首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
1. Effects of alpha-cyano-4-hydroxycinnamate and alpha-cyanocinnamate on a number of enzymes involved in pyruvate metabolism have been investigated. Little or no inhibition was observed of any enzyme at concentrations that inhibit completely mitochondrial pyruvate transport. At much higher concentrations (1 mM) some inhibition of pyruvate carboxylase was apparent. 2. Alpha-Cyano-4-hydroxycinnamate (1-100 muM) specifically inhibited pyruvate oxidation by mitochondria isolated from rat heart, brain, kidney and from blowfly flight muscle; oxidation of other substrates in the presence or absence of ADP was not affected. Similar concentrations of the compound also inhibited the carboxylation of pyruvate by rat liver mitochondria and the activation by pyruvate of pyruvate dehydrogenase in fat-cell mitochondria. These findings imply that pyruvate dehydrogenase, pyruvate dehydrogenase kinase and pyruvate carboxylase are exposed to mitochondrial matrix concentrations of pyruvate rather than to cytoplasmic concentrations. 3. Studies with whole-cell preparations incubated in vitro indicate that alpha-cyano-4-hydroxycinnamate or alpha-cyanocinnamate (at concentrations below 200 muM) can be used to specifically inhibit mitochondrial pyruvate transport within cells and thus alter the metabolic emphasis of the preparation. In epididymal fat-pads, fatty acid synthesis from glucose and fructose, but not from acetate, was markedly inhibited. No changes in tissue ATP concentrations were observed. The effects on fatty acid synthesis were reversible. In kidney-cortex slices, gluconeogenesis from pyruvate and lactate but not from succinate was inhibited. In the rat heart perfused with medium containing glucose and insulin, addition of alpha-cyanocinnamate (200 muM) greatly increased the output and tissue concentrations of lactate plus pyruvate but decreased the lactate/pyruvate ratio. 4. The inhibition by cyanocinnamate derivatives of pyruvate transport across the cell membrane of human erythrocytes requires much higher concentrations of the derivatives than the inhibition of transport across the mitochondrial membrane. Alpha-Cyano-4-hydroxycinnamate appears to enter erythrocytes on the cell-membrane pyruvate carrier. Entry is not observed in the presence of albumin, which may explain the small effects when these compounds are injected into whole animals.  相似文献   

2.
Despite the fact that lactate and pyruvate are potential substrates for energy production in vivo, our understanding of the control and regulation of carbohydrate metabolism is based principally on studies where glucose is the only available carbohydrate. Therefore, the purpose of this study was to determine the contributions of lactate, pyruvate, and glucose to energy production in the isolated, perfused rat heart over a range of insulin concentrations and after activation of pyruvate dehydrogenase with dichloroacetate (DCA). Hearts were perfused with physiological concentrations of [1-13C]glucose, [U-13C]lactate, [2-13C]pyruvate, and unlabeled palmitate for 45 min. Hearts were freeze clamped, and 13C NMR glutamate isotopomer analysis was performed on tissue extracts. Glucose, lactate, and pyruvate all contributed significantly to myocardial energy production; however, in the absence of insulin, glucose contributed only 25-30% of total pyruvate oxidation. Even under conditions where carbohydrates represented >95% of substrate entering the tricarboxylic acid (TCA) cycle, we found that glucose contributed at most 50-60% of total carbohydrate oxidation. Despite being present at only 0.1 mM, pyruvate contributed between approximately 10% and 30% of total acetyl-CoA entry into the TCA cycle. We also found that insulin and DCA not only increased glucose oxidation but also exogenous pyruvate oxidation; however, lactate oxidation was not increased. The differential effects of insulin and DCA on pyruvate and lactate oxidation provide further evidence for compartmentation of cardiac carbohydrate metabolism. These results may have important implications for understanding the mechanisms underlying the beneficial effects of increasing cardiac carbohydrate metabolism.  相似文献   

