首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 559 毫秒
1.
Fluctuating asymmetry (FA) is often, but controversially, viewed as an indicator of fitness and a target of selection. In the brook stickleback, Culaea inconstans (Kirtland), FA of the pectoral fins, which are the main source of propulsion, is inversely correlated with fecundity. We examined the hypothesis that asymmetry of the pectoral fins could affect locomotion in such a way as to influence foraging and niche use in prereproductive brook stickleback. Nitrogen and carbon stable isotope analysis showed the diet of symmetric and asymmetric males diverged with increasing body size. Larger symmetric males fed at higher trophic levels and had a diet based on carbon emanating from a more pelagic source than their asymmetric counterparts. Such effects were not observed in females or smaller males. The number of chironomid larvae found in the gut was greater on average in asymmetric than symmetric fish. The results from this study strongly suggest FA of pectoral fins affects the foraging behaviour of C. inconstans and that stable isotope analyses of individual phenotypes provides a useful tool for assessing the ecological consequences of FA.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 617–623.  相似文献   

2.
Recently, it was proposed that stable isotope patterns can be used to quantify the width of the ecological niche of animals. However, the potential effects of habitat use on isotopic patterns of consumers have not been fully explored and consequently isotopic patterns may yield deceptive estimates of niche width. Here, we simulated four different scenarios of a consumer foraging across an isotopically heterogeneous landscape to test the combined effects of habitat and diet selection on the widths of the isotopic niche. We then modeled the actions of a naïve researcher who randomly sampled consumers from the simulated populations, and used these results to assess the overlap and partitioning of the isotopic and the ecological niches when habitat‐derived differences among isotope signatures are not considered. Our results suggest that populations of dietary specialists exhibited broader isotopic niches than populations composed of dietary generalists, and habitat generalists exhibited narrower isotopic niche widths compared with populations of individuals that foraged in specific habitats. The conversion of isotopic niches to ecological niches without knowledge of foraging behavior and habitat‐derived isotopic differences transformed an informative δ‐space into ‘a blurry p‐space’. Therefore, knowledge of habitat‐derived differences in stable isotope values and understanding of habitat use and individual foraging behavior are critical for the correct quantification of the ecological niche.  相似文献   

3.
One of the longest and liveliest debates in the evolutionary and ecological literature has centred on the existence and magnitude of constraints that can also be described by a proverb 'jack-of-all-trades is a master of none'. Often assumed, rarely tested, this proverb/assumption states that evolution of generalization necessarily entails a cost. The cost is expressed in terms of fitness loss elsewhere along an environmental gradient that leads to a genetic fitness trade-off between a generalist and a specialist. Although there is a well-developed body of knowledge that documents the cost of adaptation in general, the genetic fitness cost of generalization remains unclear. An empirical test of such cost is not a trivial task because it requires knowledge of a genotype's fundamental ecological niche breadth to document the process of generalization. The estimation of genetic fitness correlation between environments, a commonly used method in the literature, has a limited explanatory power regarding the cost of generalization, and new approaches are needed to further clarify the existence as well as the nature/pattern of constraints in evolution of generalization and specialization. A new approach is proposed to examine experimentally the genetic fitness cost of generalization, which is based on statistical analysis of tolerance curve properties. The approach can be used to study natural populations of both unicellular and multicellular organisms.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 583–590.  相似文献   

4.
Understanding the processes underlying morphological diversification is a central goal in ecology and evolutionary biology and requires the integration of information about phylogenetic divergence and ecological niche diversity. In the present study, we use geometric morphometrics and comparative methods to investigate morphological diversification in Neotropical spiny rats of the family Echimyidae. Morphological diversification is studied as shape variation in the skull, comprising a structure composed of four distinct units: vault, base, orognathofacial complex, and mandible. We demonstrate association among patterns of variation in shape in different cranial units, levels of phylogenetic divergence, and ecological niche diversification. At the lower level of phylogenetic divergence, there is significant and positive concordance between patterns of phylogenetic divergence and cranial shape variation in all cranial units. This concordance may be attributable to the phylogenetic and shape distances being calculated between species that occupy the same niche. At higher phylogenetic levels of divergence and with ecological niche diversity, there is significant concordance between shape variation in all four cranial units and the ecological niches. In particular, the orognathofacial complex revealed the most significant association between shape variation and ecological niche diversity. This association may be explained by the great functional importance of the orognathofacial complex.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 646–660.  相似文献   

