首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship among lactosylceramide-(LacCer), GD3- and GM2-synthases and between the two last transferases and their common GM3 acceptor was investigated in intact Golgi membrane from chick embryo neural retina cells at early (8-days) and late (14 days) stages of the embryonic development. [3H]Gal was incorporated into endogenous glucosylceramide by incubation of Golgi membranes with UDP-[3H]Gal. Conversion of the synthesized [3H]Gal-LacCer into GM3, and of the latter into GD3, GM2 and GD2 was examined after a second incubation step with unlabeled CMP-NeuAc and/or UDP-GalNAc. With CMP-NeuAc, most [3H]Gal-LacCer was converted into GM3 in either 8- or 14- day membranes. However, while about 90% of GM3 was converted into GD3 in 8-day membranes, only about 25% followed this route in 14-day membranes. With CMP-NeuAc and UDP-GalNAc, about 90% of GM3 was used for synthesis of GM2 in 14-day membranes, while in 8-day membranes about 80% followed the route to GD3, and a part to GD2. Performing the second incubation step in the presence of increasing detergent concentrations showed that conversion of GM3 to GM2 was inhibited at concentrations lower than those required for inhibition of LacCer to GM3 conversion. Taken together, results indicate that transfer steps leading to synthesis of GM3, GD3, GM2 and GD2 from LacCer are functionally coupled in the Golgi membranes, and that GD3- and GM2-synthases compete in a common compartment for using a fraction of GM3 as substrate. In this competition, the relative activities of the transferases and their relative saturation with the respective donor sugar nucleotides, are important factors influencing conversion of GM3 toward either GD3 or GM2.  相似文献   

2.
It is known that ceramide (Cer), the precursor of sphingoglycolipids and of sphingomyelin, participates in events leading to activation of the apoptotic pathway, and per se or through conversion to glucosylceramide (GlcCer) modulates formation of neuritic processes in developing neurons. To learn about the fate of de novo synthesized Cer and GlcCer we examined, in Golgi membranes from chicken embryo neural retina cells, the metabolic relationships of endogenous Cer, GlcCer and lactosylceramide (LacCer). Incubation of the membranes with UDP-[3H]Glc revealed a pool of endogenous Cer useful for synthesis of GlcCer. Most of the GlcCer synthesized, however, was not used for synthesis of LacCer, indicating that it was functionally uncoupled from LacCer synthase. On the other hand, incubation with UDP-[3H]Gal revealed a pool of endogenous GlcCer that depending of the integrity of the membranes was functionally coupled to LacCer and ganglioside synthesis. These results indicate that most GlcCer formed in vitro from Cer is topologically segregated from the synthesis of LacCer. However, subfractionation in sucrose gradients of Golgi membranes labeled with both precursors failed to separate membranes enriched in [3H]GlcCer from those enriched in [3H]Gal-labeled LacCer. It is concluded that despite both transfer steps co-localize in the Golgi membranes, coupling of GlcCer synthesis to LacCer synthesis requires conditions not present in our in vitro assay. This suggests that a coupling activity exists that could be relevant for regulation of the cytoplasmic levels of Cer and GlcCer.  相似文献   

3.
Abstract: Ganglioside GT3 is the precursor of c-series gangliosides. It is synthesized by sialylation of GD3 and is expressed in nervous tissue of birds and mammals at early stages of development. In this study we examined the sub-Golgi location of GT3 synthesis and the mechanism of its transport from the site of synthesis to the plasma membrane in chicken embryo retina cells in culture. Neural retina cells from 10-day-old chick embryo were cultured with [3H]galactose in the absence (control cells) or in the presence of 1 µg/ml brefeldin A (BFA). At the end of the labeling period, the fraction of labeled gangliosides transported to the plasma membrane was determined. For this, cells were treated with C . perfringens neuraminidase in conditions to desialylate only those gangliosides that were transported to the plasma membrane and consequently accessible to the enzyme. After neuraminidase treatment of cells, gangliosides were isolated, purified, and the pattern of radioactivity analyzed by HPTLC-fluorography. It was found that BFA blocked the synthesis of complex gangliosides without affecting the synthesis of GM3, GD3, and GT3. Furthermore, in BFA-treated cells, GM3, GD3, and GT3 were protected from the action of added neuraminidase, indicating an intracellular localization and, hence, an inhibition of their transport to the plasma membrane. The results indicate that synthesis of the first intermediates of a-, b-, and c- series gangliosides occurs in a proximal Golgi compartment and that the proximal Golgi-synthesized gangliosides (GM3, GD3, and GT3) use a transport mechanism that is dependent on ADP ribosylation factor and coatomer proteins.  相似文献   