3.
—(1) The effects of exposure of rats to increased atmospheric concentrations of CO2 on brain metabolism in vivo were studied. (2) After 2·5 min exposure to an atmosphere of 20% CO2, the rate of glucose utilization by brain decreased from 0·61 μmol/min per g to 0·32 μmol/min per g and remained between 0·3 and 0·4 μmol/min per g for 60 min, the longest interval studied. O2 utilization, calculated from the arteriovenous difference of O2 across the brain and blood flow, was 3·5 μmol/min per g in controls and was 4·7 μmol/min per g after 5 min in the 20% CO2 atmosphere. (3) The concentrations of glucose, glucose 6-phosphate and aspartate were increased during the first 10 min of CO2 exposure whereas the concentrations of other glycolytic intermediates, tricarboxylic acid cycle intermediates and glutamate were decreased. The amount of endogenous substrate which disappeared during the first 10 min was sufficient, if used to supplement glucose as a fuel, to maintain the O2 consumption at, or slightly above, the control level. Glutamate and lactate were quantitatively the most important energy sources. (4) The mechanism whereby‘CO2 decreased the rate of glucose utilization is uncertain. The initial rise in glucose 6-phosphate and fall in fructose 1,6-diphosphate concentrations suggested that an inhibition of phosphofructokinase was responsible. However, after 60 min in 20% CO2, the concentrations of both of these metabolites returned to normal while the rate of glucose utilization remained depressed.  相似文献   

4.
1. To examine the role of the hepatic redox state on the rate of gluconeogenesis the effects of sodium crotonate injection (6mmol/kg body wt.) on rat liver metabolite concentrations and gluconeogenesis from lactate were studied in vivo. 2. Crotonate caused a marked oxidation of cytoplasmic and mitochondrial redox couples; decreases were observed in the ratios of [lactate]/[pyruvate], [glycerol 3-phosphate]/[dihydroxyacetone phosphate], [hydroxybutyrate]/[acetoacetate] and measured [NAD(+)]/[NADH]. 3. Increases occurred in the liver concentrations of all gluconeogenic intermediates from pyruvate through to glucose 6-phosphate, but there was no change in lactate concentration. 4. To determine whether gluconeogenesis from lactate was altered by the more-oxidized hepatic redox state l-[2-(14)C]lactic acid was infused into the inferior vena cava (50mumol/min per kg body wt.) and the incorporation of radioactivity into blood glucose was measured. 5. Administration of crotonate transiently decreased the rate of lactate incorporation into glucose but within a few minutes the rate of incorporation returned to that of the controls. 6. The results indicate that in these experiments alteration of the NAD(+)-NADH systems of cytoplasm and mitochondria to a more-oxidized state did not change the rate of gluconeogenesis.  相似文献   

5.
The effect of extremely low frequency electric field (EF) on stress induced changes of plasma ACTH, glucose, lactate, and pyruvate levels was examined in ovariectomized rats. The rats were exposed to 50 Hz EF (17500 V/m) for 60 min and were restrained for the latter half (30 min) of the EF exposure period. The restraint stress significantly increased the plasma ACTH and glucose levels (P <.05: Student's t test). Restraint induced increase of plasma ACTH and glucose levels tended to be suppressed by exposure to the EF. Meanwhile, the EF exposure also affected plasma lactate level. Thus, the EF exposure significantly decreases plasma lactate levels in the stressed rats (P <.05: Student's t test). Although the precise mechanisms in the restraint dependent alteration in plasma ACTH, glucose, lactate, and pyruvate levels are not fully understood, our results demonstrate that the 50 Hz EF alter both stress responses and energy metabolism in stressed rats.  相似文献   

