首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insulin-like growth factors (IGF) I and II are potent mitogens for a variety of cancer cells. The proliferative and anti-apoptotic actions of IGF are mediated by the IGF-I receptor (IGF-IR), to which both IGF-I and IGF-II bind with high affinity. To investigate the mitogenic and anti-apoptotic activities of IGF-IR and to achieve better inhibition of IGF-IR function, single-chain antibodies against human IGF-IR (αIGF-IR scFvs) were constructed and expressed. IgG cDNA encoding variable regions of light and heavy chains (VL and VH) from mouse IgG were cloned from a hybridoma producing the 1H7 αIGF-IR monoclonal antibody [Li et al., Biochem Biophys Res Commun 196: 92–98 (1993)]. The splice-overlap extension polymerase chain reaction was used to assemble a gene encoding the αIGF-IR scFv, including the N-terminal signal peptide, VL, linker peptide, VH, and C-terminal DYKD tag. Two types of soluble αIGF-IR scFvs, a prototype αIGF-IR scFv and its alternative type αIGF-IR scFv-Fc, were constructed and expressed in murine myeloma cells. αIGF-IR scFv-Fc, containing the human IgG1 Fc domain, was stably expressed in NS0 myeloma cells, using a glutamine synthase selection system, and purified from the conditioned medium of stable clones by protein-A–agarose chromatography. Levels of αIGF-IR scFv-Fc expression ranged from 40 mg/l to 100 mg/l conditioned medium. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis under reducing and nonreducing conditions indicated that αIGF-IR scFv-Fc is a dimeric antibody. αIGF-IR scFv-Fc retained general characteristics of the parental 1H7 monoclonal antibody except that its binding affinity for IGF-IR was estimated to be approximately 108 M−1, which was one-order of magnitude lower than that of 1H7 monoclonal antibody. Injection of αIGF-IR scFv-Fc (500 μg/mouse, twice a week) significantly suppressed MCF-7 tumor growth in athymic mice. These results suggest that the αIGF-IR scFv-Fc is a first-generation recombinant αIGF-IR for the potential development of future αIGF-IR therapeutics. Received: 21 January 2000 / Accepted: 7 March 2000  相似文献   

2.
《MABS-AUSTIN》2013,5(5):475-480
The insulin-like growth factors (IGFs) signaling system has been shown to play important roles in neoplasia. The IGF receptor type 1 (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and there is substantial experimental and clinical evidence that targeting IGF-IR is a promising therapeutic strategy against cancer. It has been previously reported that a mouse monoclonal antibody (mAb), 4G11, blocked IGF-I binding to IGF-IR and downregulated the IGF-IR in MCF-7 cells. We cloned this antibody, constructed a human-mouse chimeric antibody, designated m590, and characterized it. The chimeric IgG1 m590 bound to cell-associated IGF-IR on NWT c43 stably transfected cells and MCF-7 breast cancer cells as efficiently as the parental murine antibody. Using purified IGF-IR extracellular domains, we found that both the chimeric m590 and the parental 4G11 antibodies bind to conformational epitopes on IGF-IR. Neither of these antibodies bound to the insulin receptor (IR) ectodomain. Furthermore, IgG1 m590 blocked the binding of IGF-I and IGF-II to IGF-IR, and inhibited both IGF-I and IGF-II induced phosphorylation of IGF-IR in MCF-7 cells. These results suggest that m590 could be an useful antibody in diagnosis and treatment of cancer, as well as a research tool.  相似文献   

