首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been shown in vitro that the lamb ductus arteriosus forms prostaglandins PGE2, PGF2alpha, 6 keto PGF1alpha (and its unstable precursor PGI2). In this study the relative potencies of these endogenous prostaglandins were investigated on isolated lamb ductus arteriosus preparations contracted by exposure to elevated PO2 and indomethacin. All the prostaglandins (except PGF2alpha) relaxed the vessel. This is consistent with the hypothesis that endogenous prostaglandins inhibit the tendency of the vessel to contract in response to oxygen. Only PGE2, however, relaxed the vessel at concentrations below 10(-8)M. PGI2 and 6 keto PGF1alpha had approximately 0.001 and 0.0001 times the activity of PGE2. Although PGE2 has been observed to be a minor product of prostaglandin production in the lamb ductus arteriosus, the tissue's marked sensitivity to PGE2 might make it the most significant prostaglandin in regulating the patency of the vessel.  相似文献   

2.
Prostaglandin E2 (PGE2) has previously been shown to inhibit sympathetic neurotransmission in different organs and species. Based on this inhibitory effect and on its reversal by cyclo-oxygenase inhibitors, PGE2 has been claimed to be a physiological modulator of in vivo release of norepinephrine (NE) from sympathetic nerves. It is now recognized that prostacyclin (PGI2) is the main cyclo-oxygenase product in the heart. We therefore addressed the question whether PGI2, within the same preparation, is formed in increased amounts during sympathetic nerve stimulation and has neuromodulatory activity. The effluent from isolated rabbit hearts subjected to sympathetic nerve stimulation or to infusion of NE or adenosine (ADO) was collected, and its content of PGE2 and 6-keto-PGF1 alpha (dehydration product of PGI2) was analyzed using gas chromatography/mass spectrometry, operated in the negative ion/chemical ionization mode. Other hearts were infused with PGI2 and nerve stimulation induced outflow of endogenous NE into the effluent was analyzed using HPLC with electrochemical detection. Nerve stimulation at 5 or 10 Hz (before but not after adrenergic receptor blockade), as well as infusion of NE (10(-6)-10(-5)M) or ADO (10(-4)M) increased the cardiac outflow of 6-keto-PGF1 alpha. Basal and nerve stimulation induced efflux of 6-keto-PGF1 alpha was approximately 5 times higher than the corresponding efflux of PGE2. PGI2 dose-dependently inhibited the outflow of NE from sympathetically stimulated hearts, the inhibition at 10(-6)M being approximately 40%. On the basis of these observations we propose that PGI2 is a more likely candidate than PGE2 as a potential modulator of neurotransmission in cardiac tissue in vivo.  相似文献   

3.
This study examines the hypothesis that cholecystitis down-regulates Guinea pig gallbladder (GPGB) smooth muscle cholecystokinin (CCK)-stimulated prostaglandin (PG) release. Guinea pig gallbladder from Control and 48 h bile duct ligated (BDL) animals were placed in cell culture and grown to confluence. The cultures underwent Western Blot analysis for smooth muscle cell content of COX-1, COX-2, Prostacyclin Synthase (PS), or were incubated with CCK at 10(-8)M or 10(-6)M with and without indomethacin for 1h and analyzed for release of 6-keto-PGF1alpha, PGE2 and TxB2 by EIA. BDL increased Guinea pig gallbladder cell culture basal PGE2 and PGI2 release which was in part due to increased COX-2 content. CCK incubation down-regulated BDL Guinea pig gallbladder cell culture release of 6-keto-PGF1alpha and PGE2 and down-regulated COX-2 content but did not alter the Control group. The decrease in CCK-mediated BDL cell Guinea pig gallbladder release may be an endogenous mechanism to limit physiologic derangements induced by increased endogenous gallbladder PG synthesis during early acute cholecystitis.  相似文献   