6.
The concentrations of glycolytic intermediates and ATP and the activities of certain glycolytic and gluconeogenic enzymes were determined in Propionibacterium shermanii cultures grown on a fully defined medium with glucose, glycerol or lactate as energy source. On all three energy sources, enzyme activities were similar and pyruvate kinase was considerably more active than the gluconeogenic enzyme pyruvate, orthophosphate dikinase, indicating the need for regulation of pyruvate kinase activity. The intracellular concentration of glucose 6-phosphate, a specific activator of pyruvate kinase in this organism, changed markedly according to both the nature and the concentration of the growth substrate: the concentration (7-10 mM) during growth with excess glucose or glycerol was higher than that (1-2 mM) during growth with lactate or at growth-limiting concentrations of glycerol or glucose. Other glycolytic intermediates, apart from pyruvate, were present at concentrations below 2 mM. Glucose 6-phosphate overcame inhibition of pyruvate kinase activity by ATP and inorganic phosphate. With 1 mM-ATP and more than 10 mM inorganic phosphate, a change in glucose 6-phosphate concentration from 1-2 mM was sufficient to switch pyruvate kinase from a strongly inhibited to a fully active state. The results provide a plausible mechanism for the regulation of glycolysis and gluconeogenesis in P. shermanii.  相似文献   

7.
In order to study cerebral metabolic and circulatory effects of hypoxia under conditions of restricted glucose supply, the arterial Po2, was reduced to 25–30mm Hg in artificially ventilated and lightly anaesthetized rats that were starved for 24 or 48 h prior to experiments. Arterial glucose concentrations, that were initially around 6μmol g-1, were significantly reduced after 15min of hypoxia, and decreased to 50o of control after 30min. In animals studied after 30min of hypoxia (24 h of starvation), cerebral blood flow had increased 4-fold and there was a moderate (25%) rise in cerebral oxygen consumption. During the course of hypoxia, cerebral cortical concentrations of glucose fell to low values. In spite of this, concentrations of pyruvate and lactate rose with time, and the sum of citric acid cycle intermediates (citrate, α-ketoglutarate, fumarate. malate and oxaloacetate) increased. Changes in amino acids were dominated by a fall in aspartate and a rise in alanine concentration. There was a moderate reduction in phosphocreatine and a slight rise in ADP concentration, but concentrations at ATP and AMP were unchanged. The changes observed are similar to those previously obtained in fed animals. It is concluded that even if blood glucose concentrations fall to 3μmol g-1, and cerebral energy flux is maintained, substrate supply is sufficient to cover the energy requirements of the tissue. Hypoxia was accompanied by increases in the lactate/pyruvate and β-hydroxybutyrate acetoacetate ratios of blood. In the tissue, NADH/NAD+ ratios derived from the lactate, malate and β-hydroxybutyrate dehydrogenase systems rose, while that derived from the glutamate dehydrogenase reaction fell. It is concluded that the latter system is not well suited for estimating mitochondrial redox changes in brain tissue.  相似文献   

8.
Under conditions of energy impairment, CNS tissue can utilize substrates other than glucose to maintain energy metabolism. Retinas produce large amounts of lactate, although it has not been shown that lactate can be utilized by retina to prevent the cell damage associated with hypoglycemia. To investigate this, intact, isolated retinas were subjected to aglycemic conditions in the presence or absence of 20 mM lactate. Retinas incubated in the absence of glucose for 60 min showed a threefold elevation in tissue aspartate and 60% decreases in tissue glutamate and glutamine, demonstrating a mobilization of carbon from glutamine and glutamate to the tricarboxylic acid cycle. Lactate prevented these changes in tissue amino acids, indicating metabolism of lactate with sparing of tissue glutamate and glutamine. Tissue ATP was 20 and 66% of control values with zero glucose or zero glucose plus lactate, respectively. Consistent with previous findings, incubation of retinas in the absence of glucose caused acute swelling of retinal neurons and release of GABA into the medium at 60 min. These acute toxic affects caused by the absence of glucose were completely prevented by the presence of lactate. At 24 h of recovery following 60 min of zero glucose, many pyknotic profiles were observed and lactate dehydrogenase (LDH) release into the medium was elevated sevenfold, indicating the extent of cell death. In contrast, no elevation in LDH was found and histology appeared normal in retinas exposed to zero glucose in the presence of lactate. alpha-Cyano-4-hydroxy cinnamate (4-CIN; 0.5 mM), an inhibitor of the monocarboxylic acid transporter and mitochondrial pyruvate carrier, blocked the ability of lactate to maintain ATP and protect retinas from aglycemia but had no effect on ATP or toxicity per se. Derangements in tissue aspartate, glutamate, and glutamine, which were prevented by lactate during zero glucose incubation, were again observed with lactate plus zero glucose in the presence of 4-CIN. However, 0.5 mM 4-CIN alone in the presence of glucose produced similar increases in aspartate and decreases in glutamate and glutamine as observed with zero glucose while having only modest inhibitory effects on [U-(14)C]lactate uptake, suggesting the mitochondrial pyruvate carrier as the main site of action. The above findings show that lactate is readily utilized by the chick retina during glucose deprivation to prevent derangements in tissue amino acids and ATP and retinal neuronal cell death.  相似文献   