3.
The insulin-like growth factors (IGFs) signaling system has been shown to play important roles in neoplasia. The IGF receptor type 1 (IGF-IR) is overexpressed in many types of solid and hematopoietic malignancies, and there is substantial experimental and clinical evidence that targeting IGF-IR is a promising therapeutic strategy against cancer. It has been previously reported that a mouse monoclonal antibody (mAb), 4G11, blocked IGF-I binding to IGF-IR and downregulated the IGF-IR in MCF-7 cells. We cloned this antibody, constructed a human-mouse chimeric antibody, designated m590, and characterized it. The chimeric IgG1 m590 bound to cell-associated IGF-IR on NWT c43 stably transfected cells and MCF-7 breast cancer cells as efficiently as the parental murine antibody. Using purified IGF-IR extracellular domains, we found that both the chimeric m590 and the parental 4G11 antibodies bind to conformational epitopes on IGF-IR. Neither of these antibodies bound to the insulin receptor (IR) ectodomain. Furthermore, IgG1 m590 blocked the binding of IGF-I and IGF-II to IGF-IR, and inhibited both IGF-I and IGF-II induced phosphorylation of IGF-IR in MCF-7 cells. These results suggest that m590 could be an useful antibody in diagnosis and treatment of cancer, as well as a research tool.  相似文献   

4.
Mitogen-activated protein (MAP) kinase mediates cell proliferation, cell differentiation, and cell survival by regulating signaling pathways activated by receptor protein tyrosine kinases (RPTKs), including the insulin-like growth factor 1 receptor (IGF-IR). We analyzed the upstream signaling components of the MAP kinase pathway, including RPTKs, in human breast cancer cell lines and found that some of those components were overexpressed. Importantly, signaling molecules such as IGF-IR, insulin receptor, and insulin receptor substrate 1, leading to the MAP kinase pathway, were found to be concomitantly overexpressed within certain tumor lines, i.e., MCF-7 and T-47D. When compared with the nonmalignant and other breast tumor lines examined, MCF-7 and T-47D cells displayed a more rapid, robust, and sustained MAP kinase activation in response to insulin-like growth factor I (IGF-I) stimulation. By contrast, IGF-I treatment led to a sustained down-regulation of MAP kinase in those lines overexpressing ErbB2-related RPTKs. Interestingly, blocking the MAP kinase pathway with PD098059 had the greatest antiproliferative effect on MCF-7 and T-47D among the normal and tumor lines tested. Furthermore, addition of an IGF-IR blocking antibody to growth medium attenuated the ability of PD098059 to suppress the growth of MCF-7 and T-47D cells. Thus, our study suggests that concomitant overexpression of multiple signaling components of the IGF-IR pathway leads to the amplification of IGF-I-mediated MAP kinase signaling and resultant sensitization to PD098059. The enhanced sensitivity to PD098059 implies an increased requirement for the MAP kinase pathway in those breast cancer cells, making this pathway a potential target in the treatment of selected breast malignancies.  相似文献   

5.
Drug resistance to tamoxifen (Tam) is a significant clinical problem but the mechanism through which this occurs remains elusive. We have developed a number of xenograft models of Tam-stimulated growth that model breast cancer progression using estrogen receptor positive MCF-7 or T47D breast cancer cells. When estrogen-stimulated T47D:E2 tumors are treated long term with Tam, Tam-stimulated tumors develop (T47D:Tam) that are stimulated by both estrogen and Tam. When HER-2/neu status is determined, it is clear that the T47D:Tam tumors express significantly higher levels of HER-2/neu protein by immunohistochemistry and mRNA as measured by real-time RT-PCR. The T47D:Tam tumors also express higher levels of estrogen receptor and progesterone receptor protein than their estrogen-stimulated T47D:E2 counterparts. We compared out results to the MCF-7 model of Tam-stimulated growth. The MCF-7:Tam ST (estrogen- and Tam-stimulated) and MCF-7:Tam LT (estrogen-inhibited, Tam-stimulated) were bilaterally transplanted to account for any mouse to mouse variation and characteristic growth patterns were observed. TUNEL staining was performed on MCF-7:Tam LT treated with either estrogen or Tam and it was concluded that estrogen-inhibited tumor growth was a result of increased apoptosis. Three phases of tumor progression are described that involve increases in HER-2/neu expression, de-regulation of estrogen receptor expression and increases in apoptosis which in concert determine the phenotype of drug resistance to Tam.  相似文献   

6.
We previously established that exposure of the estrogen receptor (ER) positive MCF-7 human breast cancer cell line to 17-β-estradiol (E2) results in the post-confluent development of multilayered cellular aggregates (foci) which is consistent with the in vivo cancer phenotype of uncontrolled cellular proliferation. In this investigation, the interaction between the insulin-like growth factor receptor (IGF-IR) and ER-signaling systems in regard to post-confluent focus development was studied. We demonstrated that focus development requires the presence of E2 and insulin-like growth factor I (IGF-I) or insulin-like growth factor II (IGF-II), as well as intact ER and IGF-IR.

