首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
On the Components of Segregation Distortion in DROSOPHILA MELANOGASTER   总被引:14,自引:13,他引:1       下载免费PDF全文
Barry Ganetzky 《Genetics》1977,86(2):321-355
The segregation distorter (SD) complex is a naturally occurring meiotic drive system with the property that males heterozygous for an SD-bearing chromosome 2 and an SD+-bearing homolog transmit the SD-bearing chromosome almost exclusively. This distorted segregation is the consequence of an induced dysfunction of those sperm that receive the SD+ homolog. From previous studies, two loci have been implicated in this phenomenon: the Sd locus which is required to produce distortion, and the Responder (Rsp) locus that is the site at which Sd acts. There are two allelic alternatives of Rsp—sensitive (Rspsens) and insensitive (Rspins); a chromosome carrying Rspins is not distorted by SD. In the present study, the function and location of each of these elements was examined by a genetic and cytological characterization of X-ray-induced mutations at each locus. The results indicate the following: (1) the Rsp locus is located in the proximal heterochromatin of 2R; (2) a deletion for the Rsp locus renders a chromosome insensitive to distortion; (3) the Sd locus is located to the left of pr (2-54.5), in the region from 37D2-D7 to 38A6-B2 of the salivary chromosome map; (4) an SD chromosome deleted for Sd loses its ability to distort; (5) there is another important component of the SD system, E(SD), in or near the proximal heterochromatin of 2L, that behaves as a strong enhancer of distortion. The results of these studies allow a reinterpretation of results from earlier analyses of the SD system and serve to limit the possible mechanisms to account for segregation distortion.  相似文献   

2.
Lyttle TW 《Genetics》1984,106(3):423-434
Analysis of X-ray-induced deletions in the Segregation Distorter (SD) chromosome, SD-5, revealed that this chromosome had a gene proximal to lt in the centric heterochromatin of 2L that strongly enhanced the meiotic drive caused by the SD chromosome. This Enhancer of Segregation Distortion [E(SD)] locus had not been characterized in earlier studies of SD chromosomes because it cannot be readily separated by recombination from the Responder (Rsp) locus in the proximal heterochromatin of 2R.—To determine whether E(SD) is a general component of all SD chromosomes and to examine further its effects on distortion, we produced deletions of E(SD) in three additional SD chromosomes. Analysis of these deletions leads to the following conclusions: (1) along with Sd and Rsp, E(SD) is common to all SD chromosomes; (2) the E(SD) allele on each SD chromosome enhances distortion by the same amount, which indicates that allelic variation at the E(SD) locus is not responsible for the different drive strengths seen among SD chromosomes; (3) E(SD) causes very little or no distortion by itself in the absence of Sd; (4) E(SD), like Sd, acts in a dosage-dependent manner; (5) E(SD) exerts its effect in cis or trans to Sd; and (6) if E(SD)+ exists, its function is not related to SD.  相似文献   

3.
Daniel L. Hartl 《Genetics》1974,76(3):477-486
Two major loci in the Tftcn region of an SD chromosome have been separated by recombination and identified. The allele at the left-hand locus on an SD chromosome is called Sd; the allele at the right-hand locus is called Rsp. Both Sd and Rsp are necessary to bring about a distortion of the segregation ratio in heterozygous SD males, although the particular degree of distortion exhibited by an SD chromosome is influenced by the constellation of polygenic modifiers of SD in the genome. The coupling phase of the alleles, Sd Rsp/Sd+Rsp+, produces about 89-90% of Sd Resp-bearing progeny. The repulsion phase, Sd Rsp+/Sd+ Rsp, produces 10-20% of Sd Rsp+-bearing progeny. No coupling-repulsion effects between Sd and Rsp are apparent.  相似文献   

4.
Brittnacher JG  Ganetzky B 《Genetics》1983,103(4):659-673
Segregation distorter (SD) chromosomes are preferentially transmitted to offspring from heterozygous SD/SD+ males owing to the induced dysfunction of the SD+-bearing sperm. This phenomenon involves at least two major loci: the Sd locus whose presence is necessary for distortion to occur and the Rsp locus which acts as the site of Sd action. Several additional loci on SD chromosomes enhance distortion.—In a previous study deletions were used to map the Sd locus and to determine some of its properties. We have extended this analysis with the isolation and characterization of 14 new deletions in the Sd region. From our results we conclude (1) SD chromosomes contain a single Sd locus located in region 37D2-6 of the salivary gland chromosome map. Deletion of this locus in any of three SD chromosomes now studied results in complete loss of ability to distort a sensitive chromosome; (2) the reduced male fecundity observed in many homozygous SD or SDi/SDj combinations is due at least in part to the action of the Sd locus. The fecundity of these males can be substantially increased by deletion of one Sd locus. Thus, it is the presence of two doses of Sd rather than the absence of Sd+ that produces the lowered male fecundity in SD homozygotes; (3) Sd behaves as a neomorph, whereas Sd+, if it exists at all, is amorphic with respect to segregation distortion; (4) these results support a model in which the Sd product is made in limiting amounts and the interaction of this product with the Rsp locus causes sperm dysfunction. The Sd product appears to act preferentially at Rsps (sensitive-Responder) but may also act at Rspi (insensitive-Responder).  相似文献   