9.
—In order to study the time course of changes in cerebral metabolites in hypercapnia, anaesthetized and artificially ventilated rats were exposed to 11% CO2 for 5, 15, 45, 90 and 180 min. In addition, the effect of anaesthetic levels of carbon dioxide was studied by exposing animals to 30 and 50% CO2 for 45 min. In none of the groups were there significant changes in ATP, ADP or AMP, and a normal energy state was therefore obtained even in short-lasting hypercapnia, and at anaesthetic CO2 concentrations (50% CO2). In the group exposed to 11% CO2 for 5 min there was a fall in glycogen but normalization occurred when the hypercapnia was prolonged. There were no changes in fructose 1,6-diphosphate, dihydroxyacetone phosphate or 3-phosphoglycerate but decreases in pyruvate, lactate, citrate, α-oxoglutarate, malate and glutamate at all exposure times. With 30 and 50% CO2 glucose 6-phosphate accumulated. The results do not support the view that the depletion of pyruvate and of citric acid cycle intermediates is caused by H+-inhibition of rate-limiting enzymatic steps like the phosphofructokinase reaction. The glutamate concentration fell progressively during exposure to 11% CO2. In the 5 and 15 min groups aspartate increased significantly indicating that the initial loss of glutamate was partly due to transamination to aspartate. With prolonged hypercapnia there was a secondary fall in aspartate to subnormal values. At 45 min and thereafter the glutamine concentration increased significantly. However, the sum of glutamate, aspartate and glutamine fell progressively after the initial 5 min period. Hypercapnia gave rise to similar increases in the lactate/pyruvate and malate/oxaloacetate ratios, and since the calculated NADH/NAD+ ratios remained close to normal in all groups, the results indicate that pH-dependent shifts occurred in the lactate and malate dehydrogenase equilibria.  相似文献   

10.
Lactate-stimulated ethanol oxidation in isolated hepatocytes   总被引:2,自引:1,他引:1       下载免费PDF全文
1. Hepatocytes isolated from starved rats and incubated without other substrates oxidized ethanol at a rate of 0.8-0.9mumol/min per g wet wt. of cells. Addition of 10mm-lactate increased this rate 2-fold. 2. Quinolinate (5mm) or tryptophan (1mm) decreased the rate of gluconeogenesis with 10mm-lactate and 8mm-ethanol from 0.39 to 0.04-0.08mumol/min per g wet wt. of cells, but rates of ethanol oxidation were not decreased. From these results it appears that acceleration of ethanol oxidation by lactate is not dependent upon the stimulation of gluconeogenesis and the consequent increased demand for ATP. 3. As another test of the relationship between ethanol oxidation and gluconeogenesis, the initial lactate concentration was varied from 0.5mm to 10mm and pyruvate was added to give an initial [lactate]/[pyruvate] ratio of 10. This substrate combination gave a large stimulation of ethanol oxidation (from 0.8 to 2.6mumol/min per g wet wt. of cells) at low lactate concentrations (0.5-2.0mm), but rates remained nearly constant (2.6-3.0mumol/min per g wet wt. of cells) at higher lactate concentrations (2.0-10mm). 4. In contrast, owing to the presence of ethanol, the rate of glucose synthesis was only slightly increased (from 0.08 to 0.12mumol/min per g wet wt. of cells) between 0.5mm- and 2.0mm-lactate and continued to increase (from 0.12 to 0.65mumol/min per g wet wt. of cells) with lactate concentrations between 2 and 10mm. 5. In the presence of ethanol, O(2) uptake increased with increasing substrate concentration over the entire range. 6. Changes in concentrations of glutamate and 2-oxoglutarate closely paralleled changes in the rate of ethanol oxidation. 7. In isolated hepatocytes, rates of ethanol oxidation are lower than those in vivo apparently because of depletion of malate-aspartate shuttle intermediates during cell preparation. Rates are returned to those observed in vivo by substrates that increase the intracellular concentration of shuttle metabolites.  相似文献   

