首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Aging is accompanied by a reduction in the generation of B lymphocytes leading to impaired immune responses. In this study, we have investigated whether the decline in B lymphopoiesis is due to age‐related defects in the hematopoietic stem cell compartment. The ability of hematopoietic stem cells from old mice to generate B cells, as measured in vitro, is decreased 2–5‐fold, while myeloid potential remains unchanged. This age‐related decrease in B‐cell potential is more marked in common lymphoid progenitors (CLP) and was associated with reduced expression of the B‐lineage specifying factors, EBF and Pax5. Notably, retrovirus‐mediated expression of EBF complemented the age‐related loss of B‐cell potential in CLP isolated from old mice. Furthermore, transduction of CLP from old mice with a constitutively active form of STAT5 restored both EBF and Pax5 expression and increased B‐cell potential. These results are consistent with a mechanism, whereby reduced expression of EBF with age decreases the frequency with which multipotent hematopoietic progenitors commit to a B‐cell fate, without altering their potential to generate myeloid cells.  相似文献   

3.
4.
5.
IL-7 plays a critical role in B cell fate decision by regulating early B cell factor (EBF) expression. However, it was not clear when IL-7 stimulation is necessary in hemato-/lymphopoiesis in adult mice. Here we show that pre-proB cells derived from IL-7-/- mice have lost B cell potential, despite up-regulation of EBF expression following IL-7 stimulation. Pre-proB cells from wild-type mice can give rise to proB cells in the absence of IL-7. In this case, EBF up-regulation during the transition from the pre-proB to proB stages occurs normally. In contrast, EBF expression by IL-7-/- pre-proB cells after IL-7 stimulation is approximately 20 times lower than wild-type pre-proB cells. In addition, only multipotent progenitors with higher levels of ectopic EBF can give rise to proB cells in the absence of IL-7. Therefore, the primary function of IL-7 before the pre-proB stage in B cell development is to maintain the EBF expression level above a certain threshold, which is necessary for pre-proB cells to further transit to the proB stage.  相似文献   

6.
7.
8.
9.
10.
The earliest thymic progenitors (ETPs) were recently shown to give rise to both lymphoid and myeloid cells. Whereas the majority of ETPs are derived from IL-7Rα-positive cells and give rise exclusively to T cells, the origin of the myeloid cells remains undefined. In this study, we show both in vitro and in vivo that IL-13Rα1(+) ETPs yield myeloid cells with no potential for maturation into T cells, whereas IL-13Rα1(-) ETPs lack myeloid potential. Moreover, transfer of lineage-negative IL-13Rα1(+) bone marrow stem cells into IL-13Rα1-deficient mice reconstituted thymic IL-13Rα1(+) myeloid ETPs. Myeloid cells or macrophages in the thymus are regarded as phagocytic cells whose function is to clear apoptotic debris generated during T cell development. However, the myeloid cells derived from IL-13Rα1(+) ETPs were found to perform Ag-presenting functions. Thus, IL-13Rα1 defines a new class of myeloid restricted ETPs yielding APCs that could contribute to development of T cells and the control of immunity and autoimmunity.  相似文献   

11.
In vitro differentiation of embryonic stem (ES) cells is often used to study hematopoiesis. However, the differentiation pathway of lymphocytes, in particular natural killer (NK) cells, from ES cells is still unclear. Here, we used a multi-step in vitro ES cell differentiation system to study lymphocyte development from ES cells, and to characterize NK developmental intermediates. We generated embryoid bodies (EBs) from ES cells, isolated CD34(+) EB cells and cultured them on OP9 stroma with a cocktail of cytokines to generate cells we termed ES-derived hematopoietic progenitors (ES-HPs). EB cell subsets, as well as ES-HPs derived from EBs, were tested for NK, T, B and myeloid lineage potentials using lineage specific cultures. ES-HPs derived from CD34(+) EBs differentiated into NK cells when cultured on OP9 stroma with IL-2 and IL-15, and into T cells on Delta-like 1-transduced OP9 (OP9-DL1) with IL-7 and Flt3-L. Among CD34(+) EB cells, NK and T cell potentials were detected in a CD45(-) subset, whereas CD45(+) EB cells had myeloid but not lymphoid potentials. Limiting dilution analysis of ES-HPs generated from CD34(+)CD45(-) EB cells showed that CD45(+)Mac-1(-)Ter119(-) ES-HPs are highly enriched for NK progenitors, but they also have T, B and myeloid potentials. We concluded that CD45(-)CD34(+) EB cells have lymphoid potential, and they differentiate into more mature CD45(+)Lin(-) hematopoietic progenitors that have lymphoid and myeloid potential. NK progenitors among ES-HPs are CD122(-) and they rapidly acquire CD122 as they differentiate along the NK lineage.  相似文献   