5.
Daniel L. Hartl 《Genetics》1980,96(3):685-696
The genetic structure of a segregation distorter chromosome (a derivative of SD-36) has been analyzed in a system in which recombination in the second chromosome is blocked by inversions except for the critical region around the centromeric heterochromatin. The results confirm the map order and characteristics of four loci known to be involved in segregation distortion, namely Sd, E(SD), Rspins, M(SD). However, SD-36 carries a fifth major locus involved in distortion. This locus is near pr in 2L and has the effect of enhancing the degree of distortion. In addition, reciprocal recombinant products from SD-36 are recovered unequally. All recombinants carrying the pr region from SD-36 seem also to carry Sd, although Sd has previously been mapped 1.6 units to the left of pr. Both the enhancement of distortion and the unequal recovery of reciprocal products can be explained if it is assumed that the new locus near pr in SD-36 is actually a duplication of Sd.  相似文献   

6.
Segregation Distorter (SD) is a male meiotic drive system in Drosophila melanogaster. Males heterozygous for a selfish SD chromosome rarely transmit the homologous SD+ chromosome. It is well established that distortion results from an interaction between Sd, the primary distorting locus on the SD chromosome and its target, a satellite DNA called Rsp, on the SD+ chromosome. However, the molecular and cellular mechanisms leading to post-meiotic SD+ sperm elimination remain unclear. Here we show that SD/SD+ males of different genotypes but with similarly strong degrees of distortion have distinct spermiogenic phenotypes. In some genotypes, SD+ spermatids fail to fully incorporate protamines after the removal of histones, and degenerate during the individualization stage of spermiogenesis. In contrast, in other SD/SD+ genotypes, protamine incorporation appears less disturbed, yet spermatid nuclei are abnormally compacted, and mature sperm nuclei are eventually released in the seminal vesicle. Our analyses of different SD+ chromosomes suggest that the severity of the spermiogenic defects associates with the copy number of the Rsp satellite. We propose that when Rsp copy number is very high (> 2000), spermatid nuclear compaction defects reach a threshold that triggers a checkpoint controlling sperm chromatin quality to eliminate abnormal spermatids during individualization.  相似文献   

7.
To examine the genetic composition of proximal heterochromain in chromosome 2, the detachment of compound second autosomes, for generating proximal deficiencies, appeared a promising method. Compound seconds were detached by gamma radiation. A fraction of the detachment products were recessive lethals owing to proximal deficiencies. Analysis by inter se complementation, pseudo-dominance tests with proximal mutations and allelism tests with known deficiencies provided evidence for at least two loci between the centromere and the light locus in 2L and one locus in 2R between the rolled locus and the centromere. The data further demonstrate that rolled, and probably light, are located within the proximal heterochromatin. Thus, functional genetic loci are found in heterochromatin, albeit at low density.  相似文献   

8.
Until recently, little was known of the genetic constitution of the heterochromatic segments of the major autosomes of Drosophila melanogaster . Our previous report described the genetic dissection of the proximal, heterochromatic region of chromosome 2 of Drosophila melanogaster by means of a series of overlapping deficiencies generated by the detachment of compound second autosomes (Hilliker and Holm 1975). Analysis of these deficiencies by inter se complementation, pseudo-dominance tests with proximal mutations and allelism tests with known deficiencies provided evidence for the existence of at least two loci between the centromere and the light locus in 2L and one locus in 2R between the rolled locus and the centromere. These data in conjunction with cytological observations demonstrated that light and rolled and three loci lying between them are located within the proximal heterochromatin of the second chromosome.——The present report describes the further analysis of this region through the induction with ethyl methanesulphonate (EMS) of recessive lethals allelic to the 2L and 2R proximal deficiencies associated with the detachment products. Analysis of the 118 EMS-induced recessive lethals and visible mutations recovered provided evidence for seven loci in the 2L heterochromatin and six loci in the 2R heterochromatin, with multiple alleles being obtained for most sites. Of these loci, one in 2L and two in 2R fall near the heterochromatic-euchromatic junctions of 2L and 2R respectively. None of the 113 EMS lethals behaved as a deficiency, implying that the heterochromatic loci uncovered in this study represent nonrepetitive cistrons. Thus functional genetic loci are found in heterochromatin, albeit at a very low density relative to euchromatin.  相似文献   