11.
Abstract— Blood glucose, cerebral cortical glucose, and eight metabolites of the glycolytic pathway and citric acid cycle were measured during insulin hypoglycemic stupor and during the first 100s after glucose administration. In hypoglycemic mice that had lost righting ability, blood and brain glucose were decreased 89% and 96% respectively, but glucose-6-phosphate fell only 23%. Other glycolytic and citric acid cycle intermediates were decreased 31–77%. Fructose bisphosphate, 3-phosphoglycerate and phosphopyruvate fell more than glucose-6-phosphate, but less than pyruvate and lactate. Citrate fell less than a-ketoglutarate and malate. These results suggest that in severe hypoglycemia there is a decrease in brain glucose utilization, mediated by phosphofructokinase, but probably caused by decreased neuronal activity. An intravenous injection of glucose restored brain glucose to 75% of normal within 10s and caused return of righting ability within 60s. Glucose-6-phosphate, fructose bisphosphate, 3-phosphoglycerate, and phosphopyruvate rose to normal or near normal levels within 60s, whereas pyruvate, lactate, citrate, ã-ketoglutarate, and malate changed little in this period. This suggests that although glucose given to hypoglycemic animals rapidly enters the glycolytic pathway in brain (and behavior is almost normal), total neuronal activity, and hence overall glucose metabolism, remains subnormal for several minutes.  相似文献   

12.
Summary The contribution of glycerol to protein, carbohydrate, and lipid metabolism was studied in black bears. Special attention was directed at the role of glycerol in preventing uremia. In summer and winter, U-14C glycerol, as well asl(U14C)-alanine andd(U-14C)-glucose were injected intravenously; timed sampling of venous blood and expiratory gases was made.In winter, during hibernation,14C-label from glycerol was found in alanine and other free amino acids and plasma proteins, pyruvate, lactate, glucose and lipid esters. After 48 h, most of the14C-label in plasma was found in proteins. However, during the four days of study, no label was found in serum urea. Similar results occurred in summer except, in marked contrast to winter,14C-labeled urea was continually detected in blood. Expired14C-CO2 was considerably lower in winter than summer and winter respiratory quotient was 0.69.In both summer and winter,14C-labeled alanine also entered plasma proteins and generated pyruvate, lactate and glucose. Once again the marked difference between active and dormant phases was demonstrated: There was no labeled plasma urea in winter while it was continually detected in summer. 14C-labeled glucose experiments revealed very slow carbohydrate metabolism in winter.These findings suggest that in winter, glycerol helps prevent uremia by serving as a carbon source for amino acid formation. The nitrogen involved in these reactions is thus diverted from urea synthesis into protein synthetic pathways. Further, glycerol also appears to serve as an active substrate for gluconeogenesis and lipogenesis in hibernation.  相似文献   

