首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A complex prediction: three-dimensional model of the yeast exosome   总被引:4,自引:0,他引:4       下载免费PDF全文
We present a model of the yeast exosome based on the bacterial degradosome component polynucleotide phosphorylase (PNPase). Electron microscopy shows the exosome to resemble PNPase but with key differences likely related to the position of RNA binding domains, and to the location of domains unique to the exosome. We use various techniques to reduce the many possible models of exosome subunits based on PNPase to just one. The model suggests numerous experiments to probe exosome function, particularly with respect to subunits making direct atomic contacts and conserved, possibly functional residues within the predicted central pore of the complex.  相似文献   

2.
Polynucleotide phosphorylase (PNPase) is a processive exoribonuclease that contributes to messenger RNA turnover and quality control of ribosomal RNA precursors in many bacterial species. In Escherichia coli, a proportion of the PNPase is recruited into a multi-enzyme assembly, known as the RNA degradosome, through an interaction with the scaffolding domain of the endoribonuclease RNase E. Here, we report crystal structures of E. coli PNPase complexed with the recognition site from RNase E and with manganese in the presence or in the absence of modified RNA. The homotrimeric PNPase engages RNase E on the periphery of its ring-like architecture through a pseudo-continuous anti-parallel β-sheet. A similar interaction pattern occurs in the structurally homologous human exosome between the Rrp45 and Rrp46 subunits. At the centre of the PNPase ring is a tapered channel with an adjustable aperture where RNA bases stack on phenylalanine side chains and trigger structural changes that propagate to the active sites. Manganese can substitute for magnesium as an essential co-factor for PNPase catalysis, and our crystal structure of the enzyme in complex with manganese suggests how the metal is positioned to stabilise the transition state. We discuss the implications of these structural observations for the catalytic mechanism of PNPase, its processive mode of action, and its assembly into the RNA degradosome.  相似文献   

3.
Running rings around RNA: a superfamily of phosphate-dependent RNases.   总被引:18,自引:0,他引:18  
The exosome of Saccharomyces cerevisiae and the degradosome of Escherichia coli are multienzyme complexes involved in the degradation of mRNA. Both contain enzymes that are similar to the phosphate-dependent exoribonuclease RNase PH. These enzymes are phosphorylases that degrade RNA from the 3'-end. A recent X-ray crystallographic study of the polynucleotide phosphorylase (PNPase) from Streptomyces antibioticus reveals, for the first time, the atomic structure of a member of the RNase PH superfamily. Here, information from the structure of PNPase is used to address two related issues. First, the structure supports the idea that PNPase, which is a trimer of multidomain subunits, arose by duplication of a gene encoding an RNase PH-like enzyme. Second, the structure might explain how RNase PH-like enzymes associate into oligomeric rings that degrade RNA in a processive reaction.  相似文献   

4.
The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.  相似文献   

5.
The RNA degradosome is a bacterial protein machine devoted to RNA degradation and processing. In Escherichia coli it is typically composed of the endoribonuclease RNase E, which also serves as a scaffold for the other components, the exoribonuclease PNPase, the RNA helicase RhlB, and enolase. Several other proteins have been found associated to the core complex. However, it remains unclear in most cases whether such proteins are occasional contaminants or specific components, and which is their function. To facilitate the analysis of the RNA degradosome composition under different physiological and genetic conditions we set up a simplified preparation procedure based on the affinity purification of FLAG epitope-tagged RNase E coupled to Multidimensional Protein Identification Technology (MudPIT) for the rapid and quantitative identification of the different components. By this proteomic approach, we show that the chaperone protein DnaK, previously identified as a "minor component" of the degradosome, associates with abnormal complexes under stressful conditions such as overexpression of RNase E, low temperature, and in the absence of PNPase; however, DnaK does not seem to be essential for RNA degradosome structure nor for its assembly. In addition, we show that normalized score values obtain by MudPIT analysis may be taken as quantitative estimates of the relative protein abundance in different degradosome preparations.  相似文献   

6.
The exosome is a complex of eleven subunits in yeast, involved in RNA processing and degradation. Despite the extensive in vivo functional studies of the exosome, little information is yet available on the structure of the complex and on the RNase and RNA binding activities of the individual subunits. The current model for the exosome structure predicts the formation of a heterohexameric RNase PH ring, bound on one side by RNA binding subunits, and on the opposite side by hydrolytic RNase subunits. Here, we report protein-protein interactions within the exosome, confirming the predictions of constituents of the RNase PH ring, and show some possible interaction interfaces between the other subunits. We also show evidence that Rrp40p can bind RNA in vitro, as predicted by sequence analysis.  相似文献   