9.
Lyttle TW 《Genetics》1986,114(1):203-216
A portion of the Segregation distorter (SD) chromosome, including both the Sd and E(SD) loci, has been moved by insertional translocation from SD Roma into YL . This Dp(2;Y)SD chromosome shows a negligible reduction in its ability to cause dysfunction of Rsp s-bearing sperm when compared to the parent SD chromosome, suggesting that SD can still act effectively, even when removed from its normal second chromosome milieu, and that its activity level does not depend on pairing with a normal autosomal homologue. Male genotypes have been constructed using this Dp(2;Y)SD along with a standard SD chromosome (either SD Roma or R( SD-36)-1bw) and a third chromosome suppressor of SD (TM6) in all possible three-way combinations. The observed level of SD-mediated dysfunction in each case is most compatible with a model that assumes that all SD elements act additively (in terms of M, the probit transformation of the probability of sperm dysfunction), rather than multiplicatively. The additive action of SD elements contrasts with the independent response to SD activity exhibited by multiple Rsps copies.  相似文献   

10.
Chromosoma Focus     
Bruce D. McKee 《Chromosoma》1996,105(3):135-141
  相似文献   

11.
Hybrid females from crosses between Drsophila melanogaster males and females of its sibling species, D. simulans, D. mauritiana, or D. sechellia die as embryos. This lethality is believed to be caused by incompatibility between the X chromosome of D. melanogaster and the maternal cytoplasm. Zygotic hybrid rescue (Zhr) prevents this embryonic lethality and has been cytogenetically mapped to a proximal region of the X chromosome of D. melanogaster, probably in the centromeric heterochromatin. We have carried out high resolution cytological mapping of Zhr using deficiencies and duplications of the X heterochromatin. Deletions of the Zhr + gene from the hybrid genome exhibit the Zhr phenotype. On the contrary, addition of the wild-type gene to the hybrid genome causes embryonic lethality, regardless of sex. The Zhr locus has been narrowed down to the region covered by Dp(1;f)1162 but not covered Dp(1;f)1205, a chromosome carrying a duplication of heterochromatin located slightly distal to the In(1)sc 8 heterochromatic breakpoint.  相似文献   

12.
Heterochromatin in the European field vole, Microtus agrestis, was studied using a special staining technique and DNA/RNA in situ hybridization. The heterochromatin composed the proximal 1/4 of the short arm and the entire long arm of the X chromosome, practically the entire Y chromosome and the centromeric areas of the autosomes. By using the DNA/RNA in situ hybridization technique, repeated nucleotide sequences are shown to be in the heterochromatin of the sex chromosomes.  相似文献   

13.
Various genetic and cytogenetic techniques were applied to an analysis of the linkage map of chromosome 4-a chromosome that is considered to be representative of the tomato complement. Loci have been approximated by standard F2 linkage tests for 18 genes, including six on the short arm and 12 on the long arm, covering a map distance of 132 units (c.m.). The loci of four key markers were approximated on pachytene chromosomes by a study of radiation-induced deficiencies:clau near the end of the short arm,ful near the euchromatic-heterochromatic boundary of the short arm,ra near the same region on the long arm, ande in the middle of the long arm. Normal transmission for a presumedra deficiency suggests that this gene lies in the heterochromatin of 4L. According to tertiary trisomic segregation,w-4, known by linkage test to be proximal tora, resides on 4L, therefore probably also in the heterochromatic region. The centromere is consequently delimited to a region of 4 c.m. betweenful andw-4. The resultant maps reveal a very much lower crossover rate within heterochromatin—estimated at 0.8 c.m./μ—than for euchromatin—estimated at 4.8 c.m./μ for the short arm and 5.7 for the long arm. Also apparent is a strong tendency of the genes to concentrate toward the centromere of the genetic map and in the proximal sections of the euchromatin of the cytological map. Studies were made of the genetic transmission of various small deficiencies on chromosome 4 as well as a newly discovered deficiency fornv on chromosome 9, supporting the following conclusions. Regardless of their size, deficiendies of euchromatin are not transmitted. Deficiencies of heterochromatin are transmitted to a varying extent depending on their size. A presumed deficiency forra that is too small to be detected cytologically was transmitted without adverse effect on gametes. Somewhat larger deficiencies may be transmitted at reduced rates by female gametes and the largest at extremely low rates, even on the female side.  相似文献   

