首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The sequences coding for DNA[cytosine-N4]methyltransferases MvaI (from Micrococcus varians RFL19) and Cfr9I (from Citrobacter freundii RFL9) have been determined. The predicted methylases are proteins of 454 and 300 amino acids, respectively. Primary structure comparison of M.Cfr9I and another m4C-forming methylase, M.Pvu II, revealed extended regions of homology. The sequence comparison of the three DNA[cytosine-N4]-methylases using originally developed software revealed two conserved patterns, DPF-GSGT and TSPPY, which were found similar also to those of adenine and DNA[cytosine-C5]-methylases. These data provided a basis for global alignment and classification of DNA-methylase sequences. Structural considerations led us to suggest that the first region could be the binding site of AdoMet, while the second is thought to be directly involved in the modification of the exocyclic amino group.  相似文献   

2.
Fourteen restriction endonucleases and 4 methylases were isolated and purified from 14 strains of Citrobacter freundii and Escherichia coli, which were isolated from natural sources. To determine the nucleotide sequence recognized by the endonucleases a comparison of DNA cleavage patterns, the evaluation of the cleavage frequency of some DNA with known recognition sequences and mapping was used. It was determined that Cfr101 is a new enzyme recognizing 5'PuCCGGPy. Other restriction enzymes isolated were isoschizomers of: Cfr5I, Cfr11I, Eco60I, Eco61I--EcoRII; Cfr4I, Cfr8I, Cfr13I--Sau96I; Cfr6I--PvuII, Cfr9I--SmaI, Eco26I--HgiJII; Eco32I--EcoRV; Eco52I--XmaIII; Eco56I--NaeI. Some of the enzymes in C. freundii and E. coli were found for the first time. The methylases MCfrI; MCfr6I, MCfr9I and MCfr10I recognize the same nucleotide sequence as specific endonucleases isolated from the same strain. DNA modification in vitro by MCfrI and MCfr10I yields 5-methylcytosine and 4-methylcytosine by MCfr6I and MCfr9I.  相似文献   

3.
We have determined the structure of Pvu II methyltransferase (M. Pvu II) complexed with S -adenosyl-L-methionine (AdoMet) by multiwavelength anomalous diffraction, using a crystal of the selenomethionine-substituted protein. M. Pvu II catalyzes transfer of the methyl group from AdoMet to the exocyclic amino (N4) nitrogen of the central cytosine in its recognition sequence 5'-CAGCTG-3'. The protein is dominated by an open alpha/beta-sheet structure with a prominent V-shaped cleft: AdoMet and catalytic amino acids are located at the bottom of this cleft. The size and the basic nature of the cleft are consistent with duplex DNA binding. The target (methylatable) cytosine, if flipped out of the double helical DNA as seen for DNA methyltransferases that generate 5-methylcytosine, would fit into the concave active site next to the AdoMet. This M. Pvu IIalpha/beta-sheet structure is very similar to those of M. Hha I (a cytosine C5 methyltransferase) and M. Taq I (an adenine N6 methyltransferase), consistent with a model predicting that DNA methyltransferases share a common structural fold while having the major functional regions permuted into three distinct linear orders. The main feature of the common fold is a seven-stranded beta-sheet (6 7 5 4 1 2 3) formed by five parallel beta-strands and an antiparallel beta-hairpin. The beta-sheet is flanked by six parallel alpha-helices, three on each side. The AdoMet binding site is located at the C-terminal ends of strands beta1 and beta2 and the active site is at the C-terminal ends of strands beta4 and beta5 and the N-terminal end of strand beta7. The AdoMet-protein interactions are almost identical among M. Pvu II, M. Hha I and M. Taq I, as well as in an RNA methyltransferase and at least one small molecule methyltransferase. The structural similarity among the active sites of M. Pvu II, M. Taq I and M. Hha I reveals that catalytic amino acids essential for cytosine N4 and adenine N6 methylation coincide spatially with those for cytosine C5 methylation, suggesting a mechanism for amino methylation.  相似文献   

4.
5.
Plasmid DNA with a molecular weight of 53-55 Md was isolated from Streptomyces fradiae strain 676 producing neomycin on centrifugation of the DNA preparation at the density gradient of cesium chloride-ethidium bromide. The extrachromosomal DNA had 6 recognition sites for Bgl II, more than 13 recognition sites for Bam HI, more than 14 recognition sites for Kpn I, more than 18 recognition sites for Pst I, more than 20 recognition sites for Sac I, more than 21 recognition sites for Pvu II and no recognition sites for Eco RI, Eco RV, Hind III and Sla I.  相似文献   