4.
5.
Ganglioside GM1, tritiated at the level of the long chain base (sphingosine) [( Sph-3H]GM1), sialic acid (N-acetylneuraminic acid) [( NeuAc-3H]GM1), or terminal galactose [( Gal-3H]GM1) was supplied to cerebellar granule cells differentiated in vitro, and its metabolic processing was followed with pulse time. Using [Sph-3H]GM1 and [NeuAc-3H]GM1 the formation of radioactive compounds of catabolic origin (GM2, GM3, lactosylceramide, glucosylceramide, and ceramide) started being detectable at 10-15 min of pulse, whereas compounds of biosynthetic origin (GD1a, GD1b, GT1b, O-acetylated GT1b, spingomyelin, and sialoglycoprotein) appeared after 15-30 min of pulse. Using [Gal-3H]GM1 two radioactive substances were formed, GD1a and GT1b, with the former (produced by direct sialosylation of GM1) appearing after 30 min of pulse and the latter (formed by biosynthetic recycling of released galactose) appearing after 2 h. The radioactivity linked to all metabolites increased with increasing pulse time until 4 h. The percentage of GM1 taken up and subjected to metabolic processing was found to increase from 1.8% after 10 min of pulse to 12.5% after 4 h. Cerebellar granule cells were able to release enzymes of lysosomal origin, beta-D-N-acetylhexosaminidase and beta-D-galactosidase, into the culture medium, with the release being markedly decreased by the absence in the medium of fetal calf serum, a condition that was used for studying exogenous GM1 uptake and metabolization. However, these enzymes exerted no activity at the pH of the culture medium, and no radioactive gangliosides, besides GM1, were detected in the culture medium during pulse.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Modulation of Ganglioside Biosynthesis in Primary Cultured Neurons   总被引:11,自引:4,他引:7  
Murine cerebellar cells were pulse labeled with [14C]galactose, and the incorporation of radioactivity into gangliosides and neutral glycosphingolipids was examined under different experimental conditions. In the presence of drugs affecting intracellular membrane flow, as well as at 15 degrees C, labeled GlcCer was found to accumulate in the cells, whereas the labeling of higher glycosphingolipids and gangliosides was reduced. Monensin and modulators of the cytoskeleton effectively blocked biosynthesis of the complex gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, whereas incorporation of radioactivity into neutral glycosphingolipids, such as glucosylceramide and lactosylceramide, as well as GM3, GM2, and GD3 was either increased or unaltered. As monensin has been reported to interfere with the flow of molecules from the cis to the trans stacks of the Golgi apparatus, this result highlights at least one subcompartmentalization of ganglioside biosynthesis within the Golgi system. Inhibitors of energy metabolism affected, predominantly, the biosynthesis of the b-series gangliosides, whereas a reduced temperature (15 degrees C) more effectively blocked incorporation of radiolabel into the a-series gangliosides, a result suggesting the importance of GM3, as the principal branching point, for the regulation of ganglioside biosynthesis.  相似文献   

7.
Abstract: To characterize the sialyltransferase-IV activity in brain tissues, the activities of GM1b-, GD1a-, GT1b-, and GQ1c-synthases in adult cichlid fish and rat brains were examined using GA1, GM1, GD1b, or a cod brain ganglioside mixture as the substrate. The GD1a-synthase activity in the total membrane fraction from cichlid fish brain required divalent cations such as Mg2+ or Mn2+ and Triton CF-54 for its full activity. The Vmax value was 1,340 pmol/mg of protein/h at an optimal pH of 6.5, whereas the apparent Km values for CMP-sialic acid and GM1 were 172 and 78 µM, respectively. Cichlid fish and rat brains also contained GM1b-, GT1b-, and GQ1c-synthase activities. The ratio of GM1b-, GD1a-, and GT1b-synthase activities in fish brain was 1.00:0.89:1.13, respectively, and in rat brain 1.00:0.60:0.63. Incubation of fish brain membranes with a cod brain ganglioside mixture, which contains GT1c, and [3H]CMP-sialic acid produced radiolabeled GQ1c. It is interesting that the adult rat brain also contains an appreciable level of GQ1c-synthase activity despite its very low concentrations of c-series gangliosides. The GD1a- or GQ1c-synthase activity in fish and rat brain was inhibited specifically by coincubation with the glycolipids that serve as the substrates for other sialyltransferase-IV reactions. Thus, the GD1a-synthase activity was inhibited by GA1 and GD1b, but not by LacCer, GM3, or GD3. In a similar manner, the synthesis of GQ1c was suppressed by GA1, GM1, and GD1b, but not by LacCer, GM3, or GD3. The GD1a-synthase activity directed toward endogenous GM1 was inhibited by GA1 or GT1b, whereas the endogenous GT1b-synthase activity was suppressed by GA1 or GM1. GA1, GM1, and GD1b did not affect the endogenous GM3- and GD3-synthase activities. These results clearly demonstrate that sialyltransferase-IV in brain tissues catalyzes the reaction for GQ1c synthesis in the c-pathway as well as the corresponding steps in the asialo-, a-, and b-pathway in ganglioside biosynthesis.  相似文献   