5.
Gene flow between ecologically divergent populations can prevent local adaptation, resulting in lower mean fitness and directional selection within a population. Such maladaptation should tend to be stronger in populations receiving a relatively larger fraction of immigrants. We test this expectation by comparing the strength of selection in a pair of three-spine stickleback populations in adjoining but unequal-sized lake basins in British Columbia. A larger deeper basin is connected to a smaller shallower basin by a short channel that allows extensive migration between populations. The two basins contain distinct habitats and prey communities, and stickleback stomach contents and isotope ratios differ accordingly. Trophic morphology is correlated with diet, so we would expect these ecological differences to be accompanied by morphological divergence. However, high gene flow appears to constrain adaptive divergence: microsatellites indicate that the two basins represent a single panmictic gene pool, and phenotypic divergence is very subtle. As a result, fish in the smaller lake basin are subject to persistent directional selection towards a more benthic phenotype, whereas the larger population exhibits no significant selection. The results illustrate the potentially asymmetrical effect of migration-selection balance, and its effect on fitness within populations.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 273–287.  相似文献   

6.
Local adaptation is a key process in the evolution of biological diversity but relatively few studies have identified the selective forces that drive trait divergence at low taxonomic levels, particularly amongst mammals. Variation in body size across taxa is fundamental as shown by allometric relationships with numerous physiological, morphological and life-history traits. Differences in adult size across cohorts within populations of temperate ungulates are determined by variation in trophic resource availability during growth, suggesting that natural selection might promote the evolution of size divergence across sister taxa through local adaptation to variation in habitat productivity. We tested this hypothesis in the hartebeest ( Alcelaphu s sp.), an antelope lineage including eight extant (or recently extinct) allopatric subspecies that evolved within the last million years and colonized all the African savannahs. We predicted that body size across the subspecies should correlate positively with habitat productivity across taxon ranges. Mean body size of all the hartebeest taxa was quantified using skull length from museum specimens, and climatic variables were used as surrogates of habitat productivity. Body size across subspecies was positively correlated with rainfall, suggesting that variation in habitat primary production may drive morphological evolution between taxa. Focusing at a low taxonomic level has allowed us to identify a critical selective force that may shape divergence in body size, without the confounding effect of variation in trophic niche. © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 431–440.  相似文献   

7.
Weapons used in combat between males are usually attributed to sexual selection, which operates via a fitness advantage for males with weapons of better 'quality'. Because the performance capacity of morphological traits is typically considered the direct target of selection, Darwin's intrasexual selection hypothesis can be modified to predict that variation in reproductive success should be explained by variation in performance traits relevant to combat. Despite such a straightforward prediction, tests of this hypothesis are conspicuously lacking. We show that territorial male collared lizards with greater bite-force capacity sire more offspring than weaker biting rivals but exhibit no survival advantage. We did not detect stabilizing or disruptive selection on bite-force capacity. Taken together, these results support the hypothesis that superior weapon performance provides a fitness advantage through increased success in male contests. Sexual selection on weapon performance therefore appears to be a force driving the evolution and maintenance of sexual dimorphism in head shape.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 840–845.  相似文献   

8.
Female moths generally use pheromones to attract males. Normally, all females in a population produce a specific chemical blend with only a limited variance, and the local males are highly attracted to this blend. To better understand the direct and indirect selective forces acting on this communication system, where, unusually, it is the reproductively limited sex that signals for matings, a population genetical model has been constructed and numerically analysed. Basic to the model is the assumption that the pheromone attraction system functions asymmetrically, leading to strong sexual selection between males but no direct sexual selection between females. Evolutionary simulations using the model show that sexual selection in males causes an indirect stabilizing selection on the pheromone blends produced by females. Thus, a more narrow range of pheromone variation is selected for, even in the absence of female sexual selection. The strength of the selection is analysed, and it is suggested that this indirect stabilizing selection becomes particularly important in situations where geographically adjacent populations have evolved different pheromone blends.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 117–123.  相似文献   

9.
Distributions of stable isotopes have been used to infer an organism's trophic niche width, the 'isotopic niche', and examine resource partitioning. Spatial variation in the isotopic composition of prey may however confound the interpretation of isotopic signatures especially when foragers exploit resources across numerous locations. In this study the isotopic compositions from marine assemblages are modelled to determine the role of variation in the signature of prey items and the effect of dietary breadth and foraging strategies on predator signatures. Outputs from the models reveal that isotopic niche widths can be greater for populations of dietary specialists rather than for generalists, which contravenes what is generally accepted in the literature. When a range of different mixing models are applied to determine if the conversion from δ to p-space can be used to improve model accuracy, predator signature variation is increased rather than model precision. Furthermore the mixing models applied failed to correctly identify dietary specialists and/or to accurately estimate diet contributions that may identify resource partitioning. The results presented illustrate the need to collect sufficiently large sample sizes, in excess of what is collected under most current studies, across the complete distribution of a species and its prey, before attempts to use stable isotopes to make inferences about niche width can be made.  相似文献   