6.
DNA methylation is important in cellular, developmental and disease processes, as well as in bacterial restriction-modification systems. Methylation of DNA at the amino groups of cytosine and adenine is a common mode of protection against restriction endonucleases afforded by the bacterial methyltransferases. The first structure of an N:6-adenine methyltransferase belonging to the beta class of bacterial methyltransferases is described here. The structure of M. RSR:I from Rhodobacter sphaeroides, which methylates the second adenine of the GAATTC sequence, was determined to 1.75 A resolution using X-ray crystallography. Like other methyltransferases, the enzyme contains the methylase fold and has well-defined substrate binding pockets. The catalytic core most closely resembles the PVU:II methyltransferase, a cytosine amino methyltransferase of the same beta group. The larger nucleotide binding pocket observed in M. RSR:I is expected because it methylates adenine. However, the most striking difference between the RSR:I methyltransferase and the other bacterial enzymes is the structure of the putative DNA target recognition domain, which is formed in part by two helices on an extended arm of the protein on the face of the enzyme opposite the active site. This observation suggests that a dramatic conformational change or oligomerization may take place during DNA binding and methylation.  相似文献   

7.
DNA甲基化修饰是细菌调控基因表达的一种重要方式,在很多生理过程中发挥非常关键的作用.本文系统介绍了细菌DNA甲基化修饰的起源、DNA甲基转移酶,分类总结了DNA甲基化调控基因表达的机制.同时对近年来细菌DNA甲基化的功能、DNA甲基化检测方法的进展进行了综合评述.这些研究对人类了解细菌DNA甲基化表观调控及控制细菌感染具有重要指导意义.  相似文献   

8.
The specificity of three DNA methyltransferases M.Alw26I, M.Eco31I and M.Esp3I, isolated from Acinetobacter Iwoffi RFL26, Escherichia coli RFL31 and Hafnia alvei RFL3+, respectively, was determined. All the enzymes methylate both strands of asymmetric recognition sites yielding m5C in the top-strand and m6A in the bottom-strand, as below: 5'-GTm5CTC 5'-GGTm5CTC 5'-CGTm5CTC 3'-Cm6AGAG 3'-CCm6AGAG 3'-GCm6AGAG (M.Alw26I) (M.Eco31I) (M.Esp3I) They are the first members of type IIs methyltransferases that modify different types of nucleotides in the recognition sequence.  相似文献   

9.
Sequence analysis of the BcnI restriction-modification system from Bacillus centrosporus revealed four open reading frames (bcnIC, bcnIR, bcnIB and bcnIA) that are arranged as two converging collinear pairs. One pair encodes a putative small regulatory protein, C.BcnI, and the restriction endonuclease R.BcnI. The other two gene products are the DNA cytosine-N4 methyltransferases M.BcnIA and M.BcnIB, which differ by circular permutation of conserved sequence motifs. The BcnI methyltransferases are isospecific on double-stranded DNA [methylation specificity CC(C/G)GG], but M.BcnIA can also methylate the target sites in single-stranded DNA. Functional analysis shows that bcnIA is dispensable (bcnIB is capable of protecting the DNA against the in vivo activity of bcnIR); in contrast, no stable clones were obtained if bcnIB alone was deleted from the system. By analogy with the DpnII system, the second methylase M.BcnIA may play a role in the transformation proficiency of its gram-positive host. The interchangeability of homologous elements in the beta class of cytosine-N4 methylases was probed by hybrid formation between M.BcnIB and its closest homolog M.Cfr9I (CCCGGG) employing a novel semi-random strategy combined with selection for catalytic activity. The fusion points in the active hybrids mapped in a narrow region located between sequence motifs X and I. Our data illustrate that recombination of two related sequences by circular permutation may serve as an evolutionary mechanism for creating new specificities of amino MTases.  相似文献   

10.
The site specificity of three DNA methylases BcnI, CfrI and Cfr10I was determined to be 5'Cm4C(C/G)GG, 5'PyGGm5CCPu and 5'Pum5CCGGPy, respectively. Using the modification methylases under investigation with known restriction endonucleases, fourteen new DNA cleavage specificities can be created. Some aspects of the use of restriction endonucleases in DNA methylation analysis are discussed.  相似文献   