4.
Dose-response curves for several prostaglandins (PGI2; PGD2; PGF2 and PGE2); BaCl2 or prostaglandin metabolites (15-keto-PGF2 alpha; 13,14-diOH-15-keto-PGF2 alpha; 6-keto-PGF1 alpha and 6-keto PGE1 in quiescent (indomethacin-treated) uterine strips from ovariectomized rats, were constructed. All PGs tested as well as BaCl2, triggered at different concentrations, evident phasic contractions. Within the range of concentrations tested the portion of the curves for the metabolites of PGF2 alpha was shifted to the right of that for PGF2 alpha itself; the curve for 6-keto-PGF1 alpha was displaced to the right of the curve for PGI2 and that for 6-keto-PGE1 to the left. It was also demonstrated that the uterine motility elicited by 10(-5) M PGF2 alpha and its metabolites was long lasting (more than 3 hours) and so it was the activity evoked by PGI2;6-keto-PGF1 alpha and BaCl2, but not the contractions following 6-keto-PGE1, which disappeared much earlier. The contractile tension after PGF2 alpha; 15-keto-PGF2 alpha; 13,14-diOH-15-keto-PGF2 alpha and PGI2, increased as time progressed whilst that evoked by 6-keto-PGF1 alpha or BaCl2 fluctuated during the same period around more constant levels. The surprising sustained and gradually increasing contractile activity after a single dose of an unstable prostaglandin such as PGI2, on the isolated rat uterus rendered quiescent by indomethacin, is discussed in terms of an effect associated to its transformation into more stable metabolites (6-keto-PGF1 alpha, or another not tested) or as a consequence of a factor which might protects prostacyclin from inactivation.  相似文献   

5.
The effects of several prostaglandins on the proliferation of secondary cultures of osteoblast-like cells, as measured by the incorporation of [3H]-thymidine into DNA and total DNA content of the cultures, were studied. PGE2 in the concentration range of 10(-8) to 10(-5) M caused a direct, dose-related stimulation of proliferation, while PGF2 alpha and PGD2 were less effective. PGA2 and 6-keto-PGF1 alpha were inactive in the osteoblasts in concentrations of 10(-7) to 10(-6) M. A similar stimulation profile was observed for the induction of ornithine decarboxylase (ODC, L-ornithine decarboxy-lyase, EC 4.1.1.17): the order of potency of the different prostaglandins in the induction of the ODC activity was PGE2 greater than PGF2 alpha = PGD2; again, PGA2 and 6-keto-PGF1 alpha were without effect in concentrations up to 10(-6) M. These results show that the primary prostaglandins, in order of potency PGE2 greater than PGF2 alpha = PGD2, can have a direct, stimulatory effect on the proliferation of osteoblasts, which is closely related to the induction of ODC activity.  相似文献   

6.
Both intact cortical tissue and isolated cortical cells from the adrenal gland of the rat were analyzed for 6-keto-PGF1 alpha, the hydrolysis metabolite of PGI2, using high-performance liquid chromatography and gas chromatography-mass spectrometry. 6-Keto-PGF1 alpha was present in both incubations of intact tissue and isolated cells of the adrenal cortex, at higher concentrations than either PGF2 alpha or PGE2. Thus, the cortex does not depend upon vascular components for the synthesis of the PGI2 metabolite. Studies in vitro, using isolated cortical cells exposed to 6-keto-PGF1 alpha (10(-6)-10(-4)M), show that this PG does not alter cAMP levels or steroidogenesis. Cells exposed to PGI2 (10(-6)-10(-4)M), however, show a concentration-dependent increase of up to 4-fold in the levels of cAMP without altering cortico-sterone production, ACTH (5-200 microU/ml) increased cAMP levels up to 14-fold, and corticosterone levels up to 6-fold, in isolated cells. ACTH plus PGI2 produced an additive increase in levels of cAMP, however, the steroidogenic response was equal to that elicited by ACTH alone. Adrenal glands of the rat perfused in situ with PGI2 showed a small decrease in corticosterone production, whereas ACTH greatly stimulated steroid release. Thus, while 6-keto-PGF1 alpha is present in the rat adrenal cortex, its precursor, PGI2, is not a steroidogenic agent in this tissue although it does stimulate the accumulation of cAMP.  相似文献   