Focus development in MCF-7 cultures, which occurs only after formation of a confluent monolayer, coincides with E2 regulation of key members of the IGF-signaling system such as IGF-IR, IGF-II, insulin receptor substrate 1 (IRS-1), and insulin-like growth factor binding protein 3 (IGFBP-3), as demonstrated by real-time polymerase chain reaction (PCR). To establish the relevancy of an intact IGF-signaling system for foci formation, we generated stable clones from MCF-7 with IGF-IR suppressed by siRNA. Results from these studies implicate signaling through the IGF-IR to be an integral requirement for E2-dependent post-confluent proliferation and focus formation. In summary, these studies establish the interactive roles of IGFs and E2 in the post-confluent development of foci, and will allow subsequent identification of targets for therapeutic intervention in the control and treatment of estrogen-dependent breast cancer.  相似文献   


7.
Previously we have shown that MCF-7 human breast tumor growth is stimulated after prolonged treatment with dietary soy protein isolate (SPI). However, the effects are attenuated when SPI is combined with flaxseed (FS). This study determined the changes that occur in tumor growth biomarkers, after both short- and long-term treatment with SPI, FS or their combination, to help identify signaling pathways potentially involved in SPI-stimulated tumor growth. Ovariectomized mice with established MCF-7 tumors were fed basal diet (control), 20%SPI, 10%FS, or SPI+FS for 2 or 25 weeks. After 2 weeks, there were no differences in tumor size, however, compared with control, SPI-treated tumors had higher IGF-IR and cyclin D1 while FS and SPI+FS-fed mice had lower pMAPK expression. After 25 weeks, SPI-treated tumors were larger, had higher proliferation, ERalpha, cyclin D1, IGF-IR, and pMAPK and lower ERbeta and HER2 levels. When combined with FS, however, the effects on these tumor biomarkers induced by SPI were attenuated. This study demonstrates that SPI and FS differently modulate tumor biomarkers of estrogen and growth factor signaling pathways, after both short- and long-term treatment, which may indicate a role of these pathways in the tumor stimulatory effects of SPI and the tumor inhibitory effects of FS.  相似文献   

8.
Although many multiple myeloma (MM) patients initially respond to cytotoxic therapy, most eventually relapse. Novel therapeutic strategies employing a combination of chemotherapy with targeted biologics may significantly enhance the response of tumor cells to treatment. We tested a fully human anti-IGF-IR antibody (A12) against MM, and showed specific inhibition of IGF-I or serum -induced IGF-IR signaling in MM cells in vitro. The A12 as a single agent was demonstrated to exert modest to significant inhibition of tumor growth in vivo in various subcutaneous xenograft MM models. The A12 was also evaluated in a disseminated xenograft MM.1S NOD/SCID model as monotherapy or in combination with other drugs (bortezomib, melphalan) currently in clinical use. The tumor burden, as determined by luciferase bioimaging, was sharply decreased, and overall survival significantly prolonged when the therapies were combined. Immunohistochemical analysis demonstrated that the A12 treated tumors had significantly decreased vascularization compared to control tumors. Furthermore, most MM lines constitutively secreted significant quantities of VEGF, and this was enhanced following IGF-I treatment. Inhibition of IGF-IR by the A12 in vitro suppressed both constitutive and IGF-I-induced secretion of VEGF, indicating that a putative anti-angiogenic mechanism associated with the A12 treatment may contribute to its anti-tumor effect.  相似文献   