11.
The gene for the large subunit (LS) of ribulose-1,5,-bisphosphate carboxylase of Euglena gracilis Z chloroplast DNA has been mapped by heterologous hybridization with DNA restriction fragments containing internal sequences from the Zea mays and Chlamydomonas reinhardii LS genes. The Euglena LS gene which has the same polarity as the Euglena rRNA genes has been located with respect to Pst I, Pvu I, and HindIII sites within the Eco RI fragment Eco A. The region of Euglena chloroplast DNA complementary to an 887 bp internal fragment from the Chlamydomonas chloroplast LS gene is interrupted by a 0.5-1.1 kbp non-complementary sequence. This is the first chloroplast protein gene located on the Euglena genome, and the first evidence for an intervening sequence within any chloroplast protein gene.  相似文献   

12.
刘泽军  江海宏 《生命科学》2002,14(3):141-143
DNA甲基化在基因调节和动物发育中起着重要作用。负责DNA甲基化作用的酶尔为DNA甲基转移酶(Dnmts)。到目前为止,在哺乳动物细胞中已经鉴定了三种DNA甲基转移酶基因家族,即Dnmt1、Dnmt2和Dnmt3。鉴定和研究DNA甲基转移酶对阐明DNA甲基化机制起着关键的作用。  相似文献   

13.
The in vitro conservation of potato using tissue culture medium supplemented with the growth retardant mannitol causes morphological changes in the propagated material. These culture conditions seem to have an affect on the DNA extracted from the regenerated plants, when it is digested by the methylation sensitive restriction enzymes Hpa II/Msp I and Eco RII/Bst NI, compared to the control material. In most of these plants, there appears to be preferential methylation of nuclear domains that contain Eco RII/Bst NI recognition sites in contrast to those that contain Hpa II/Msp I sites. The refractory nature of the isolated DNA to these restriction enzymes was attributed to hypermethylation of genomic DNA and the ribosomal RNA genes. These findings indicate that methylation of DNA sequences may be an adaptive response to conditions of high osmotic stress. The importance of these results for the conservation of potato germplasm and international exchange is discussed.  相似文献   

14.
Specific targeting of cytosine methylation to DNA sequences in vivo   总被引:1,自引:1,他引:0       下载免费PDF全文
Development of methods that will allow exogenous imposition of inheritable gene-specific methylation patterns has potential application in both therapeutics and in basic research. An ongoing approach is the use of targeted DNA methyltransferases, which consist of a fusion between gene-targeted zinc-finger proteins and prokaryotic DNA cytosine methyltransferases. These enzymes however have so far demonstrated significant and unacceptable levels of non-targeted methylation. We now report the development of second-generation targeted methyltransferase enzymes comprising enhanced zinc-finger arrays coupled to methyltransferase mutants that are functionally dominated by their zinc-finger component. Both in vitro plasmid methylation studies and a novel bacterial assay reveal a high degree of target-specific methylation by these enzymes. Furthermore, we demonstrate for the first time transient expression of targeted cytosine methyltransferase in mammalian cells resulting in the specific methylation of a chromosomal locus. Importantly, the resultant methylation pattern is inherited through successive cell divisions.  相似文献   

15.
The inhibition of methyltransferases is currently of high interest, particularly in the areas of microbial infection and cell proliferation, as there have been serious attempts to develop novel anti-microbial agents. In the present investigation, a series of 11 S-adenosyl-l-homocysteine analogues have been synthesized and effect of these analogues on DNA methylation catalyzed by DNA methyltransferases was studied. It was found that, while 5'-S-(propionic acid)5'-deoxy-9-(1'-beta-d-ribofuranosyl)1,3-dideazaadenine was an activator of EcoP15I and HhaI DNA methyltransferases, 5'-S-(propionic acid)5'-deoxy-9-(1'-beta-dribofuranosyl)adenine inhibited the methyltransferases in a non-competitive manner. An understanding of the binding of analogues to DNA methyltransferases will greatly assist the design of novel anti-microbial compounds.  相似文献   