7.
Cycloheximide produced a large increase in prostaglandin (PG) E2 output and smaller increases in PGF2 alpha and 6-keto-PGF1 alpha when superfused over the guinea-pig uterus for 20 min. This stimulation of the outputs of these 3 PGs by cycloheximide did not require extracellular calcium. TMB-8 (an intracellular calcium antagonist) had no effect on the stimulation of PGE2 output by cycloheximide, but it completely prevented the stimulation of PGF2 alpha and 6-keto-PGF1 alpha outputs. W-7 (a calmodulin antagonist) had no effect on the stimulation of PGE2 and PGF2 alpha outputs by cycloheximide, but it partially reduced and delayed the stimulation of 6-keto-PGF1 alpha output. Neomycin (a phospholipase C inhibitor) did not prevent the increases in PGE2 and 6-keto-PGF1 alpha outputs produced by cycloheximide. However, neomycin (5 and 10 mM, but not 1 mM) inhibited the small increases in PGF2 alpha caused by cycloheximide. On its own, neomycin produced a dose-dependent, transient increase in 6-keto-PGF1 alpha output without affecting the outputs of PGF2 alpha and PGE2. It is concluded that different mechanisms are involved in the processes by which cycloheximide stimulates the syntheses of PGE2, PGF2 alpha and 6-keto-PGF1 alpha in the guinea-pig uterus.  相似文献   

8.
Norepinephrine-stimulated prostacyclin synthesis was studied in rat aortic rings by measuring 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) by radioimmunoassay. Norepinephrine (10(-6) M) results in a 10- to 20-fold increase in 6-keto-PGF1 alpha synthesis by rat aortic rings (54 +/- 11 to 437 +/- 260 pg X mg wet weight-1 X 20 min-1). The maximal stimulation of 6-keto-PGF1 alpha synthesis was observed with a norepinephrine concentration of 10(-5) M at a mean effective concentration (EC50) of 9.5 +/- 3.2 X 10(-7) M which is similar to the contractile response (Emax = 10(-5) M, EC50 = 6.5 +/- 1.8 X 10(-7) M). Potassium chloride (30 mM), although causing a similar maximal contractile response as 10(-6) M norepinephrine, did not increase 6-keto-PGF1 alpha synthesis. Norepinephrine-stimulated 6-keto-PGF1 alpha synthesis was dependent upon extracellular calcium. Norepinephrine stimulation in Ca2+-free medium did not lead to a significant increase in 6-keto-PGF1 alpha synthesis. However, on the introduction of Ca2+, 6-keto-PGF1 alpha synthesis was restored to its initial level. Phentolamine (10(-6) M) (an alpha-adrenergic antagonist) and trifluroperazine (2.5 X 10(-4) M) (a calmodulin inhibitor) completely inhibited norepinephrine-stimulated 6-keto-PGF1 alpha synthesis, whereas verapamil 3 X 10(-6) M (a calcium channel blocking drug) only partially inhibited synthesis (control, 74 +/- 12; norepinephrine, 437 +/- 260; norepinephrine + verapamil, 123 +/- 8 pg X mg wet weight-1 X 20 min-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We investigated the effects of a new pyridoquinazoline thromboxane synthetase inhibitor infused before administering Escherichia Coli endotoxin into 18 anesthetized sheep with lung lymph fistulas. In normal sheep increasing plasma Ro 23-3423 concentrations were associated with increased plasma levels of 6-keto-PGF1 alpha, a reduced systemic vascular resistance (SVR, r = -0.80) and systemic arterial pressure (SAP, r = -0.92), the mean SAP falling from 80 to 50 mm Hg at the 20 and 30 mg/kg doses. Endotoxin infused into normal sheep caused transient pulmonary vasoconstriction associated with increased TxB2 and 6-keto-PGF1 alpha levels while vasoconstriction and TxB2 increase were significantly inhibited by pretreatment with Ro 23-3423 in a dose-dependent manner. When compared to controls, plasma and lymph levels of 6-keto-PGF1 alpha, PGF2 alpha and PGE2 after endotoxin infusion were increased several-fold by administering Ro 23-3423 up to plasma levels of 10 micrograms/ml. Doses over 30 mg/kg with blood levels above 10 micrograms/ml reduced plasma and lymph levels of 6-keto-PGF1 alpha, PGF2 alpha and PGE2, suggesting cyclooxygenase blockade at this dose. The peak 6-keto-PGF1 alpha levels at 60 min after endotoxin infusion in sheep with Ro-23-3423 levels below 10 micrograms/ml were associated with the greatest systemic hypotension due to a reduced SVR (r = -0.86). After endotoxin infusion the leukotrienes B4, C4, D4 and E4 in lung lymph were assayed by radioimmunoassay and high pressure liquid chromatography and remained at baseline values.  相似文献   