9.
Hyperactivation of the insulin-like growth factor I receptor (IGF-IR) contributes to primary breast cancer development, but the role of the IGF-IR in tumor metastasis is unclear. Here we studied the effects of the IGF-IR on intercellular connections mediated by the major epithelial adhesion protein, E-cadherin (E-cad). We found that IGF-IR overexpression markedly stimulated aggregation in E-cad-positive MCF-7 breast cancer cells, but not in E-cad-negative MDA-MB-231 cells. However, when the IGF-IR and E-cad were co-expressed in MDA-MB-231 cells, cell-cell adhesion was substantially increased. The IGF-IR-dependent cell-cell adhesion of MCF-7 cells was not related to altered expression of E-cad or alpha-, beta-, or gamma-catenins but coincided with the up-regulation of another element of the E-cad complex, zonula occludens-1 (ZO-1). ZO-1 expression (mRNA and protein) was induced by IGF-I and was blocked in MCF-7 cells with a tyrosine kinase-defective IGF-IR mutant. By co-immunoprecipitation, we found that ZO-1 associates with the E-cad complex and the IGF-IR. High levels of ZO-1 coincided with an increased IGF-IR/alpha-catenin/ZO-1-binding and improved ZO-1/actin association, whereas down-regulation of ZO-1 by the expression of an anti-ZO-1 RNA inhibited IGF-IR-dependent cell-cell adhesion. The results suggested that one of the mechanisms by which the activated IGF-IR regulates E-cad-mediated cell-cell adhesion is overexpression of ZO-1 and the resulting stronger connections between the E-cad complex and the actin cytoskeleton. We hypothesize that in E-cad-positive cells, the IGF-IR may produce antimetastatic effects.  相似文献   

10.
Insulin-like growth factor I (IGF-I) promotes the motility of different cell types. We investigated the role of IGF-I receptor (IGF-IR) signaling in locomotion of MCF-7 breast cancer epithelial cells overexpressing the wild-type IGF-IR (MCF-7/IGF-IR). Stimulation of MCF-7/IGF-IR cells with 50 ng/ml IGF-I induced disruption of the polarized cell monolayer followed by morphological transition toward a mesenchymal phenotype. Immunofluorescence staining of the cells with rhodamine-phalloidin revealed rapid disassembly of actin fibers and development of a cortical actin meshwork. Activation of phosphatidylinositol (PI)3-kinase downstream of the IGF-IR was necessary for this process, as blocking PI 3-kinase activity with the specific inhibitor LY 294002 at 10 microM prevented disruption of the filamentous actin. In parallel, IGF-IR activation induced rapid and transient tyrosine dephosphorylation of focal adhesion proteins p125 focal adhesion kinase (FAK), p130 Crk-associated substrate (Cas), and paxillin. This process required phosphotyrosine phosphatase (PTP) activity, since pretreatment of the cells with 5 microM phenylarsine oxide (PAO), an inhibitor of PTPs, rescued FAK and its associated proteins Cas and paxillin from IGF-I-induced dephosphorylation. In addition, PAO-pretreated cells were refractory to IGF-I-induced morphological transition. Thus, our findings reveal a new function of the IGF-IR, the ability to depolarize epithelial cells. In MCF-7 cells, mechanisms of IGF-IR-mediated cell depolarization involve PI 3-kinase signaling and putative PTP activities.  相似文献   

11.
The detection of IGF-IR signaling in animal models has important implications for determining the role of this receptor in normal physiology and tumor growth. While many reports have correlated changes in plasma IGF-I levels in vivo with biological responses, few have shown that altered IGF-I levels can directly affect signaling within normal or tumor tissue. Here, we present new data that shows how the intravenous (IV) injection of IGF-I can be used to directly examine IGF signaling at the tissue level. Tail-vein IV injection of IGF-I into mice resulted in a rapid and dose-dependent activation of the IGF-I receptor and downstream phosphorylation of Akt and ERK1/2 in liver, kidney, and mammary gland. Similarly, IV IGF-I rapidly stimulated signaling in HT-29 colorectal and in MCF-7 breast cancer xenografts. This study shows how IV IGF injection can be used to examine the signaling mechanisms used by IGF-IR, in both normal mammary tissue and during tumor growth, and may provide a model for the characterization of IGF inhibitors.  相似文献   