13.
This study aims to evaluate the ischemic injury of the liver in a porcine model of cardiac death assessed by in vivo microdialysis. A porcine model of cardiac death was established by the suffocation method. Metabolic indicators were monitored using the microdialysis technique during warm ischemia time (WIT) and cold ischemia time (CIT). Pathological changes in ischemic-injured livers were observed by haematoxylin–eosin staining. The predictive values of biochemical parameters regarding the liver donor were evaluated by receiver operating characteristic curve analysis. All statistical analyses were conducted using the SPSS 18.0 software (SPSS Inc, Chicago, Illinois, USA). The degree of warm ischemic injury of the livers increased with prolonged WIT. Serum glucose, glycerol, pyruvate, lactic acid levels and lactate-to-pyruvate (L/P) ratio increased gradually during WIT. Results from Pearson correlation analyses indicated that serum lactate level and L/P ratio were positively associated with the degree of warm ischemic injury of the livers. The degree of cold ischemic injury of the livers gradually increased after 12 h CIT. Serum glucose, lactic acid and L/P ratio achieved a peak after 6–8 h of CIT, but gradually decreased with prolonged CIT. The peak of glycerol occurred after 8 h of CIT, while no changes were found with prolonged CIT. Serum pyruvate level exhibited an increasing trend after 12 h CIT. Our results confirmed that serum glucose and lactate levels were negatively correlated with cold ischemic injury of the liver. However, serum glycerol and pyruvate levels showed positive correlations with cold ischemic injury of the liver. The liver donor was unavailable after 30 min WIT and 24 h CIT. The cut-off value of serum lactate level for warm ischemic injury of the livers was 2.374 with a sensitivity (Sen) of 90 % and specificity (Spe) of 95 %; while the L/P radio was 0.026 (Sen = 80 %, Spe = 83 %). In addition, the cut-off values of serum glucose, lactate, glycerol and pyruvate levels for cold ischemic injury of the livers were 0.339 (Sen = 100 %, Spe = 77 %), 1.172 (Sen = 100 %, Spe = 61 %), 56.359 (Sen = 100 %, Spe = 65 %) and 0.020 (Sen = 100 %, Spe = 67 %), respectively. Our findings provide empirical evidences that serum glucose, lactate levels and L/P ratio may be good indicators for the degree of warm ischemic injury of the livers after cardiac death; while serum glucose, lactate, glycerol and pyruvate levels may be important in predicting cold ischemic injury.  相似文献   

14.
The effect of aldehyde fixation on concentrations of low molecular weight constituents was determined by comparing amounts of selected intermediates in brains of mice exposed to aldehyde fixative solutions with those perfused with phosphate buffer solution alone. Aldehyde perfusion resulted in excellent preservation of cerebral cortex ultrastructure in the presence of dramatic declines in adenosine triphosphate, phosphocreatine, glucose and glucose-6-phosphate that occureed before exposure of the tissue to aldehyde fixatives. Decreases in hexose were accompanied by approximately a 4-fold increase in lactate and a 2-fold increase in pyruvate. Glycogen levels decreased by about 60% during the initial operative procedure but remained constant after aldehyde fixation. Glycogen content declined approximately 90% in tissues that were not treated with aldehyde. Concentrations of aspartate and glutamate changed only slightly during the initial period (1-5 min) and remained constant for at least 90 min in cerebral cortices fixed with aldehydes. Alanine levels increased in both fixed and unfixed tissue; however, this increase was much smaller in tissues exposed promptly to aldehydes. Total ninhydrin-positive material in perchloric acid extracts of brain decreased in mice exposed to aldehyde solutions but increased in tissues that were not. These results indicated that several amino acids may be measured reliably in tissues preserved for light and electron microscopy. In addition, determination of glutamate: alanine ratios in tissues perfused with aldehydes may provide an indication of the timing of fixation.  相似文献   