16.
The RF IV form of M13 DNA was synthesized enzymatically in vitro, using the viral (+)strand as template, to contain phosphorothioate-modified internucleotidic linkages of the Rp configuration on the 5' side of every base of a particular type in the newly-synthesized (-)strand. Twenty nine restriction enzymes were then tested for their reactions with the appropriate modified DNA types having a phosphorothioate linkage placed exactly at the cleavage site(s) of these enzymes in the (-)strand. Eleven of the seventeen restriction enzymes tested that had recognition sequences of five bases or more could be used to convert the phosphorothioate DNA entirely into the nicked form, either by simply allowing the reaction to go to completion with excess enzyme (Ava I, Ava II, Ban II, Hind II, Nci I, Pst I or Pvu I) or by stopping the reaction at the appropriate time before the nicked DNA is linearized (Bam HI, Bgl I, Eco RI or Hind III). Only modification of the exact cleavage site in the (-)strand could block linearization by the first class of enzymes. The results presented imply that the restriction enzyme-directed nicking of phosphorothioate M13 DNA occurs exclusively in the (+)strand.  相似文献   

17.
Mammalian development is associated with considerable changes in global DNA methylation levels at times of genomic reprogramming. Normal DNA methylation is essential for development but, despite considerable advances in our understanding of the DNA methyltransferases, the reason that development fails when DNA methylation is deficient remains unclear. Furthermore, although much is known about the enzymes that cause DNA methylation, comparatively little is known about the mechanisms or significance of active demethylation in early development. In this review, we discuss the roles of the various DNA methyltransferases and their likely functions in development.  相似文献   

18.
Plant DNA methyltransferases   总被引:46,自引:0,他引:46  
DNA methylation is an important modification of DNA that plays a role in genome management and in regulating gene expression during development. Methylation is carried out by DNA methyltransferases which catalyse the transfer of a methyl group to bases within the DNA helix. Plants have at least three classes of cytosine methyltransferase which differ in protein structure and function. The METI family, homologues of the mouse Dnmt1 methyltransferase, most likely function as maintenance methyltransferases, but may also play a role in de novo methylation. The chromomethylases, which are unique to plants, may preferentially methylate DNA in heterochromatin; the remaining class, with similarity to Dnmt3 methyltransferases of mammals, are putative de novo methyltransferases. The various classes of methyltransferase may show differential activity on cytosines in different sequence contexts. Chromomethylases may preferentially methylate cytosines in CpNpG sequences while the Arabidopsis METI methyltransferase shows a preference for cytosines in CpG sequences. Additional proteins, for example DDM1, a member of the SNF2/SWI2 family of chromatin remodelling proteins, are also required for methylation of plant DNA.  相似文献   

19.
The cleavage specificity of R.Cfr6I, an isoschizomer of PvuII restriction endonuclease was determined to be 5'CAG decreases CTG and the methylation specificity of Cfr6I and PvuII methylases, 5'CAG4mCTG. Thus, M.Cfr6I and M.PvuII are new additions to the list of methylases with N4-methylcytosine specificity. Neither of the above RM enzymes acts on the substrates containing either N4-methylcytosine or 5-methylcytosine in a cognate methylation position.  相似文献   

20.
DNA methylation is one of the many hypotheses proposed to explain the observed deficiency in CpG dinucleotides in a variety of genomes covering a wide taxonomic distribution. Recent studies challenged the methylation hypothesis on empirical grounds. First, it cannot explain why the Mycoplasma genitalium genome exhibits strong CpG deficiency without DNA methylation. Second, it cannot explain the great variation in CpG deficiency between M. genitalium and M. pneumoniae that also does not have CpG-specific methyltransferase genes. I analyzed the genomic sequences of these Mycoplasma species together with the recently sequenced genomes of M. pulmonis, Ureaplasma urealyticum, and Staphylococcus aureus, and found the results fully compatible with the methylation hypothesis. In particular, I present compelling empirical evidence to support the following scenario. The common ancestor of the three Mycoplasma species has CpG-specific methyltransferases, and has evolved strong CpG deficiency as a result of the specific DNA methylation. Subsequently, this ancestral genome diverged into M. pulmonis and the common ancestor of M. pneumoniae and M. genitalium. M. pulmonis has retained methyltransferases and exhibits the strongest CpG deficiency. The common ancestor lost the methyltransferase gene and then diverged into M. genitalium and M. pneumoniae. M. genitalium and M. pneumoniae, after losing methylation activities, began to regain CpG dinucleotides through random mutation. M. genitalium evolved more slowly than M. pneumoniae, gained relatively fewer CpG dinucleotides, and is more CpG-deficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号