8.
The pathways of metabolic processing of exogenously administered GM1 ganglioside in rat liver was investigated at the subcellular level. The GM1 used was 3H-labelled at the level of long-chain base ([Sph(sphingosine)-3H]GM1) or of terminal galactose ([Gal-3H]GM1). The following radioactive compounds, derived from exogenous GM1, were isolated and chemically characterized: gangliosides GM2, GM3, GD1a and GD1b (nomenclature of Svennerholm [(1964) J. Lipid Res. 5, 145-155] and IUPAC-IUB Recommendations [(1977) Lipids 12, 455-468]); lactosylceramide, glucosylceramide and ceramide; sphingomyelin. GM2, GM3, lactosylceramide, glucosylceramide and ceramide, relatively more abundant shortly after GM1 administration, were mainly present in the lysosomal fraction and reflected the occurrence of a degradation process. 3H2O was also produced in relevant amounts, indicating complete degradation of GM1, although no free long-chain bases could be detected. GD1a and GD1b, relatively more abundant later on after administration, were preponderant in the Golgi-apparatus fraction and originated from a biosynthetic process. More GD1a was produced starting from [Sph-3H]GM1 than from [Gal-3H]GM1, and radioactive GD1b was present only after [Sph-3H]GM1 injection. This indicates the use of two biosynthetic routes, one starting from a by-product of GM1 degradation, the other implicating direct sialylation of GM1. Both routes were used to produce GD1a, but only the first one for producing GD1b. Sphingomyelin was the major product of GM1 processing, especially at the longer times after injection, and arose from a by-product of GM1 degradation, most likely ceramide.  相似文献   

9.
The synthesis, processing, and secretion of lipophorin by the larval fat body of the southwestern corn borer, Diatraea grandiosella, was examined using in vitro techniques. Pulse-labeling of lipophorin with [35S]methionine showed that apolipophorin-I and -II were each synthesized and secreted from the fat body into Grace's medium with an intracellular transit time of about 45 min. Secretion of the apolipoproteins from the fat body became insensitive to the presence of monensin, which disrupts protein processing in the Golgi complex, at 30 min, indicating that most of the pulse-labeled apolipoprotein has transited the Golgi complex by this time. Three inhibitors of protein processing, carbonylcyanide m-chlorophenyl hydrazone, monensin, and brefeldin A, inhibited secretion of lipophorin into medium. Puromycin treatment did not appear to result in the secretion into the medium of lipophorin particles containing incomplete translation products of apolipophorin-I or -II. Incubation of fat bodies with [3H]oleate resulted in the secretion of lipophorin containing [3H]glycerides, a process that was inhibited by cycloheximide, puromycin, and monensin, indicating that apolipoprotein synthesis is required for secretion of [3H]glyceride on nascent lipophorin particles. In contrast, suramin, which has been shown to block the binding of lipophorin to plasma membrane receptors, inhibited the synthesis and secretion of lipophorin, but it did not appear to inhibit the transfer of [3H]lipid from the fat body to lipophorin. Inhibitors of protein synthesis and processing, therefore, can be used to distinguish between secretion of lipophorin-associated lipids and secretion of lipids mediated by the lipid-transfer particle outside the plasma membrane of the fat body.  相似文献   