12.
The insulin-like growth factor receptor I (IGF-I)-mediated circuit is a major autocrine loop for Ewing's sarcoma (ES) cells, and plays a role the pathogenesis and malignancy of this tumor. IGF-I receptor (IGF-IR) has emerged as a good therapeutic site for ES patients. In this study, we analyzed the impact of strategies targeting the IGF-IR on the regulation of VEGFs, which are of fundamental importance in angiogenesis, and TGFbeta, CTGF and Cyr61, which are factors primarily involved in skeletal growth control and angiogenesis. IGF-I increases expression of VEGF-A, TGFbeta, CTGF and Cyr61 mRNA. However, only the modulation of VEGF-A expression appears to be mediated by IGF-IR. Functional assays on endothelial cells indicate a strict correlation between survival and proliferation of HUVECs and VEGF-A levels, confirming a major role for this factor in angiogenesis. Blockage of IGF-IR functions by neutralizing antibody or antisense strategies significantly reduced the expression and secretion of VEGF-A by ES cells, and supernatants of treated cells were unable to sustain the survival and proliferation of HUVECs. Analysis of the signaling mechanisms involved in constitutive or IGF-induced expression and secretion of VEGF-A indicated that PI3-K and MAPK signaling pathways are both required for VEGF expression and production in ES cells. Selective inhibitors LY294002 or PD98059 were highly effective in reducing the ability of ES cells to produce VEGF-A and stimulate survival and proliferation of HUVECs. Taken together, these findings add a new activity to the IGF-I repertoire in ES and highlight how disruption of IGF-IR functions may constitute an effective tool for the control of neovascularization in this tumor.  相似文献   

13.
Retinoids are currently being tested for the treatment and prevention of several human cancers, including breast cancer. However, the anti-cancer and growth inhibitory mechanisms of retinoids are not well understood. All-trans retinoic acid (RA) inhibits the growth of the estrogen receptor-positive (ER+) breast cancer cell line, MCF-7, in a reversible and dose-dependent manner. In contrast, insulin-like growth factors (IGF-I,IGF-II) and insulin are potent stimulators of the proliferation of MCF-7 and several other breast cancer cell lines. Pharmacologic doses of RA (≤10?6M) completely inhibit IGF-I-stimulated MCF-7 cell growth. Published data suggest that the growth inhibitory action of RA on IGF-stimulated cell growth is linear and dose-dependent, similar to RA inhibition of unstimulated or estradiol-stimulated MCF-7 cell growth. Surprisingly, we have found that IGF-I or insulin-stimulated cell growth is increased to a maximum of 132% and 127%, respectively, by cotreatment with 10?7 M RA, and that 10?9–10?7 M RA increase cell proliferation compared to IGF-I or insulin alone. MCF-7 cells that stably overexpress IGF-II are also resistant to the growth inhibitory effects of 10?9–10?7 M RA. Treatment with the IGF-I receptor blocking antibody, αIR-3, restores RA-induced growth inhibition of IGF-I-treated or IGF-II-overexpressing MCF-7 cells, indicating that the IGF-I receptor is mediating these effects. IGFs cannot reverse all RA effects since the altered cell culture morphology of RA-treated cells is similar in growth-inhibited cultures and in IGF-II expressing clones that are resistant to RA-induced growth inhibition. These results indicate that RA action on MCF-7 cells is biphasic in the presence of IGF-I or insulin with 10?9–10?7 M RA enhancing cell proliferation and ≥ 10?6M RA causing growth inhibition. As IGF-I and IGF-II ligands are frequently detectable in breast tumor tissues, their potential for modulation of RA effects should be considered when evaluating retinoids for use in in vivo experimental studies and for clinical purposes. Additionally, the therapeutic use of inhibitors of IGF action in combination with RA is suggested by these studies. © 1995 Wiley-Liss Inc.  相似文献   