14.
Diploid sexual reproduction involves segregation of allelic pairs, ensuring equal representation of genotypes in the gamete pool. Some genes, however, are able to “cheat” the system by promoting their own transmission. The Segregation distorter (Sd) locus in Drosophila melanogaster males is one of the best-studied examples of this type of phenomenon. In this system the presence of Sd on one copy of chromosome 2 results in dysfunction of the non–Sd-bearing (Sd+) sperm and almost exclusive transmission of Sd to the next generation. The mechanism by which Sd wreaks such selective havoc has remained elusive. However, its effect requires a target locus on chromosome 2 known as Responder (Rsp). The Rsp locus comprises repeated copies of a satellite DNA sequence and Rsp copy number correlates with sensitivity to Sd. Under distorting conditions during spermatogenesis, nuclei with chromosomes containing greater than several hundred Rsp repeats fail to condense chromatin and are eliminated. Recently, Rsp sequences were found as small RNAs in association with Argonaute family proteins Aubergine (Aub) and Argonaute3 (AGO3). These proteins are involved in a germline-specific RNAi mechanism known as the Piwi-interacting RNA (piRNA) pathway, which specifically suppresses transposon activation in the germline. Here, we evaluate the role of piRNAs in segregation distortion by testing the effects of mutations to piRNA pathway components on distortion. Further, we specifically targeted mutations to the aub locus of a Segregation Distorter (SD) chromosome, using ends-out homologous recombination. The data herein demonstrate that mutations to piRNA pathway components act as enhancers of SD.  相似文献   

15.
Hunter Hill  Kent G. Golic 《Genetics》2015,201(2):563-572
We designed a system to determine whether dicentric chromosomes in Drosophila melanogaster break at random or at preferred sites. Sister chromatid exchange in a Ring-X chromosome produced dicentric chromosomes with two bridging arms connecting segregating centromeres as cells divide. This double bridge can break in mitosis. A genetic screen recovered chromosomes that were linearized by breakage in the male germline. Because the screen required viability of males with this X chromosome, the breakpoints in each arm of the double bridge must be closely matched to produce a nearly euploid chromosome. We expected that most linear chromosomes would be broken in heterochromatin because there are no vital genes in heterochromatin, and breakpoint distribution would be relatively unconstrained. Surprisingly, approximately half the breakpoints are found in euchromatin, and the breakpoints are clustered in just a few regions of the chromosome that closely match regions identified as intercalary heterochromatin. The results support the Laird hypothesis that intercalary heterochromatin can explain fragile sites in mitotic chromosomes, including fragile X. Opened rings also were recovered after male larvae were exposed to X-rays. This method was much less efficient and produced chromosomes with a strikingly different array of breakpoints, with almost all located in heterochromatin. A series of circularly permuted linear X chromosomes was generated that may be useful for investigating aspects of chromosome behavior, such as crossover distribution and interference in meiosis, or questions of nuclear organization and function.  相似文献   

16.
Toh-E A 《Genetics》1980,94(4):929-932
The PHO82-pho4 (PHOO-phoD) locus was mapped on the right arm of chromosome VI, 6.5 cM centromere-distal to met10. A pho85 (phoU) mutant was newly isolated, and its map location was determined on the left arm of chromosome XVI, 15 cM centromere-distal to rad1. A mutant gene that causes temperature-sensitive growth on nutrient medium was found very near (or at) the pho85 locus. The supertriploid method was successfully applied to locate the pho2 (phoB) locus on chromosome IV. The pho2 locus was 40 cM from rna11 on the left arm of chromosome IV.  相似文献   

17.
Genetic basis of the major malate dehydrogenase isozymes in maize   总被引:1,自引:0,他引:1       下载免费PDF全文
Newton KJ  Schwartz D 《Genetics》1980,95(2):425-442
The mitochondrial MDH isozymes in the scutellum of the mature maize (Zea mays L.) kernel are encoded by three independently inherited nuclear genes. Mdh1 is located on chromosome 8, close to the breakpoint (8L.35) of a waxy-marked reciprocal translocation between chromosomes 8 and 9. Mdh2 is located in the distal region of the long arm of chromosome 6. Mdh3 is on the long arm of chromosome 3, approximately 2.6 map units from sh2. A modifier of the mitochondrial MDH isozymes (Mmm) maps approximately 27.5 units proximal to Adh1 in the central portion of the long arm of chromosome 1. Independently assorting duplicate genes code for the soluble MDH isozymes. Mdh4 is located in the same region of chromosome 1 as Mmm, approximately 29 map units proximal to Adh1. Mdh5 maps approximately 20 units distal to a2 in the short arm of chromosome 5.——Intergenic and interallelic heterodimer formation occurs among gene products that occupy the same subcellular compartment. MDH isozymes were purified and analyzed by native-SDS two-dimensional polyacrylamide gel electrophoresis. The proposed mitochondrial MDH intergenic heterodimer bands were found to be composed of two subunits, which differ in their migrations on SDS gels; whereas, genetically defined homodimers contained only one type of subunit.——This evidence is discussed in terms of two genetic models proposed for the maize mitochondrial MDH isozymes.  相似文献   