10.
Neuroblastoma and glioma cells were grown in the presence of [3H]galactose, and the incorporation of 3H into gangliosides and the transport of newly synthesized gangliosides to the cell surface were examined under different experimental conditions. A variety of drugs, including inhibitors of protein synthesis and energy metabolism, modulators of the cytoskeleton and the ionophore monensin, had no effect on the transport of newly synthesized GD1a in neuroblastoma cells. Only low temperature effectively blocked translocation to the plasma membrane. Monensin, however, had marked effects on the biosynthesis of gangliosides and neutral glycosphingolipids. Whereas incorporation of 3H into complex glycosphingolipids was reduced, labeling of glucosylceramide was increased in cells exposed to monensin. In addition, biosynthesis of the latter glycolipid was less susceptible to low temperatures than that of more complex ones. Previous studies have implicated the Golgi apparatus as the predominant site of glycosylation of gangliosides. As monensin has been reported to interfere with the Golgi apparatus, our results indicate that glucosylceramide may be synthesized at a site that is separate from the site where further glycosylation occurs. Once synthesis of a ganglioside is completed, transport of the molecule to the cell surface proceeds under conditions of cytoskeletal disruption, energy depletion and ionic inbalance, but not low temperature.  相似文献   

11.
Uncoupling of ganglioside biosynthesis by Brefeldin A   总被引:13,自引:0,他引:13  
We have studied the effect of Brefeldin A (BFA), an antiviral antibiotic, on glycosphingolipid metabolism in primary cultured cerebellar cells. Cells were labeled metabolically with [14C]galactose, or pulse-labeled with precursors of glycosphingolipid biosynthesis; i.e., [14]serine, [3H]palmitic acid or [3H]sphingosine. In all cases BFA (1 microgram/ml) strongly inhibited (75-95%) ganglioside biosynthesis beyond the stage of GM3 and GD3, that is the formation of GM1, GD1a, GT1b and GQ1b. Simultaneously an accumulation of GlcCer, LacCer, GM3 and GD3 was observed (up to 2000%). These effects could be reversed fully by removal of the BFA from the culture medium. These results indicate that the LacCer-, GM3- and GD3-synthases of murine cerebellar cells are localized together on the proximal site of the Golgi apparatus, probably in the cis-Golgi compartment. It is probable that sphingomyelin synthase and some of the other glycosyltransferases involved in ganglioside biosynthesis are localized in distinct compartments beyond the cis Golgi.  相似文献   

12.
Abstract: Brefeldin A (BFA) has been used extensively to study the intracellular transport and processing of proteins and sphingolipids because of its dramatic alteration of the structural and functional organization of the Golgi. We have examined the effect of BFA on the synthesis of galactosylceramide sulfate (SGalCer) and its immediate precursor galactosylceramide (GalCer) in an immortalized Schwann cell line (S16) to determine the intracellular sites of synthesis of these two related glycolipids. During a 6-h labeling period, a dose-dependent inhibition of [35S]sulfate incorporation into SGalCer was observed with 95% inhibition occurring at 0.5 µg/ml BFA. Labeling of newly synthesized galactosphingolipids with [3H]-palmitic acid for 6 h in the presence of BFA resulted in increased incorporation of label into GalCer containing nonhydroxy fatty acids (NFA-GalCer) to 162% of control values, whereas labeling of GalCer containing 2-hydroxy fatty acids (HFA-GalCer) was reduced to 63% of control. After 24 h, these values were at 366 and 91%, respectively. These results indicate that at least some of the HFA-GalCer was initially synthesized at a location distal to the BFA block and separate from the site of NFA-GalCer synthesis. Examination of [3H]palmitic acid incorporation into free ceramides showed an increase of 133 and 161% for hydroxy and nonhydroxy fatty acid ceramides, respectively, in cells treated for 6 h with BFA in comparison with levels found in untreated control cells, indicating that BFA did not block fatty acid 2-hydroxylation or the formation of HFA ceramide. Incorporation of [3H]palmitic acid into glucosylceramide and GM3 was increased over control levels whereas labeling of GM2 was inhibited, consistent with what has been reported previously for the effect of BFA on these glycolipids in other cell types. These results suggest that there are at least two separate intracellular sites for the galactosylation of HFA and NFA ceramide, respectively, which can be distinguished by their sensitivity to BFA. Our results also indicate that the site of GalCer sulfation is not redistributed to the endoplasmic reticulum in the presence of BFA and therefore may be localized to the distal Golgi or trans-Golgi network.  相似文献   