10.
Monkey trabecular meshwork (MTM) cells synthesize a variety of prostaglandins, including large amounts of prostaglandin E2 (PGE2) and smaller amounts of 6-keto-PGF1 alpha and PGF2 alpha. The predominance of PGE2 production by the MTM cells is similar to that observed in human trabecular meshwork cells. In contrast, the relative amounts of 6-keto-PGF1 alpha and PGF2 alpha were reversed compared with the human cells. The MTM cells produced increased amounts of PGE2 in response to treatment with bradykinin, platelet activating factor, and A-23187. Dexamethasone caused a dose-dependent inhibition of PGE2 production with 50% inhibition by 10(-8) M, although this response was variable.  相似文献   

11.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

12.
The effects of sulfasalazine (SASP) and its cleavage products 5-aminosalicylic acid (5-ASA) and sulfapyridine (SP) on prostanoid (PG) synthesis and degradation were determined in rabbit colonic mucosa fractions in vitro. When the microsomal fraction was incubated with (14C)arachidonic acid, 10(-3) M SASP and SP did not markedly change the formation of labeled PGE2, PGF2 alpha, TxB2 and 6-keto-PGF1 alpha X 10(-4) M 5-ASA increased synthesis about 2.7-fold; the pattern of PG identified was unaltered. In the presence of the 10-fold higher concentration of 5-ASA, PG synthesis remained elevated at a similar level. When the cytosolic fraction was incubated with (3H)PGE2, 10(-3) M 5-ASA was without influence and 10(-3) M SP decreased slightly PGE2 breakdown. However, SASP showed a pronounced inhibitory effect at 10(-5) M and inhibition of PGE2 degradation was complete at 10(-3) M SASP. The results are compatible with the assumption that stimulation of PG synthesis by 5-ASA is related to therapeutic benefit in the treatment of ulcerative colitis.  相似文献   

13.
Cells were isolated from human chorion laeve obtained at term (38-40 weeks gestation) by elective caesarean section and were maintained in primary culture for 1 week in defined media supplemented with 10% fetal calf serum. The production of various cyclooxygenase products by the cultures was examined. Little or no prostaglandin (PG) F2 alpha, 6-keto-PGF1 alpha, thromboxane B2, or 13,14-dihydro-15-keto-PGF2 alpha was found. In contrast, the cells produced PGE2 which was low on day 0, increased during culture to a maximum on day 1 or 2, then declined to low levels. When cells were grown in the presence of media containing cortisol, dexamethasone, progesterone, and estradiol (at 10(-7) or 10(-9) M), the glucocorticoids (at 10(-7) and 10(-9) M), but not estrogen or progesterone, markedly inhibited the increase in PGE2 output. There was no difference in the protein content and thymidine incorporation of cells grown in the presence of glucocorticoids when compared with controls. This inhibitory effect was not sensitive to cycloheximide (1 microgram/mL) indicating protein synthesis may not be involved in the process. These studies indicate that PGE2 is the major prostaglandin formed by primary cultures of chorion laeve and that prostaglandin metabolism in the chorion is sensitive to glucocorticoid inhibition.  相似文献   

14.
T Kobayashi 《Prostaglandins》1986,31(3):469-475
Effects of 10 ppm nitrogen dioxide (NO2) exposure on the contents of prostaglandins (PGs) and thromboxane (TX) B2 in bronchoalveolar lavage (BAL) of rats were studied. In the BAL of normal rats, the amounts of PGs and TXB2 in the whole lavage were 6-keto-PGF1 alpha (38.0 +/- 6.4 ng) greater than TXB2 (11.8 +/- 4.0 ng) greater than PGF2 alpha (5.7 +/- 1.6 ng) much greater than PGE (0.5 +/- 0.3 ng). Rats were exposed to NO2 for 1,3,5,7 and 14 days. The NO2 exposure decreased in the level of 6-keto-PGF1 alpha by about 35% throughout the exposure. The level of TXB2 was higher in the day 5 exposure group (155%). The contents of PGF2 alpha and PGE first, decreased and then transiently increased on days 3 and 5. PG 15-hydroxy-dehydrogenase activity of lung homogenate decreased correspondingly on day 3 and 5. Then the contents PGF2 alpha and PGE decreased on day 7 and 14. 6-keto-PGF1 alpha and TXB2 are stable metabolites of PGI2, a strong bronchorelaxant and TXA2, a strong bronchoconstrictor respectively. Therefore the results suggested that the decrease in 6-keto-PGF1 alpha, a major prostanoid in the BAL and the increase in TXB2 may correlate with broncho constriction by NO2 exposure.  相似文献   