7.
Multiprotein complexes that carry out RNA degradation and processing functions are found in cells from all domains of life. In Escherichia coli, the RNA degradosome, a four-protein complex, is required for normal RNA degradation and processing. In addition to the degradosome complex, the cell contains other ribonucleases that also play important roles in RNA processing and/or degradation. Whether the other ribonucleases are associated with the degradosome or function independently is not known. In the present work, IP (immunoprecipitation) studies from cell extracts showed that the major hydrolytic exoribonuclease RNase II is associated with the known degradosome components RNaseE (endoribonuclease E), RhlB (RNA helicase B), PNPase (polynucleotide phosphorylase) and Eno (enolase). Further evidence for the RNase II-degradosome association came from the binding of RNase II to purified RNaseE in far western affinity blot experiments. Formation of the RNase II–degradosome complex required the degradosomal proteins RhlB and PNPase as well as a C-terminal domain of RNaseE that contains binding sites for the other degradosomal proteins. This shows that the RNase II is a component of the RNA degradosome complex, a previously unrecognized association that is likely to play a role in coupling and coordinating the multiple elements of the RNA degradation pathways.  相似文献   

8.
The exosome is a complex of 3'-->5' exoribonucleases, which functions in a variety of cellular processes, all requiring the processing or degradation of RNA. We demonstrate that the two human proteins hCsl4p and hRrp42p, which have been identified on the basis of their sequence homology with Saccharomyces cerevisiae proteins, are associated with the human exosome. By mammalian two-hybrid and GST pull-down assays, we show that the hCsl4p protein interacts directly with two other exosome proteins, hRrp42p and hRrp46p. Mutants of hCsl4p that fail to interact with either hRrp42p or hRrp46p are also not able to associate with exosome complexes in vivo. These results indicate that the association of hCsl4p with the exosome is mediated by protein-protein interactions with hRrp42p and hRrp46p.  相似文献   

9.
10.
11.
Tsanova B  van Hoof A 《EMBO reports》2010,11(12):900-901
The authors analyse the eukaryotic exosome structure, published in EMBO reports, in light of the known archaeal and prokaryotic exosomes, and discuss its striking flexibility and the conservation of the RNA channelling mechanism.EMBO Rep (2010) advance online publication. doi: 10.1038/embor.2010.164Almost all RNA molecules are processed by RNases to form mature RNAs. In addition, many RNAs are degraded, either because they are no longer needed or because they are aberrant. All of these functions—RNA processing, normal RNA degradation and RNA quality control—are carried out by the eukaryotic RNA exosome complex. In this issue of EMBO reports, the Lorentzen group provide structural insight into the eukaryotic exosome and the mechanism by which it degrades RNA from 3′ to 5′ (Malet et al, 2010).The crystal structures of overlapping parts of the eukaryotic exosome (Liu et al, 2006; Bonneau et al, 2009) and the related bacterial PNPase (Symmons et al, 2000) and archaeal exosome (Lorentzen et al, 2007) have been solved, and show that these RNA-degrading machines from the three domains of life have a similar structure (Fig 1). They are all composed of a ring of six RNase PH domains, one side of which has a cap that contains putative RNA-binding domains. Although this overall structure is conserved, the way that it is formed is not. Bacterial PNPase is a homotrimer of which each monomer contains two RNase PH domains, an S1 domain and a KH domain. The archaeal PH ring consists of three copies of two proteins and the cap is made of three copies of either one of two proteins. Finally, the eukaryotic exosome core is composed of nine proteins: six with one RNase PH domain each and three cap proteins.Open in a separate windowFigure 1Exosome structures. The bacterial PNPase (left), the archaeal exosome (middle) and eukaryotic core exosome (right) have a common overall structure. The top panels are schematic views from above, showing the cap proteins. The bottom panels show a view from the side, with one-third of the exosome cut away to reveal the RNA in the central channel.In PNPase and the archaeal exosome, substrates enter the PH ring from the cap-side. The putative RNA-binding domains of the cap are therefore probably important for controlling entry to the PH ring. In both archaea and bacteria, the active sites are on the inner side of the PH ring and thus the ribonucleic catalysis occurs inside the central channel. However, in humans and yeast each of the RNase PH domains have point mutations that make the exosome ring catalytically inactive (Dziembowski et al, 2007). Instead, catalysis is carried out by a tenth subunit—Rrp44/Dis3—which binds to the PH ring on the opposite side to the cap proteins (Bonneau et al, 2009; Wang et al, 2007). This organization made it unclear whether RNA also enters the central channel of the exosome in eukaryotes (Fig 1), or whether substrate RNAs directly access the catalytic subunit.Malet and colleagues now provide structural information that resolves this by reconstituting the ten-subunit yeast exosome and analysing its structure with electron microscopy, in the presence and absence of RNA. This analysis suggests that the RNase PH ring of the exosome is stable, but that the cap and catalytic subunits are more flexible than previously appreciated. It is the first structural evidence that in eukaryotes RNA is threaded through the central channel before being degraded by Rrp44.  相似文献   

