Mucuna deeringiana), castor bean (Ricinus communis), sword bean (Cannavalia ensiformis), and Abruzzi rye (Secale cereale)., were compared to the rhizosphere microflora of soybean. Population densities of total bacteria were significantly lower for young Abruzzi rye, mature velvet bean, and mature castor bean, and fungi from mature velvet bean than for soybean. Population densities of spore-forming bacilli were significantly higher for Abruzzi rye than for soybean. Population densities of coryneform bacteria for mature sword bean and velvet bean were significantly higher than for soybean. All seedling test poants supported significantly higher population densities of chitinolytic fungi than soybean. On mature plants, chitinolytic bacteria were significantly higher on all test plants except velvet bean. Populations of endophytic root bacteria for three of the four test plants were significantly higher than for soybean. Fifty randomly, selected bacterial strains from seedlings and mature plants of soybean and each test plant were characterized for various physiological traits associated with rhizosphere competence, including chitinolytic activity, gelatin hydrolysis, production of hydrogen cyanide, starch hydrolysis, phenol oxidation, siderophore production, and production of antifungal compounds (inhibition ofPythium ultimum and/orRhizoctonia solani). There was a strong trend to increased frequency in each of the physiological tests with bacteria from test plants in comparison to those from soybean. The frequency of starch hydrolysis was up to 24 times greater for strains from test plants than for soybean strains, and siderophore production was up to 22 times more frequent for test plants. These results demonstrate that, compared to soybean, plants with properties antagonistic to phytopathogenic nematodes have a distinct rhizosphere microflora.  相似文献   

13.
The protein Tarin 1, from Colocasia esculenta, was expressed in Nicotiana tabacum. Bioassays were done on plants expressing Tarin 1 at different levels using Spodoptera frugiperda larvae, various bacteria and fungi and the root‐knot nematode Meloidogyne javanica. It was found that S. frugiperda larvae fed on transformed plants had retarded and lower pupation, lower accumulated biomass and higher mortality rate than larvae fed on control plants. Also, Tarin 1 was found to inhibit the growth in vitro of Pseudomonas syringae pv. tomato. For Meloidogyne javanica, both relative replication and root damage were greater in control plants than in transformed plants, but the results were not statistically significant. This work illustrates the effects of plants expressing Tarin 1, on the growth and development of insects and bacteria, and shows its potential for pest management.  相似文献   

14.
Hexane extracts of some algae belonging to the Dictyotales collected over a 12 month period were tested for their antifungal activity using human pathogenic fungi (yeasts, moulds and dermatophytes) and phytopathogenic fungi responsible for diseases in Mediterranean plants and trees. The three algal species tested (Dictyota dichotoma, Dictyota dichotoma var. implexa, Dilophus spiralis) exhibited a wide spectrum of antifungal activity which varied during the seasons.  相似文献   

15.
Transgenic Gladiolus plants that contain either Cucumber mosaic virus (CMV) subgroup I coat protein, CMV subgroup II coat protein, CMV replicase, a combination of the CMV subgroups I and II coat proteins, or a combination of the CMV subgroup II coat protein and replicase genes were developed. These plants were multiplied in vitro and challenged with purified CMV isolated from Gladiolus using a hand-held gene gun. Three out of 19 independently transformed plants expressing the replicase gene under control of the duplicated CaMV 35S promoter were found to be resistant to CMV subgroup I. Three out of 21 independently transformed plants with the CMV subgroup II coat protein gene under control of the Arabidopsis UBQ3 promoter were resistant to CMV subgroup II. Eighteen independently transformed plants with either the CMV subgroup I coat protein or a combination of CMV subgroups I and II coat proteins were challenged and found to be susceptible to both CMV subgroups I or II. Virus resistant plants with the CMV replicase transgene expressed much lower RNA levels than resistant plants expressing the CMV subgroup II coat protein. This work will facilitate the evaluation of virus resistance in transgenic Gladiolus plants to yield improved floral quality and productivity.  相似文献   