13.
Using a sucrose density gradient fractionation of a highly purified Golgi apparatus from rat liver, we determined the sub-Golgi distribution of CMP-NeuAc:GM3 ganglioside alpha 2----8sialyltransferase (GM3-SAT) and CMP-NeuAc:GT1b ganglioside alpha 2----8sialyltransferase (GT1b-SAT), in comparison with that of the other glycosyltransferase activities involved in ganglioside biosynthesis. While GM3-SAT was recovered in several density fractions, GT1b-SAT was mainly found on less dense sub-Golgi membranes; this indicates that these two activities are physically separate. Moreover, with regard to the monosialo pathway, CMP-NeuAc:lactosylceramide alpha 2----3sialyltransferase, UDP-GalNAc:GM3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GM2 ganglioside beta 1----3galactosyltransferase, and CMP-NeuAc:GM1 ganglioside alpha 2----3sialyltransferase were resolved from more dense to less dense fractions, respectively. In the disialo pathway, UDP-GalNAc:GD3 ganglioside beta 1----4N-acetylgalactosaminyltransferase, UDP-Gal:GD2 ganglioside beta 1----3galactosyltransferase and CMP-NeuAc:GD1b ganglioside alpha 2----3sialyltransferase co-distributed with the corresponding activities of the monosialo pathway. These last results indicate that many Golgi glycosyltransferases involved in ganglioside biosynthesis are localized in the order in which they act.  相似文献   

14.
Summary Wild carrot (Daucus carota L.) cells, grown in suspension culture, were labeled with radioactive precursors and fractionated into constituent membranes to be analyzed for specific radioactivity. Results show rapid incorporation of [3H] leucine into endoplasmic reticulum (ER)-, Golgi apparatus-, and plasma membrane/tonoplast-enriched fractions. The time lag between incorporation into ER and its appearance in Golgi apparatus or plasma membrane/tonoplast were less than 5 minutes. With an average time of 3–4 minutes for cisternal formation estimated from studies with monensin, and an average of 5 cisternae per dictyosome (total transit time of 15–20 minutes), it was not possible to account for early incorporation of radioactivity into plasma membranes by passage of proteins from ER to plasma membrane via the Golgi apparatus. To account for the findings, it would appear that at least some proteins were delivered to the plasma membrane via the first membranes that exited (i.e., mature face vesicles) from the Golgi apparatus post-pulse and that some of these proteins had been translated and inserted into membranes at or near the mature face of the Golgi apparatus.  相似文献   

15.
Novel mono-O-acetylated GM3s, one containing 9-O-acetylN-glycolyl neuraminic acid and another containing 6-O-acetyl galactose, were isolated as a mixture from equine erythrocytes, and the structures were characterized by one- and two-dimensional proton nuclear magnetic resonance (NMR) and fast atom bombardment-mass spectrometry (FAB-MS). The position of theO-acetyl residue was identified by the downfield shift of the methylene protons at C-9 ofN-glycolyl neuraminic acid (9-O-Ac GM3) and C-6 of galactose (6-O-Ac GM3) in the NMR spectrum, in comparison to the respective non-acetylated counterparts. To confirm the presence of 6-O-Ac GM3, theO-acetylated GM3 mixture was desialylated withArthrobacter neuraminidase, giving 6-O-acetyl galactosyl glucosylceramide, the structure of which was estimated by NMR and FAB-MS, together with non-acetylated lactosylceramide with a ratio of 1:1. Abbreviations: Ac, acetyl; Gc, glycolyl; NeuGc,N-Gc neuraminic acid; GM3 (Gc), GM3 containing NeuGc (II3NeuGc-LacCer); 4-O-Ac GM3 (Gc), GM3 containing 4-O-Ac NeuGc; 9-O-Ac GM3 (Gc), GM3 containing 9-O-Ac NeuGc; 6-O-Ac GM3 (Gc), GM3 containing 6-O-Ac Gal; 1D-NMR, one-dimensional nuclear magnetic resonance spectrometry; 2D-COSY, two-dimensional chemical shift-correlated spectrometry; FAB-MS, fast atom bombardment-mass spectrometry; GLC, gas-layer chromatography; GC-MS, gas chromatography-mass spectrometry; TLC, thin-layer chromatography; Ggl, ganglioside; Cer, ceramide; CMH, monohexosylceramide; LacCer, lactosylceramide; 6-O-Ac LacCer, LacCer containing 6-O-Ac Gal; Me2SO-d6,2H6-dimethylsufloxide; CMW, chloroform-methanol-water; Nomenclature and abbreviations of glycosphingolipids follow the system of Svennerholm (J Neurochem [1963]10: 613–23) and those recommended by the IUPAC-IUB Nomenclature Commission (Lipids [1977]12: 455–68).  相似文献   