10.
Analysis of ecological characters on phylogenetic frameworks has only recently appeared in the literature, with several studies addressing patterns of niche evolution, generally over relatively recent time frames. In the present study, we examined patterns of niche evolution for a broad radiation of American blackbird species (Family Icteridae), exploring more deeply into phylogenetic history. Within each of three major blackbird lineages, overlap of ecological niches in principal components analysis transformed environmental space varied from high to none. Comparative phylogenetic analyses of ecological niche characteristics showed a general pattern of niche conservatism over evolutionary time, with differing degrees of innovation among lineages. Although blackbird niches were evolutionarily plastic over differing periods of time, they diverged within a limited set of ecological possibilities, resulting in examples of niche convergence among extant blackbird species. Hence, an understanding of the patterns of ecological niche evolution on broad phylogenetic scales sets the stage for framing questions of evolutionary causation, historical biogeography, and ancestral ecological characteristics more appropriately.  © 2008 The Linnean Society of London, Biological Journal of the Linnean Society , 2008, 94 , 869–878.  相似文献   

11.
Recent investigations of mate choice indicate that the genetic effect of sires on offspring fitness may depend on the interaction between maternal and paternal genotypes and the environmental conditions experienced by the offspring. Alternative colour morphs of the pygmy grasshopper, Tetrix subulata , represent ecological strategies that differ in body size, life history, thermoregulatory behaviour, and habitat selection. The hypothesis that selection promotes behaviours maintaining coadapted gene complexes predicts individuals to mate assortatively with respect to colour morph. On the other hand, the bet-hedging hypothesis predicts that the temporal variability of the environment inhabited by these animals may select for disassortative mating behaviour resulting in heterogeneous offspring. To distinguish between these competing hypotheses, we investigated mating behaviours using dual-choice experiments. Our results were not in agreement with the prediction of assortative mating but suggest instead that matings were random with regard to colour morph. Polyandry was common, and females mated with the second male regardless of whether the first mating was assortative or disassortative. Polyandry also was equally frequent among females in triads in which the two males belonged to different colour morphs as in triads where both males belonged to the same colour morph. A field experiment confirmed that polyandry occurred also among free-ranging individuals, and uncovered variation in mating success among male colour morphs, probably due to indirect effects of coloration on activity or habitat use. The consequences of this random and polyandrous mating strategy for the evolutionary dynamics of the colour polymorphism remain to be explored.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 491–499.  相似文献   

12.
The movement and dietary history of individuals can be studied using stable isotope records in archival keratinous tissues. Here, we present a chronology of temporally fine-scale data on the trophic niche of otariid seals by measuring the isotopic signature of serially sampled whiskers. Whiskers of male Antarctic fur seals breeding at the Crozet Islands showed synchronous and regular oscillations in both their δ13C and δ15N values that are likely to represent their annual migrations over the long term (mean 4.8 years). At the population level, male Antarctic fur seals showed substantial variation in both δ13C and δ15N values, occupying nearly all the ‘isotopic space’ created by the diversity of potential oceanic habitats (from high Antarctica to the subtropics) and prey (from Antarctic krill to subantarctic and subtropical mesopelagic fishes). At the individual level, whisker isotopic signatures depict a large diversity of foraging strategies. Some seals remained in either subantarctic or Antarctic waters, while the migratory cycle of most animals encompassed a wide latitudinal gradient where they fed on different prey. The isotopic signature of whiskers, therefore, revealed new multi-year foraging strategies of male Antarctic fur seals and is a powerful tool for investigating the ecological niche during cryptic stages of mammals'' life.  相似文献   