12.
The molecular mechanisms regulating lymphocyte lineage commitment remain poorly characterized. To explore the role of the IL7R in this process, we generated transgenic mice that express a constitutively active form of STAT5 (STAT5b-CA), a key downstream IL7R effector, throughout lymphocyte development. STAT5b-CA mice exhibit a 40-fold increase in pro-B cells in the thymus. As documented by BrdU labeling studies, this increase is not due to enhanced B cell proliferation. Thymic pro-B cells in STAT5b-CA mice show a modest increase in cell survival ( approximately 4-fold), which correlates with bcl-x(L) expression. However, bcl-x(L) transgenic mice do not show increases in thymic B cell numbers. Thus, STAT5-dependent bcl-x(L) up-regulation and enhanced B cell survival are not sufficient to drive the thymic B cell development observed in STAT5b-CA mice. Importantly, thymic pro-B cells in STAT5b-CA mice are derived from early T cell progenitors (ETPs), suggesting that STAT5 acts by altering ETP lineage commitment. Supporting this hypothesis, STAT5 binds to the pax5 promoter in ETPs from STAT5b-CA mice and induces pax5, a master regulator of B cell development. Conversely, STAT5b-CA mice exhibit a decrease in the DN1b subset of ETPs, demonstrating that STAT5 activation inhibits early T cell differentiation or lineage commitment. On the basis of these findings, we propose that the observed expression of the IL-7R on common lymphoid progenitors, but not ETPs, results in differential STAT5 signaling within these distinct progenitor populations and thus helps ensure appropriate development of B cells and T cells in the bone marrow and thymic environments, respectively.  相似文献   

13.
14.
15.
The role of IL-7 in lymphoid development and T cell homeostasis has been extensively documented. However, the role of IL-7 in human B cell development remains unclear. We used a xenogeneic human cord blood stem cell/murine stromal cell culture to study the development of CD19+ B-lineage cells expressing the IL-7R. CD34+ cord blood stem cells were cultured on the MS-5 murine stromal cell line supplemented with human G-CSF and stem cell factor. Following an initial expansion of myeloid/monocytoid cells within the initial 2 wk, CD19+/pre-BCR- pro-B cells emerged, of which 25-50% expressed the IL-7R. FACS-purified CD19+/IL-7R+ cells were larger and, when replated on MS-5, underwent a dose-dependent proliferative response to exogenous human IL-7 (0.01-10.0 ng/ml). Furthermore, STAT5 phosphorylation was induced by the same concentrations of human IL-7. CD19+/IL-7R- cells were smaller and did not proliferate on MS-5 after stimulation with IL-7. In a search for cytokines that promote human B cell development in the cord blood stem cell/MS-5 culture, we made the unexpected finding that murine IL-7 plays a role. Murine IL-7 was detected in MS-5 supernatants by ELISA, recombinant murine IL-7 induced STAT5 phosphorylation in CD19+/IL-7R+ pro-B cells and human B-lineage acute lymphoblastic leukemias, and neutralizing anti-murine IL-7 inhibited development of CD19+ cells in the cord blood stem cell/MS-5 culture. Our results support a model wherein IL-7 transduces a replicative signal to normal human B-lineage cells that is complemented by additional stromal cell-derived signals essential for normal human B cell development.  相似文献   

16.
17.
IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.  相似文献   

18.
Thymic atrophy is an age-associated decline in commitment to the T cell lineage considered to be associated with defective TCR beta-chain rearrangement. Both IL-7 and stem cell factor (SCF) have dominant roles at this stage of triple negative (TN) thymocyte development. Because there is no age-associated decrease in the number of CD44(+)CD25(-)CD3(-)CD4(-)CD8(-) cells, this study investigated whether alterations in apoptosis within the TN pathway accounted for diminishing thymocyte numbers with age. Here we show significant age-associated increases in apoptotic TN thymocytes, specifically within CD44(+)CD25(+) and CD44(-)CD25(+) subpopulations, known to be the location of TCR beta-chain rearrangement. IL-7 added to TN cultures established from old mice significantly both reduces apoptosis and increases the percentage of live cells within CD44(+)CD25(+) and CD44(-)CD25(+) subpopulations after 24 h, with prosurvival effects remaining after 5 days. SCF failed to demonstrate prosurvival effects in old or young cultures, and IL-7 and SCF together did not improve upon IL-7 alone. IL-7R expression did not decline with age, ruling out the possibility that the age-associated increase in apoptosis was attributed to reduced IL-7R expression. Compared with PBS, treatment of old mice with IL-7 produced significant increases in live TN cells. By comparison, treatment with SCF failed to increase live TN numbers, and IL-7 and SCF together failed to significantly improve thymopoiesis above that shown by IL-7 alone. Thus, treatment with IL-7 alone can reverse the age-associated defect in TN thymocyte development revealed by in vitro studies to be located at the stages of TCR beta-chain rearrangement.  相似文献   

19.
T cells undergo chemokine receptor switches during activation and differentiation in secondary lymphoid tissues. Here we present evidence that dendritic cells can induce changes in T cell expression of chemokine receptors in two continuous steps. In the first switch over a 4-5 day period, dendritic cells up-regulate T cell expression of CXCR3 and CXCR5. Additional stimulation leads to the second switch: down-regulation of lymphoid tissue homing related CCR7 and CXCR5, and up-regulation of Th1/2 effector tissue-targeting chemoattractant receptors such as CCR4, CCR5, CXCR6, and CRTH2. We show that IL-4 and IL-12 can determine the fate of the secondary chemokine receptor switch. IL-4 enhances the generation of CCR4(+) and CRTH2(+) T cells, and suppresses the generation of CXCR3(+) T cells and CCR7(-) T cells, while IL-12 suppresses the level of CCR4 in responding T cells. Furthermore, IL-4 has positive effects on generation of CXCR5(+) and CCR7(+) T cells during the second switch. Our study suggests that the sequential switches in chemokine receptor expression occur during naive T cell interaction with dendritic cells. The first switch of T cell chemokine receptor expression is consistent with the fact that activated T cells migrate within lymphoid tissues for interaction with B and dendritic cells, while the second switch predicts the trafficking behavior of effector T cells away from lymphoid tissues to effector tissue sites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号