16.
The green fluorescent protein (GFP) was used as a visual selectable marker to produce transgenic coffee (Coffea canephora) plants following Agrobacterium-mediated transformation. The binary vector pBECKS 2000.7 containing synthetic gene for GFP (sgfp) S65T and the hygromycin phosphotransferase gene hph both controlled by 35S cauliflower mosaic virus CaMV35S promoters was used for transformation. Embryogenic cultures were initiated from hypocotyls and cotyledon leaves of in vitro grown seedlings and used as target material. Selection of transformed tissue was carried out using GFP visual selection as the sole screen or in combination with a low level of antibiotics (hygromycin 10 mg/L), and the efficiency was compared with antibiotics selection alone (hygromycin 30 mg/L). GFP selection reduced the time for transformed somatic embryos formation from 18 weeks on a hygromycin (30 mg/L) antibiotics containing medium to 8 weeks. Moreover, visual selection of GFP combined with low level of antibiotics selection improved the transformation efficiency and increased the number of transformed coffee plants compared to selection in the presence of antibiotics. Molecular analysis confirmed the presence of the sgfp-S65T coding region in the regenerated plants. Visual screening of transformed cells using GFP by Agrobacterium-mediated transformation techniques was found to be efficient and therefore has the potential for development of selectable marker-free transgenic coffee plants.  相似文献   

17.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   

18.
An efficient and reproducible system for Agrobacterium-mediated transformation of the pear (Pyrus communis L.) cultivar Spadona was developed. Leaf explants of in vitro propagated plants were cocultivated with the disarmed Agrobacterium strain EHA105 harboring the plasmid pME504, carrying the uidA-intron and nptII genes. Under selective conditions, 5% of the plantlets regenerated and were positively stained for GUS. However, most of the GUS-positive plants re-callused and subsequently died, leaving only 0.3–0.8% of these plantlets to reach maturity. In order to identify transformed shoots at early stages of regeneration, we introduced the green fluorescent protein (GFP) into the pear cultivar Spadona using the plasmid PZP carrying the nuclear-targeted GFP and nptII genes. High expression levels of GFP were detected in transgenic cells as early as 7 days after transformation. GFP marked-callii and transformed plants were observed after 14 and 24 days, respectively. Fluorescence microscopy screening of transformed plant material, under the selection of kanamycin, increased the transformation frequency to 3.0–4.0%. We conclude that the introduction of GFP improves the selection of transformed plants of Spadona pear.  相似文献   

19.
Summary Genetic transformation systems have been established for Brassica nigra (cv. IC 257) by using an Agrobacterium binary vector as well as by direct DNA uptake of a plasmid vector. Both the type of vectors carried nptII gene and gus gene. For Agrobacterium mediated transformation, hypocotyl tissue explants were used, and up to 33% of the explants produced calli on selection medium. All of these expressed B-glucuronidase gene on histochemical staining. Protoplasts isolated from hypocotyl tissues of seedlings could be transformed with a plasmid vector by FEG mediated uptake of vector DNA. A number of fertile kanamycin resistant plants were obtained using both the methods, and their transformed nature was confirmed by Southern blot analysis and histochemical staining for GUS. Backcrossed and selfed progenies of these transformed plants showed the presence of npt and gus genes.  相似文献   

20.
RbcS-antisense transformed tobacco plants (Nicotiana tabacum cv. Petit Havana) expressing reduced quantities of Rubisco protein were used to examine the role of Rubisco quantity in determining ozone (O3) sensitivity. Transformed and wild-type plants were exposed to O3 in the greenhouse and in the field. Stomatal conductance, net photosynthesis and Rubisco protein quantity were measured at various times. Antisense-transformed genotypes responded to O3 by exhibiting rapid, severe foliar necrosis. The wild-type plants responded more slowly, exhibiting limited injury. Decreases in stomatal conductance, net photosynthesis or Rubisco quantity in plants exposed to O3 were not observed in asymptomatic leaves. Total biomass was lower for the transformed genotypes and decreased in both genotypes after exposure to O3. Shoot–root ratio and specific leaf area were higher in the transformed genotypes and increased in both genotypes with exposure to O3. Measurements of intercellular airspace demonstrated the presence of larger intercellular spaces in the transformed plants. The indirect effects of the rbcS antisense transformation, including morphological changes in the leaf, probably rendered the transformed plants more sensitive to the oxidant. The decreased quantity of Rubisco is not thought to be directly related to increased O3 sensitivity in the transformed plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号