13.
Temperate insects generally use day length as a reliable cue for long-term seasonal changes in their environment. Significant variation in photoperiodism between and within populations is thought to be associated with genetic variation resulting from local adaptation. In this study, we investigated whether genetic variation associated with selection for insecticide resistance may be a source of divergence in the photoperiodic timing of diapause through pleiotropic interactions. Critical photoperiods for diapause induction were estimated in one susceptible and two insecticide-resistant homozygous strains of the codling moth Cydia pomonella , as well as in their reciprocal F1 progeny. Diapause responses to naturally decreasing day length were subsequently followed in the laboratory strains and in two field populations of C. pomonella in south-eastern France. We found higher critical photoperiods for diapause induction in homozygous resistant individuals than in both homozygous susceptible and heterozygous ones. This partly explained the significantly earlier timings of diapause found in homozygous resistant individuals of both laboratory and field populations of C. pomonella under natural photoperiods, relative to those found in both homozygous susceptible and heterozygous ones. We assume that adaptive genetic changes associated with selection for insecticide resistance may generate substantial variation in the seasonal timing of diapause, an essential ecological feature of the fitness of insecticide resistance genes in this species.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 83 , 341–351.  相似文献   

14.
Anolis lizards of the Greater Antilles represent one of the classic examples of vertebrate adaptive radiation. The same morphological types ('ecomorphs') have evolved repeatedly in response to similar ecological pressures on different islands. We tested whether patterns of within species diversification were congruent with between species patterns and the processes leading to the adaptive radiation of Greater Antillean anoles by measuring variation in performance-related morphological characters in the brown anole, Anolis sagrei . We measured morphological and genetic variation in two different habitat types on each of five islands in the Bahamas. We estimated population structure and rates of gene flow within and among islands using eight microsatellite markers. Intraspecific variation in performance-related morphological characters was similar to the pattern of interspecific variation that characterizes the adaptive radiation of this group in the Greater Antilles. For example, limb length was correlated with perch diameter within A. sagrei as has also been shown among species of anole. Morphological divergence in traits has occurred despite relatively high levels of gene flow both within and among islands. These results are discussed in the context of the divergence-with-gene-flow model of speciation. The results provide important intraspecific evidence that the diversification of anoles has been shaped by natural selection and show how ecologically-based selection pressures explain diversification at both the population and species levels.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 189–199.  相似文献   

15.
Recent comparative studies have revealed that the rapid diversity of genitalia is closely related to sexual selection and that genital development interacts with the development of different body parts. Hypotheses about developmental stability due to selection to genital parts were tested by estimating allometric relations in a sexually dimorphic stag beetle Prosopocoilus inclinatus . All genital parts of males scaled to body size with a slope of less than 1 and all but the median lobe (male intromittent organ) showed smaller variability than other body parts. This supported the 'one-size-fits-all' hypothesis, which suggests broad copulation opportunity by males of any size with females within a population. Nevertheless, we found large variation among different genital parts in coefficients of variation and in values of the switch point where the allometric relations varied significantly. These results strongly support the view that developmental trajectories of genital traits are not necessarily integrated. Among the genitalic traits, male intromittent organ and female genitalia exhibited large variability, suggesting a high responsiveness to the selective regimes and physical interaction during copulation. This may account for rapid diversification of genital morphology, even in closely-related populations in beetle species.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 90 , 573–581.  相似文献   

16.
Spatio-temporal variations in the composition of the animal interactive assemblages may result in variations in selective pressures on the plants. In ant–seed dispersal mutualisms, the study of the magnitude of spatial and temporal variation of ant assemblages is rarely studied, limiting inferences and generalizations on the evolution of this mutualism. Here, we describe the ant–disperser assemblage of the myrmecochorous herb Helleborus foetidus in 14 populations across the Iberian Peninsula, and dissect the variation in the assemblage into spatial and temporal components as a first step to evaluate the evolutionary potential of this interaction. The ant–visitor assemblage of H. foetidus was mainly represented by species of Formicinae and it was highly diverse and variable in composition and function. Ants behaving as legitimate dispersers and those with mixed behaviour numerically dominated the assemblage compared with elaiosome consumers. The magnitude of the spatial variation was higher than the temporal variation, suggesting that the relative frequency of each functional group will be more foreseeable among years in each population than among populations. At the expense of further analysis of the effects of such variation on dispersal success, we can envisage a selection mosaic scenario, where local adaptive responses of plants might arise as a result of local variations in the specific composition and function of the assemblage.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 135–150.  相似文献   