15.
Microsomal prostaglandin E synthase (mPGES)-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in prostaglandin (PG)E2 synthesis. We investigated the kinetics of inducible cyclo-oxygenase (COX)-2 and mPGES-1 expression with respect to the production of 6-keto-PGF1alpha and PGE2 in rat chondrocytes stimulated with 10 ng/ml IL-1beta, and compared their modulation by peroxisome-proliferator-activated receptor (PPAR)gamma agonists. Real-time PCR analysis showed that IL-1beta induced COX-2 expression maximally (37-fold) at 12 hours and mPGES-1 expression maximally (68-fold) at 24 hours. Levels of 6-keto-PGF1alpha and PGE2 peaked 24 hours after stimulation with IL-1beta; the induction of PGE2 was greater (11-fold versus 70-fold, respectively). The cyclopentenone 15-deoxy-Delta12,14prostaglandin J2 (15d-PGJ2) decreased prostaglandin synthesis in a dose-dependent manner (0.1 to 10 microM), with more potency on PGE2 level than on 6-keto-PGF1alpha level (-90% versus -66% at 10 microM). A high dose of 15d-PGJ2 partly decreased COX-2 expression but decreased mPGES-1 expression almost completely at both the mRNA and protein levels. Rosiglitazone was poorly effective on these parameters even at 10 microM. Inhibitory effects of 10 microM 15d-PGJ2 were neither reduced by PPARgamma blockade with GW-9662 nor enhanced by PPARgamma overexpression, supporting a PPARgamma-independent mechanism. EMSA and TransAM analyses demonstrated that mutated IkappaBalpha almost completely suppressed the stimulating effect of IL-1beta on mPGES-1 expression and PGE2 production, whereas 15d-PGJ2 inhibited NF-kappaB transactivation. These data demonstrate the following in IL-1-stimulated rat chondrocytes: first, mPGES-1 is rate limiting for PGE2 synthesis; second, activation of the prostaglandin cascade requires NF-kappaB activation; third, 15d-PGJ2 strongly inhibits the synthesis of prostaglandins, in contrast with rosiglitazone; fourth, inhibition by 15d-PGJ2 occurs independently of PPARgamma through inhibition of the NF-kappaB pathway; fifth, mPGES-1 is the main target of 15d-PGJ2.  相似文献   

16.
In 10 patients admitted to hospital with diabetic ketoacidosis plasma prostanoids 6-keto-PGF alpha, thromboxane B2 and PGE2 were studied before treatment and following recovery. During ketoacidosis the median plasma 6-keto-PGF1 alpha and PGE2 were significantly increased compared to those of a normal reference group: 5.2 pg/ml and 3.9 pg/ml versus 1.7 pg/ml and 0.4 pg/ml (p less than 0.01 and p less than 0.05). In response to therapy both prostanoids decreased significantly towards a normal level, 6-keto-PGF1 alpha: 0.5 pg/ml p less than 0.01 and PGE2: 0.08 p less than 0.05 respectively. The changes in plasma 6-keto-PGF1 alpha were negatively correlated to changes in pH, rho: -0.7788 p = 0.0135, whereas the changes in PGE2 were positively correlated to serum creatinine at admittance, rho: 0.6976, p = 0.0368 and to the amount of intravenous fluid and insulin used during treatment, rho: 0.7500 p = 0.0126 and rho: 0.8424, p = 0.0023 respectively. Plasma thromboxane B2 concentrations were not elevated and did not change after treatment of the ketoacidosis.  相似文献   