12.
Erce MA  Low JK  Wilkins MR 《The FEBS journal》2010,277(24):5161-5173
The RNA degradosome is built on the C-terminal half of ribonuclease E (RNase E) which shows high sequence variation, even amongst closely related species. This is intriguing given its central role in RNA processing and mRNA decay. Previously, we have identified RhlB (ATP-dependent DEAD-box RNA helicase)-binding, PNPase (polynucleotide phosphorylase)-binding and enolase-binding microdomains in the C-terminal half of Vibrio angustum S14 RNase E, and have shown through two-hybrid analysis that the PNPase and enolase-binding microdomains have protein-binding function. We suggest that the RhlB-binding, enolase-binding and PNPase-binding microdomains may be interchangeable between Escherichia coli and V. angustum S14 RNase E. In this study, we used two-hybrid techniques to show that the putative RhlB-binding microdomain can bind RhlB. We then used Blue Native-PAGE, a technique commonly employed in the separation of membrane protein complexes, in a study of the first of its kind to purify and analyse the RNA degradosome. We showed that the V. angustum S14 RNA degradosome comprises at least RNase E, RhlB, enolase and PNPase. Based on the results obtained from sequence analyses, two-hybrid assays, immunoprecipitation experiments and Blue Native-PAGE separation, we present a model for the V. angustum S14 RNA degradosome. We discuss the benefits of using Blue Native-PAGE as a tool to analyse the RNA degradosome, and the implications of microdomain-mediated RNase E interaction specificity.  相似文献   

13.
The yeast exosome is a complex of 3' --> 5' exoribonucleases. Sequence analysis identified putative human homologues for exosome components, although several were found only as expressed sequence tags. Here we report the cloning of full-length cDNAs, which encode putative human homologues of the Rrp40p, Rrp41p, and Rrp46p components of the exosome. Recombinant proteins were expressed and used to raise rabbit antisera. In Western blotting experiments, these decorated HeLa cell proteins of the predicted sizes. All three human proteins were enriched in the HeLa cells nucleus and nucleolus, but were also clearly detected in the cytoplasm. Size exclusion chromatography revealed that hRrp40p, hRrp41p, and hRrp46p were present in a large complex. This cofractionated with the human homologues of other exosome components, hRrp4p and PM/Scl-100. Anti-PM/Scl-positive patient sera coimmunoprecipitated hRrp40p, hRrp41p, and hRrp46p demonstrating their physical association. The immunoprecipitated complex exhibited 3' --> 5' exoribonuclease activity in vitro. hRrp41p was expressed in yeast and shown to suppress the lethality of genetic depletion of yeast Rrp41p. We conclude that hRrp40p, hRrp41p, and hRrp46p represent novel components of the human exosome complex.  相似文献   

14.
The conserved core of the exosome, the major eukaryotic 3' --> 5' exonuclease, contains nine subunits that form a ring similar to the phosphorolytic bacterial PNPase and archaeal exosome, as well as Dis3. Dis3 is homologous to bacterial RNase II, a hydrolytic enzyme. Previous studies have suggested that all subunits are active 3' --> 5' exoRNases. We show here that Dis3 is responsible for exosome core activity. The purified exosome core has a hydrolytic, processive and Mg(2+)-dependent activity with characteristics similar to those of recombinant Dis3. Moreover, a catalytically inactive Dis3 mutant has no exosome core activity in vitro and shows in vivo RNA degradation phenotypes similar to those resulting from exosome depletion. In contrast, mutations in Rrp41, the only subunit carrying a conserved phosphorolytic site, appear phenotypically not different from wild-type yeast. We observed that the yeast exosome ring mediates interactions with protein partners, providing an explanation for its essential function.  相似文献   

15.
RNA降解体(细菌RNA降解的主要执行者)是一种多亚基的蛋白质复合物,主要由RNA解螺旋酶、聚核苷酸磷酸化酶(polynucleotide phosphorylase,PNPase)、内切核酸酶(ribonuclease E,RNase E)以及糖酵解途径中的烯醇化酶、磷酸果糖激酶等组成,参与核糖体RNA(ribosome RNA,rRNA)的加工以及信使RNA(messenger RNA,mRNA)的降解。此外,RNA分子伴侣Hfq和调控小RNA(small RNA,sRNA)在RNA稳定性调控中也发挥着重要作用。综述了细菌RNA稳定性调控相关功能元件,特别是降解体蛋白及RNA分子伴侣Hfq的最新进展,以期为研究细菌RNA稳定性及其参与的代谢调控提供理论参考。  相似文献   