17.
Individual variation and fitness are cornerstones of evolution by natural selection. The niche variation hypothesis (NVH) posits that when interspecific competition is relaxed, intraspecific competition should drive niche expansion by selection favoring use of novel resources and that among‐individual variation should confer a selective advantage. Population‐level niche expansion could be achieved by all individuals using all available resources, or by each individual using a unique combination of resources, thereby increasing among‐individual dietary niche variation. Although individual variation can lead to species‐level evolutionary and ecological change, observed variation does not ensure a beneficial outcome. We used carbon and nitrogen stable isotope analysis of claw keratin and a Bayesian stable isotope mixing model to estimate the summer (July–September) assimilated diet of individual female black Ursus americanus and brown U. arctos bears. We quantified variation in dietary niche in both populations, and assessed diet relative to percentage body fat. We hypothesized that if the NVH held, percentage body fat would be similar for individuals of the same species across much of the dietary range of observed proportional salmon contributions to individual bear diets. Although we found greater differences in dietary niches between than within species, we observed greater among‐individual dietary variation in the brown bear population. Moreover, we found that within each species individual female bears achieved similar ranges of percentage body fat at various levels of salmon in the diet. Our results provide support for the NVH. Linking individual dietary niches to measures of physiological condition related to fitness can offer new insights into eco‐evolutionary processes related to food resource use.  相似文献   

18.
Contrary to the conventional wisdom 'bigger is better', evolution at high temperature invariably leads to small individuals in Drosophila melanogaster . Natural selection is known to be responsible, meaning that genotypes that are small because of adaptation to high temperature must have some temperature dependent fitness advantage. In this study we consider both preadult and adult fitness components, and show that large adults from a cold adapted population significantly outperform small adults from a warm adapted population only when tested at low temperature and low larval density. In all other conditions 'bigger is not necessarily better', meaning that environmental influences are capable of altering the association between size and fitness. Yet, 'smaller wasn't better either' under any condition, when considering the overall measure of fitness. Examination of individual fitness components revealed population by temperature interaction in preadult survival; this interaction is potentially capable of explaining the temperature specific advantage of small adult body size. At high temperature, the warm adapted population exhibits superior preadult survival while producing small adults. Geographical variation in adult body size seems to be the result of selection on larval growth and competitive strategies, resulting in alterations in the association between fitness components.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 717–725.  相似文献   

19.
We studied among-individual variation in developmental instability (DI) and fitness-related parameters in 80 individual plants of Fucus vesiculosus (Phaeophyta). To minimize differential environmental effects, plants were sampled from one environmentally homogenous population. DI was measured as fluctuating asymmetry (FA) of four bilaterally symmetric traits (branch length, receptacle length and width, and bladder width) for an average total of 30 structures per individual. FA levels varied significantly among individual plants, consistent with a coefficient of variation of 0.12 for organism-wide DI or 0.13–0.21 for trait-specific DI. These values are lower than estimates for other organisms, suggesting that the genetic heterogeneity in DI was low. The data provide some evidence for organism-wide DI, but simulations show that organism-wide and trait-specific variation cannot be conclusively separated. Growth rate of branch tips was determined experimentally, demonstrating significant variation among individuals. FA was not significantly correlated with growth rate or with morphological variables associated with fecundity, age, size, and health. At the same time, the signs of all the correlation coefficients were consistent with the expectation of a negative relationship between DI and fitness. The simulations indicated that the correlation between FA and the underlying DI was comparatively strong (high hypothetical repeatability), implying that the lack of significant associations between FA and fitness variables reflected a weak relationship between DI and these fitness parameters. This weak relationship may be related to the low amount of DI variation in the study population.  © 2007 The Linnean Society of London, Biological Journal of the Linnean Society , 2007, 92 , 277–286.  相似文献   

20.
Body size, host choice and sex allocation in a spider-hunting pompilid wasp   总被引:1,自引:0,他引:1  
Two important relationships in parasitoid evolutionary ecology are those between adult size and fitness and between host quality and sex ratio. Sexually differential size–fitness relationships underlie predicted sex-ratio relationships. Despite each relationship receiving considerable attention, they have seldom been studied simultaneously or using field data. Here we report the biology of Anoplius viaticus paganu s Dahlbom, a little known parasitoid of spiders, using field and laboratory data. We found that larger foraging females were able to select larger host spiders from the field, thus identifying a relatively novel component of the size–fitness relationship. Larger offspring developed from larger hosts and, in agreement with the prediction of the host quality model of sex allocation, were generally female. Data on the size–fitness relationship for males are lacking and, in common with many prior studies, we could not evaluate sexually differential size–fitness relationships as an explanation for the observed sex-ratio patterns. Nonetheless, A. v. paganu s exhibited one of the strongest relationships between host size and offspring sex ratio yet reported.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 87 , 285–296.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号