16.
The total stereo-controlled synthesis of lactosylceramide and introduction of two kinds of isotopes,3H and14C, into synthetic lactosylceramide are described.  相似文献   

17.
The membrane complex lipids of human fibroblasts and differentiated rat cerebellar granule cells in culture were metabolically radiolabeled with [1-3H]sphingosine, L-[3-3H]serine and [9,10-3H]palmitic acid. A relevant efflux of radioactive sphingolipids and phosphatidylcholine was observed from cells to the culture medium in the presence of fetal calf serum. This event was independent of the concentration and structure of the metabolic precursor administered to cells, and it was linearly time-dependent. The radioactive lipid patterns present in the medium were different from those present in the cells. Radioactive sphingomyelin and ganglioside GM3 containing short acyl chains were the main species present in the medium from human fibroblasts, while sphingomyelin and GD3 ganglioside in that from neuronal cells. In the absence of proteins in the culture medium, the efflux of complex lipids was much lower than in the presence of serum, and the patterns of released molecules were again different from those of cells. This work was supported by COFIN-PRIN, Consiglio Nazionale delle Ricerche (PF Biotechnology), Italy.  相似文献   

18.
Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells has been monitored during the cells' progression to apoptosis by anti-cancer drugs and inhibitors of the cell surface glycolipids, gangliosides and SA-Lex biosyntheses [Basu, S (1991) Glycobiology, 1, 469–475; and ibid, 427–435] in animal tissues and human carcinoma cells, respectively. Induction of apoptosis in cancer cells by cell surface glycolipids in the human breast cancer (SKBR3) cells is the aim in this study. We have employed the disialosyl gangliosides (GD3 and GD1b) to initiate apoptosis in SKBR3 cells grown in culture in the presence of 14C-L-Serine. At lower concentrations (0–20 μM) of exogenously added non-radioactive GD3, GD1b, or bovine ganglioside mixture (GM1:GD1a:GD1b:GT1a 2:4:4:2), the incorporation of radioactivity in both 14C-sphingolipid and 14C-ceramide was higher. However, at higher concentrations (20–100 μM), wherein apoptosis occurred in high frequency, the 14C-incorporation decreased in both GSLs and ceramide. Apoptosis induction was monitored by the concomitant appearance of caspase-3 activation and the binding of a fluorescent dye PSS-380 to the outer leaflet of phosphatidyl-serine. These results indicated that, in addition to many unknown cell surface glycoconjugates GD3 or GD1b (disialosyl ganglioside) could play an important role in the regulation of breast carcinoma cell death. Published in 2004. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Ganglioside synthesis and transport to myelin was studied in brainstem slices prepared from 19-21-day-old rats. The slices were incubated for up to 2 h in the presence of [3H]glucosamine to label primarily the hexosamine portion of complex gangliosides. The amount of radioactivity incorporated into gangliosides during slice incubations was only 10-15% of the amount of the label incorporated during in vivo labeling of brainstem gangliosides using equivalent amounts of [3H]glucosamine. Among individual gangliosides this inhibition was greater for the more complex gangliosides. When labeled gangliosides were isolated from homogenate and myelin fractions prepared from brain slices, the complex total gangliosides of both fractions showed a lag in labeling kinetics but with a lower specific radioactivity for the myelin fraction, reflecting the larger pool size and slower turnover rate exhibited by myelin components. Chase experiments showed that more complex gangliosides in homogenate exhibited almost no effect of chase after 30 min. Addition of the Golgi-disrupting agent monensin to slice incubations inhibited the labeling of all gangliosides except GM3, GM2, and GD3, and transport to myelin of all complex gangliosides except GM2. These results show that a monensin-sensitive mode of transport is responsible for the translocation of most newly synthesized gangliosides into myelin.  相似文献   

20.
A first systematic synthesis of the glycan parts of the a-series gangliosides (GT1a, GD1a, and GM1) utilizing the newly developed N-Troc-protected GM3 and galactosaminyl building blocks is described. The key processes, including the assembly of the GM2 sequence and its conversion into the 3-hydroxy acceptor, were facilitated mainly by the high degree of participation and chemoselective cleavability of the Troc group in the galactosaminyl unit. Furthermore, the novel GM2 acceptor served as a good coupling partner during glycosylation with galactosyl, sialyl galactosyl, and disialyl galactosyl donors, successfully producing the GM1, GD1a, and GT1a glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号