15.
The objective was to determine ovarian follicular fluid concentrations of glucose, lactate, and pyruvate in relation to follicle size in buffalo and sheep. The effect of varying concentrations of these substances on in vitro oocyte maturation, oocyte protein content, and granulosa and cumulus cell growth was also investigated. Follicular fluid was aspirated from various sizes of follicles (from ovaries without a dominant follicle) collected from adult, cycling nonpregnant buffalo (Bubalus bubalis) and sheep (Ovis aries) during the breeding season. Overall, mean (+/-S.E.M.) concentrations (mM) were glucose 2.42+/-0.31 and 1.40+/-0.22, lactate 7.56+/-2.61 and 10.42+/-1.64, and pyruvate 0.02+/-0.01 and 0.002+/-0.00, in buffalo and sheep, respectively. In both species, as follicles became larger, concentrations of glucose significantly increased, lactate significantly decreased, but pyruvate was not affected. Oocyte maturation was higher (P<0.05) in medium containing supra-physiological concentrations of either glucose (5 mM), or pyruvate (10 mM) alone, or physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub- or supra-physiological concentrations of glucose, lactate and pyruvate in combination (both species). The protein content of oocytes was not significantly affected by the concentration of glucose, lactate, and pyruvate in the maturation medium. However, growth of granulosa and cumulus cells was higher (P<0.05) in medium containing supra-physiological concentrations of glucose (5 mM) alone, or pyruvate (10 mM) alone, or physiological, or supra-physiological concentrations of glucose, lactate and pyruvate in combination, compared to supra-physiological concentrations of lactate (15 mM) alone, or sub-physiological concentrations of glucose, lactate and pyruvate in combination (both species). In conclusion, concentrations of glucose, pyruvate and lactate in the medium had cell type-specific effects on oocyte maturation, and on growth of granulosa and cumulus cells. Furthermore, glucose and pyruvate were the principal energy sources for oocytes and follicular somatic cells in buffalo and sheep.  相似文献   

16.
A cell-free system prepared from rat liver containing cytosol and mitochondria as well as a number of cofactors and gluconeogenic intermediates at near-physiological concentrations was shown to form hexose 6-phosphates linearly from lactate + pyruvate + glutamate at a rate of 0.82 +/- 0.05 mumol/min per g of liver (mean +/- S.E.M., n = 8, 37 degrees C). The indicated rates were measured between 20 min and 60 min incubation time, when the system was near steady state. Experiments with either [1-14C]lactate or [U-14C]glutamate revealed that the incorporation of radioactive label into hexose 6-phosphates was proportional to the utilization of lactate + pyruvate and of glutamate during incubation and that both served as gluconeogenic substrates at a ratio of about 2:1. When the [ATP]/[ADP] ratio was lowered from 60 to 19 by addition of ATPase, the rate of hexose 6-phosphate formation fell to one-third. This decrease in gluconeogenic flux was mainly due to a decreased flow through the phosphoglycerate kinase step. Hexose 6-phosphate formation could also be decreased by increasing the ratio [NADH]/[NAD+], either by addition of ethanol or by increasing the initial concentration of lactate + pyruvate at a fixed ratio of 10:1. The observed inhibition was linked to a limitation in the availability of oxaloacetate for the phosphoenolpyruvate carboxykinase reaction and to an increased formation of sn-glycerol 3-phosphate. Finally, the rates of hexose 6-phosphate formation in incubations with cytosols from fed rats were only 50% of those observed with cytosols from animals starved for 48 h. One of the limiting steps was found to be the flow through the phosphoenolpyruvate carboxykinase step.  相似文献   

17.
Abstract: Cerebral formation of lactate via the tricarboxylic acid (TCA) cycle was investigated through the labeling of lactate from [2-13C]acetate and [1-13C]glucose as shown by 13C NMR spectroscopy. In fasted mice that had received [2-13C]acetate intravenously, brain lactate C-2 and C-3 were labeled at 5, 15, and 30 min, reflecting formation of pyruvate and hence lactate from TCA cycle intermediates. In contrast, [1-13C]glucose strongly labeled lactate C-3, reflecting glycolysis, whereas lactate C-2 was weakly labeled only at 15 min. These data show that formation of pyruvate, and hence lactate, from TCA cycle intermediates took place predominantly in the acetate-metabolizing compartment, i.e., glia. The enrichment of total brain lactate from [2-13C]acetate reached ∼1% in both the C-2 and the C-3 position in fasted mice. It was calculated that this could account for 20% of the lactate formed in the glial compartment. In fasted mice, there was no significant difference between the labeling of lactate C-2 and C-3 from [2-13C]acetate, whereas in fed mice, lactate C-3 was more highly labeled than the C-2, reflecting adaptive metabolic changes in glia in response to the nutritional state of the animal. It is hypothesized that conversion of TCA cycle intermediates into pyruvate and lactate may be operative in the glial metabolism of extracellular glutamate and GABA in vivo. Given the vasodilating effect of lactate on cerebral vessels, which are ensheathed by astrocytic processes, conversion of glutamate and GABA into lactate could be one mechanism mediating increases in cerebral blood flow during nervous activity.  相似文献   