17.
The concentrations of PGE, PGF, and 6-keto-PGF1 alpha were increased in rat seminal vesicle tissue following mating activity. Likewise, synthesis of PGE and PGF was stimulated by epinephrine (3 X 10(-7) to 3 X 10(-6) M) in tissues and media from in vitro incubations of intact rat seminal vesicles. The in vitro stimulation was inhibited by phentolamine, an alpha-adrenoreceptor blocking agent. Carbamylcholine (2 X 10(-6) M) and bradykinin (1 X 10(-6) M) had no effect on PGE or PGF synthesis, even though both compounds stimulated contractility of the rat seminal vesicle at these concentrations. These data suggest that mating and adrenergic stimulation increase prostaglandin synthesis in the rat seminal vesicle, probably through an alpha-adrenergically mediated mechanism.  相似文献   

18.
Endothelin-1 (10(-11)M-10(-7)M) was incubated with human umbilical vein endothelial cells and cells derived from amnion and decidua and prostaglandin production was determined. The rates of biosynthesis of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha) and prostaglandin E2 (PGE2) by endothelial cells were increased significantly by treatment with endothelin-1. Amnion cell PGE2 production was reduced significantly by endothelin-1 treatment whereas decidual PGE2 and prostaglandin F2 alpha production was unaffected by this treatment. Thus, it is possible that endothelins may play a part in the regulation of uteroplacental hemodynamics and the mechanisms of parturition.  相似文献   

19.
A liquid chromatographic-electrospray ionization-mass spectrometric (LC-ESI-MS) technique was developed to simultaneously determine the cyclooxygenase metabolites of arachidonic acid (6-keto-PGF(1alpha), PGD(2), PGE(2), PGF(2alpha), and PGJ(2)) produced by cultured cells. Samples were separated on a C(18) column with water-acetonitrile mobile phase, ionized by electrospray, and detected in the positive mode. Selected ion monitoring (SIM) of m/z 353, 335, 335, 319, and 317 were used for quantifying 6-keto-PGF(1alpha), PGD(2), PGE(2), PGF(2alpha), and PGJ(2), respectively. Prostaglandins were detected at concentrations as low as 1 pg (S/N=3) on the column. The method was used to determine the production of PGs from bovine coronary artery endothelial cells (ECs) and human prostate cancer cells (PC-3) with different degree of invasiveness. Bradykinin (10(-6) M) stimulated a marked increase in the production of 6-keto-PGF(1alpha), PGE(2), and PGF(2alpha) and a small increase of PGD(2) by ECs. 6-Keto-PGF(1alpha) was the major metabolite in these cells. The production of PGE(2) was threefold higher and PGD(2) was twofold higher in PC-3-S (invasive) cells than in PC-3-U (non-invasive) cells.  相似文献   

20.
The release of prostaglandin E2 (PGE2) and 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), the stable metabolite of prostacyclin (PGI2), by the perfused mesenteric arteries of renal and spontaneously hypertensive rats (SHR) have been measured. Unstimulated mesenteric arteries from two-kidney one-clip hypertensive rats (2K-1C) released 1.6 times as much PGE2 and 2.7 times as much 6-keto-PGF1 alpha as those of control rats. The release of PGE2 by mesenteric arteries from one-kidney one-clip hypertensive rats (1K-1C) was not significantly different from that of uninephrectomized normotensive rats, but the release of 6-keto-PGF1 alpha was 3.5 times higher in the former than in the latter. Norepinephrine (NE) induced a dose-related increase in perfusion pressure, in PGE2, and 6-keto-PGF1 alpha release in all four groups. However, its effect on the release of PGE2 was more pronounced in 2K-1C than in sham-operated rats. There was no difference between 1K-1C and the uninephrectomized group. The effect of NE on the release of 6-keto-PGF1 alpha was significantly higher for both renal hypertensive groups. These results indicate that the release of PGE2 is more dependent on the loss of renal mass than on hypertension, while the reverse applies to the release of 6-keto-PGF1 alpha. Unstimulated mesenteric arteries from SHR released less PGE2 and less 6-keto-PGF1 alpha than those of Wistar-Kyoto normotensive rats (WKY), but the release was not significantly different from Wistar rats. Under NE stimulation, WKY mesenteric arteries showed almost no increase in release of PGs. Compared with those of Wistar rats, SHR mesenteric arteries showed a greater pressor response to NE, a lower PGE2 release, and the same release of 6-keto-PGF1 alpha. These findings reveal the difficulty of selecting an appropriate control group in studies involving SHR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号