18.
Hybrid females from crosses between Drsophila melanogaster males and females of its sibling species, D. simulans, D. mauritiana, or D. sechellia die as embryos. This lethality is believed to be caused by incompatibility between the X chromosome of D. melanogaster and the maternal cytoplasm. Zygotic hybrid rescue (Zhr) prevents this embryonic lethality and has been cytogenetically mapped to a proximal region of the X chromosome of D. melanogaster, probably in the centromeric heterochromatin. We have carried out high resolution cytological mapping of Zhr using deficiencies and duplications of the X heterochromatin. Deletions of the Zhr + gene from the hybrid genome exhibit the Zhr phenotype. On the contrary, addition of the wild-type gene to the hybrid genome causes embryonic lethality, regardless of sex. The Zhr locus has been narrowed down to the region covered by Dp(1;f)1162 but not covered Dp(1;f)1205, a chromosome carrying a duplication of heterochromatin located slightly distal to the In(1)sc 8 heterochromatic breakpoint.  相似文献   

19.
The experimental population genetics of Y-chromosome drive in Drosophila melanogaster is approximated by studying the behavior of T(Y;2),SD lines. These exhibit "pseudo-Y" drive through the effective coupling of the Y chromosome to the second chromosome meiotic drive locus, Segregation distorter (SD). T(Y;2),SD males consequently produce only male offspring. When such lines are allowed to compete against structurally normal SD+ flies in population cages, T(Y;2),SD males increase in frequency according to the dynamics of a simple haploid selection model until the cage population is eliminated as a result of a deficiency in the number of adult females. Cage population extinction generally occurs within about seven generations.—Several conclusions can be drawn from these competition cage studies:

(1) Fitness estimates for the T(Y;2),SD lines (relative to SD+ ) are generally in the range of 2–4, and these values are corroborated by independent estimates derived from studies of migration-selection equilibrium.

(2) Fitness estimates are unaffected by cage replication, sample time, or the starting frequency of T(Y;2),SD males, indicating that data from diverse cages can be legitimately pooled to give an overall fitness estimate.

(3) Partitioning of the T(Y;2),SD fitnesses into components of viability, fertility, and frequency of alternate segregation (Y + SD from X + SD+) suggests that most of the T(Y;2),SD advantage derives from the latter two components. Improvements in the system might involve increasing both the viability and the alternate segregation to increase the total fitness.

While pseudo-Y drive operates quite effectively against laboratory stocks, it is less successful in eliminating wild-type populations which are already segregating for suppressors of SD action. This observation suggests that further studies into the origin and rate of accumulation of suppressors of meiotic drive are needed before an overall assessment can be made of the potential of Y-chromosome drive as a tool for population control.

  相似文献   

20.
Segregation Distorter (SD) is a selfish, coadapted gene complex on chromosome 2 of Drosophila melanogaster that strongly distorts Mendelian transmission; heterozygous SD/SD+ males sire almost exclusively SD-bearing progeny. Fifty years of genetic, molecular, and theory work have made SD one of the best-characterized meiotic drive systems, but surprisingly the details of its evolutionary origins and population dynamics remain unclear. Earlier analyses suggested that the SD system arose recently in the Mediterranean basin and then spread to a low, stable equilibrium frequency (1–5%) in most natural populations worldwide. In this report, we show, first, that SD chromosomes occur in populations in sub-Saharan Africa, the ancestral range of D. melanogaster, at a similarly low frequency (~2%), providing evidence for the robustness of its equilibrium frequency but raising doubts about the Mediterranean-origins hypothesis. Second, our genetic analyses reveal two kinds of SD chromosomes in Africa: inversion-free SD chromosomes with little or no transmission advantage; and an African-endemic inversion-bearing SD chromosome, SD-Mal, with a perfect transmission advantage. Third, our population genetic analyses show that SD-Mal chromosomes swept across the African continent very recently, causing linkage disequilibrium and an absence of variability over 39% of the length of the second chromosome. Thus, despite a seemingly stable equilibrium frequency, SD chromosomes continue to evolve, to compete with one another, or evade suppressors in the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号