18.
为研究大鼠红细胞对葡萄糖利用的异头物选择性及其作用机制,应用大鼠红细胞,对葡萄糖的两种异头物作了异构化速率、乳酸生成量、内流速度和大鼠红细胞已糖激酶作用下的磷酸化速度等进行了测定.结果指出,37℃时大鼠红细胞的D-葡萄糖β-异头物和α-异头物代谢成乳酸的速度分别是0.27μmol/gHb(3min)和0.21μmol/gHb(3min),即前者快于后者30%.同时β-D-葡萄糖向红细胞内转运速度也快于后者:分别是5.0和3.5μmol/gHb(3min).大鼠红细胞已糖激酶的葡萄糖磷酸化速率实验结果指出:β-异头物比α-异头物快30%;对于该两种异头物已糖激酶的Km值均为53μmol/L.红细胞与α-和β-D-葡萄糖保温1min后,其葡萄糖浓度均达到1mmol/L左右,说明至少在1min内对于已糖激酶的磷酸化此两种异头物的葡萄糖浓度均已饱和.这些结果提示,大鼠红细胞葡萄糖利用的β-异头物优选性主要与其磷酸化速度有关,而与其转运速度关系不大.  相似文献   

19.
Cell death after cerebral ischemia is mediated by the accumulation of excitatory amino acids, calcium influx into cells and the generation of free radicals. The aim of this study was to evaluate changes in energy-related metabolites in the striatum of gerbils subjected to focal cerebral ischemia after pretreatment withGinkgo biloba extract (EGb761), a well-known antioxidant, and FK506, a calcium-dependent phosphatase calcineurin inhibitor. Ischemia was induced by occlusion of the right common carotid artery and the right middle cerebral artery for 60 min. A microdialysis probe was inserted into the right striatum to monitor extracellular glucose, lactate and pyruvate levels. This study showed decreases in glucose (10% of the baseline), pyruvate (20% of the baseline) and lactate (60% of the baseline), and a 5-fold increase in the lactate to pyruvate ratio during ischemia in the control group. Both EGb761 treatment and the combination (EGb761 and FK506) therapy significantly preserved glucose (50% of the baseline) and pyruvate (60% of the baseline) levels during ischemia. The marked increase in the lactate to pyruvate ratio was not observed in the combination group. These results suggest that preservation of cellular energy metabolism during cerebral ischemia and after restoration with reperfusion may contribute to the neuroprotective effects of EGb761 and FK506.  相似文献   

20.
Abstract— Newborn rats from dams fed on a high fat diet developed increased ketonemia and significant hypertriglyceridemia i.e. "hyperketonemic pups". This perinatal metabolic stress led to an alteration in the developmental pattern of glycolytic intermediates in their brains.
In control rats, the concentration of glucose 6-phosphate (G6P) in the brain was high at birth, and gradually decreased to adult values by the third week of life. In contrast, the fructose-1,6-diphosphate (FDP) concentration was low at birth and increased thereafter. The lactate concentration was also high at birth but decreased to the adult level by the first day of life. In the brains of control pups, lactate and pyruvate concentrations remained relatively constant during the first 3 weeks of life.
In the brains of hyperketonemic pups, the concentration of G6P was the same as in the control animals at birth but decreased significantly during the first days of life. During early development the concentrations of FDP and pyruvate were significantly lower and the concentration of lactate, higher in the hyperketonemic pups as compared to the control group. The alteration in the concentration of these glycolytic intermediates in the brains of hyperketonemic pups indicated a change in the developmental pattern of glycolysis. The ratio of [lactate]/[pyruvate] also suggested an increased cytoplasmic redox potential in the brains of hyperketonemic pups during the first week of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号