16.
In Escherichia coli, the exoribonuclease polynucleotide phosphorylase (PNPase), the endoribonuclease RNase E, a DEAD-RNA helicase and the glycolytic enzyme enolase are associated with a high molecular weight complex, the degradosome. This complex has an important role in processing and degradation of RNA. Chloroplasts contain an exoribonuclease homologous to E. coli PNPase. Size exclusion chromatography revealed that chloroplast PNPase elutes as a 580-600 kDa complex, suggesting that it can form an enzyme complex similar to the E. coli degradosome. Biochemical and mass-spectrometric analysis showed, however, that PNPase is the only protein associated with the 580-600 kDa complex. Similarly, a purified recombinant chloroplast PNPase also eluted as a 580-600 kDa complex after gel filtration chromatography. These results suggest that chloroplast PNPase exists as a homo-multimer complex. No other chloroplast proteins were found to associate with chloroplast PNPase during affinity chromatography. Database analysis of proteins homologous to E. coli RNase E revealed that chloroplast and cyanobacterial proteins lack the C-terminal domain of the E. coli protein that is involved in assembly of the degradosome. Together, our results suggest that PNPase does not form a degradosome-like complex in the chloroplast. Thus, RNA processing and degradation in this organelle differ in several respects from those in E. coli.  相似文献   

17.
The exosome is a complex of 3' --> 5' exoribonucleases that functions in a variety of cellular processes, all concerning the processing or degradation of RNA. Paradoxically, the previously described cDNA for the human autoantigenic exosome subunit PM/Scl-75 (Alderuccio, F., Chan, E. K., and Tan, E. M. (1991) J. Exp. Med. 173, 941-952) encodes a polypeptide that failed to interact with the exosome complex. Here, we describe the cloning of a more complete cDNA for PM/Scl-75 encoding 84 additional amino acids at its N terminus. We show that only the longer polypeptide is able to associate with the exosome complex. This interaction is most likely mediated by protein-protein interactions with two other exosome subunits, hRrp46p and hRrp41p, one of which was confirmed in a mammalian two-hybrid system. In addition we show that the putative nuclear localization signal present in the C-terminal region of PM/Scl-75 is sufficient, although not essential for nuclear localization of the protein. Moreover, the deletion of this element abrogated the nucleolar accumulation of PM/Scl-75, although its association with the exosome was not disturbed. This suggests that this basic element of PM/Scl-75 plays a role in targeting the exosome to the nucleolus.  相似文献   

18.
Ribonuclease E (RNase E) is a component of the Escherichia coli RNA degradosome, a multiprotein complex that also includes RNA helicase B (RhlB), polynucleotide phosphorylase (PNPase) and enolase. The degradosome plays a key role in RNA processing and degradation. The degradosomal proteins are organized as a cytoskeletal-like structure within the cell that has been thought to be associated with the cytoplasmic membrane. The article by Khemici et al. in the current issue of Molecular Microbiology reports that RNase E can directly interact with membrane phospholipids in vitro. The RNase E-membrane interaction is likely to play an important role in the membrane association of the degradosome system. These findings shed light on important but largely unexplored aspects of cellular structure and function, including the organization of the RNA processing machinery of the cell and of bacterial cytoskeletal elements in general.  相似文献   

19.
Polynucleotide phosphorylase (PNPase) is an exoribonuclease that cleaves single-stranded RNA substrates with 3'-5' directionality and processive behaviour. Its ring-like, trimeric architecture creates a central channel where phosphorolytic active sites reside. One face of the ring is decorated with RNA-binding K-homology (KH) and S1 domains, but exactly how these domains help to direct the 3' end of single-stranded RNA substrates towards the active sites is an unsolved puzzle. Insight into this process is provided by our crystal structures of RNA-bound and apo Caulobacter crescentus PNPase. In the RNA-free form, the S1 domains adopt a 'splayed' conformation that may facilitate capture of RNA substrates. In the RNA-bound structure, the three KH domains collectively close upon the RNA and direct the 3' end towards a constricted aperture at the entrance of the central channel. The KH domains make non-equivalent interactions with the RNA, and there is a marked asymmetry within the catalytic core of the enzyme. On the basis of these data, we propose that structural non-equivalence, induced upon RNA binding, helps to channel substrate to the active sites through mechanical ratcheting. Structural and biochemical analyses also reveal the basis for PNPase association with RNase E in the multi-enzyme RNA degradosome assembly of the α-proteobacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号