14.
15.
By comparing differential gene expression in the insulin-like growth factor (IGF)-IR null cell fibroblast cell line (R- cells) with cells overexpressing the IGF-IR (R+ cells), we identified the Mystique gene expressed as alternatively spliced variants. The human homologue of Mystique is located on chromosome 8p21.2 and encodes a PDZ LIM domain protein (PDLIM2). GFP-Mystique was colocalized at cytoskeleton focal contacts with alpha-actinin and beta1-integrin. Only one isoform of endogenous human Mystique protein, Mystique 2, was detected in cell lines. Mystique 2 was more abundant in nontransformed MCF10A breast epithelial cells than in MCF-7 breast carcinoma cells and was induced by IGF-I and cell adhesion. Overexpression of Mystique 2 in MCF-7 cells suppressed colony formation in soft agarose and enhanced cell adhesion to collagen and fibronectin. Point mutation of either the PDZ or LIM domain was sufficient to reverse suppression of colony formation, but mutation of the PDZ domain alone was sufficient to abolish enhanced adhesion. Knockdown of Mystique 2 with small interfering RNA abrogated both adhesion and migration in MCF10A and MCF-7 cells. The data indicate that Mystique is an IGF-IR-regulated adapter protein located at the actin cytoskeleton that is necessary for the migratory capacity of epithelial cells.  相似文献   

16.
The aim of the study was to investigate if the insulin analogue glargine, with an increased affinity for the IGF-I receptor (IGF-IR), affects the cell growth to a larger extent than human insulin in malignant cells expressing IGF-IRs. The breast cancer cell lines MCF-7 and SKBR-3, and the osteosarcoma cell line SaOS-2 were used. Gene expression was determined by real-time RT-PCR and receptor protein quantified by ELISAs. Receptor phosphorylation was assessed by immunoprecipitation and Western blot. Mitogenic effect was determined as (3)H-thymidine incorporation into DNA. The gene expression of insulin receptor (IR) varied between 4.3-7.5 x 10(-3) and the expression of IGF-IR between 7.7-147.7 x 10(-3) in relation to GAPDH (glyceraldehyde-3-phosphate dehydrogenase). Insulin receptor and IGF-IR protein varied between 2.0-4.1 ng/mg protein and 2.0-40.4 ng/mg protein, respectively. The IGF-IR was phosphorylated by IGF-I at a concentration of 10(-10)-10(-9) M. All three polypeptides stimulated DNA synthesis in MCF-7, SKBR-3, and SaOS-2 cells. SaOS-2 cells were more sensitive to IGF-I than to insulin and glargine. MCF-7 cells were more sensitive to des(1-3)IGF-I than to IGF-I. In SKBR-3 and SaOS-2 cells, glargine tended to be more potent than human insulin to stimulate DNA synthesis. Our results suggest that glargine, compared to human insulin, has little or no increased mitogenic effect in malignant cells expressing IGF-IRs.  相似文献   

17.
The insulin-like growth factor I (IGF-I) has been implicated in breast cancer development acting through insulin-like growth factor I receptor (IGF-IR), but also through estrogen receptor (ER). The effect of IGF on proteoglycan (PG) synthesis by two human breast cancer epithelial cell lines, the ER-positive MCF-7 and the ER-negative BT-20, was studied alone and in combination with genistein. Both cell lines synthesise hyaluronan (HA), matrix secreted and cell membrane-associated galactosaminoglycan containing proteoglycans (GalAGPGs) and heparan sulphate proteoglycans (HSPGs) in variable amounts. IGF-I affects the synthesis of PGs by BT-20 cells by decreasing the amounts of HA and secreted GalAGPGs and HSPGs and upregulates the expression of cell membrane-associated GalAGPGs and HSPGs. IGF-I exerts this effect on BT-20 cells acting mainly through receptors with protein tyrosine kinase activity (PTK). In contrast, IGF-I stimulates the synthesis of secreted GalAGPGs and HSPGs by MCF-7 cells, exhibiting only a slight suppression on synthesis of cell-associated GalAGPGs and HSPGs. The regulatory effect of IGF-I on PGs distribution in MCF-7 cells is mediated through a mix of pathways, which involves both receptors with PTK activity and PTK-independent signalling. It is suggested that the effects of IGF-I on the synthesis and distribution of PGs by epithelial breast cancer cells also depend on the presence or the absence of ER. The result of the IGF-I action is the balanced biosynthesis between the matrix and cell-associated PGs in both cell lines, approaching a common biosynthetic phenotype.  相似文献   

18.
19.
Insulin-like growth factor I (IGF-I) and its type I receptor (IGF-IR) play significant roles in tumorigenesis and in immune response. Here, we wanted to know whether an RNA interference approach targeted to IGF-IR could be used for specific antitumor immunostimulation in a breast cancer model. For that, we evaluated short interfering RNA (siRNAs) for inhibition of in vivo tumor growth and immunological stimulation in immunocompetent mice. We designed 2'-O-methyl-modified siRNAs to inhibit expression of IGF-IR in two murine breast cancer cell lines (EMT6, C4HD). Cell transfection of IGF-IR siRNAs decreased proliferation, diminished phosphorylation of downstream signaling pathway proteins, AKT and ERK, and caused a G0/G1 cell cycle block. The IGF-IR silencing also induced secretion of two proinflammatory cytokines, TNF- α and IFN-γ. When we transfected C4HD cells with siRNAs targeting IGF-IR, mammary tumor growth was strongly delayed in syngenic mice. Histology of developing tumors in mice grafted with IGF-IR siRNA treated C4HD cells revealed a low mitotic index, and infiltration of lymphocytes and polymorphonuclear neutrophils, suggesting activation of an antitumor immune response. When we used C4HD cells treated with siRNA as an immunogen, we observed an increase in delayed-type hypersensitivity and the presence of cytotoxic splenocytes against wild-type C4HD cells, indicative of evolving immune response. Our findings show that silencing IGF-IR using synthetic siRNA bearing 2'-O-methyl nucleotides may offer a new clinical approach for treatment of mammary tumors expressing IGF-IR. Interestingly, our work also suggests that crosstalk between IGF-I axis and antitumor immune response can mobilize proinflammatory cytokines.  相似文献   

20.
The insulin-like growth factor I receptor (IGF-IR) activated by its ligands insulin-like growth factor (IGF)-I or IGF-II mediates suppression of apoptosis and contributes to tumorigenesis and cell growth. Here we investigated the activation of the stress-activated protein kinases including Jun N-terminal Kinases and p38 MAPK by IGF-I in interleukin-3-dependent FL5.12 lymphocytic cells that overexpress the IGF-IR (FL5.12/WT). We have shown previously that IGF-I protects these cells from apoptosis induced by interleukin-3 withdrawal but does not promote proliferation. IGF-I induced a rapid and transient activation of JNK that peaked at 40 min that was paralleled by a transient and robust phosphorylation of c-Jun. p38 was constitutively phosphorylated in FL5.12/WT cells. Activation of the JNK pathway by IGF-I occurred in the presence of phosphatidylinositol 3-kinase inhibitors and could be enhanced by anisomycin. Analysis of a series of FL5.12 cells expressing mutated IGF-IRs and analysis of 32D/IGF-IR cells showed that neither the C terminus of the receptor nor IRS-1 and IRS-2 were required for JNK activation, although tyrosine 950 was essential for full activation. The JNK inhibitor dicumarol suppressed IGF-I-mediated activation of JNK and phosphorylation of c-Jun but did not affect p38 and IkappaB phosphorylation or activation of AKT. IGF-I-mediated protection from apoptosis in FL5.12/WT cells was completely suppressed by dicumarol and partially suppressed by a p38 inhibitor. In the breast carcinoma cell line MCF-7, treatment with dicumarol also induced apoptosis. These data indicate that transient activation of JNK by IGF-I is mediated by signals that are distinct from those leading to phosphatidylinositol 3-kinase and AKT activation. The data further suggest that the SAPK pathways contribute to suppression of apoptosis by the IGF-IR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号