首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fumarate reductase of Escherichia coli has been shown to be a membrane-bound enzyme composed of a 69,000-dalton catalytic-flavin-containing subunit and a 27,000-dalton nonheme-iron-containing subunit. Using gene cloning and amplification techniques, we have observed two additional polypeptides encoded by the frd operon, with apparent molecular weights of 15,000 and 14,000, which are expressed when E. coli is grown anaerobically on glycerol plus fumarate. Expression of these two small polypeptides is necessary for the two large subunits to associate with the membrane. The four subunits remain associated in Triton X-100 extracts of the membrane, and a holoenzyme form of fumarate reductase containing one copy of each of the four polypeptides has been isolated. Unlike the well-characterized two-subunit form, the holoenzyme is not dependent on anions for activity and is not labile at alkaline pH. In these respects, it more closely resembles the membrane-bound activity.  相似文献   

2.
NADH-cytochrome b5 reductase [EC 1.6.2.2] has been solubilized with Triton X-100 and purified to homogeneity from rabbit liver microsomes. The purified enzyme is essentially free of the detergent and phospholipids and exists in aqueous media as an oligomeric aggregate of about 13 S. Its monomeric molecular weight is about 33,000 and 1 mole of FAD is associated with 1 mole of the monomeric unit. The enzyme catalyzes the reductions by NADH of ferricyanide and 2,6-dichlorophenol indophenol at an activity ratio of 1 : 0.09. Although the intact form of cytochrome b5 is a poorer electron acceptor than its hydrophilic fragment for the purified flavoprotein, electron transfer from the reductase to the intact cytochrome can be markedly stimulated by detergents or phospholipids, which also cause profound enhancement of the NADH-cytochrome c reductase activity reconstituted from the reducatse and cytochrome b5. Upon digestion with trypsin [EC 3.4.21.4], the ability of the reductase to form an active NADH-cytochrome c reductase system with the intact form of cytochrome b5 and Triton X-100 is rapidly lost. This loss of the reconstitution capability can be prevented by preincubation of the reductase with phosphatidylcholine liposomes. Trypsin digestion also results in the cleavage of the reductase molecule to a protein having a molecular weight of about 25,000 and a smaller fragment. The purified flavoprotein can bind to liver microsomes, liver mitochondria, sonicated human erythrocyte ghosts, and phosphatidylcholine liposomes. The reductase solubilized directly from liver microsomes by lysosomal digestion however, is devoid of membrane-binding capacity. It is concluded that the intact form of NADH-cytochrome b5 reductase is an amphipathic protein and its hydrophobic moiety, which is removable by lysosomal digestion, is responsible for the tight binding of the reductase to microsomes and for its normal functioning in the membrane.  相似文献   

3.
Rabbit intestinal trehalase (alpha,alpha-trehalose glucohydrolase, EC 3.2.1.28) was solubilized with Triton X-100 and purified in the presence of EDTA. The purified enzyme was homogeneous on polyacrylamide gel electrophoresis in the presence of Triton X-100 or SDS. It showed amphiphilic properties on gel filtration. polyacrylamide gel electrophoresis, charge-shift electrophoresis and phenyl-Sepharose chromatography. Its molecular weight was estimated to be about 330 000 by gel filtration under nondenaturing conditions and in the presence of Triton X-100, the value being in satisfactory agreement with the sum of the weight of one Triton X-100 micelle and twice the molecular weight (105 000) of purified hydrophilic trehalase which had been deprived of the anchor segment. The two purified trehalases gave almost the same molecular weights (about 75 000) on SDS-polyacrylamide gel electrophoresis. These results suggest that intestinal trehalase consists of two subunits with a molecular weight of 75 000 and that its anchor segment is small (less than 5000). Triton X-100 extracts freshly prepared from intestinal microvilli essentially showed one form of trehalase, which behaved on phenyl-Sepharose and Con A-Sepharose chromatography in the same manner as purified amphiphilic trehalase.  相似文献   

4.
An unusual fumarate reductase was purified from cell extracts of Methanobacterium thermoautotrophicum and partially characterized. Two coenzymes previously isolated from cell extracts, 2-mercaptoethane-sulfonic acid (HS-CoM) and N-(7-mercaptoheptanoyl)threonine-O3-phosphate (HS-HTP), were established as direct electron donors for fumarate reductase. By measuring the consumption of free thiol, we determined that fumarate reductase catalyzed the oxidation of HS-CoM and HS-HTP; by the direct measurement of succinate and the heterodisulfide of HS-CoM and HS-HTP (CoM-S-S-HTP), we established that these compounds were products of the fumarate reductase reaction. A number of thiol-containing compounds did not function as substrates for fumarate reductase, but this enzyme had high specific activity when HS-CoM and HS-HTP were used as electron donors. HS-CoM and HS-HTP were quantitatively oxidized by the fumarate reductase reaction, and results indicated that this reaction was irreversible. Additionally, by measuring formylmethanofuran, we demonstrated that the addition of fumarate to cell extracts activated CO2 fixation for the formation of formylmethanofuran. Results indicated that this activation resulted from the production of CoM-S-S-HTP (a compound known to be involved in the activation of formylmethanofuran synthesis) by the fumarate reductase reaction.  相似文献   

5.
1. Nitrate reductase was purified 134-fold from Escherichia coli K12. The purification procedure involves the release by Triton X-100 of the enzyme from the cell envelope. i. The purified enzyme exists in aqueous solution either as a monomer (mol. wt. about 220 000) or as an associated form (probably a tetramer; mol.wt. about 880 000). 3. The purified enzyme has three subunits with apparent mol.wts. of 150 000, 67000 and 65000. An additional subunit of apparent mol.wt. 20000 is present in a haem-containing fraction that is also produced by the preparative procedure described. 4. None of the enzyme subunits is present in the cell envelope of cells grown in the absence of nitrate. 5. Reversible changes in the activity of nitrate reductase in vitro with FMNH2 as reductant can be induced under circumstances which are without effect on the reduced Benzyl Viologen-NO3-activity.  相似文献   

6.
Highly active succinate-ubiquinone reductase has been purified from cytoplasmic membranes of aerobically grown Paracoccus denitrificans. The purified enzyme has a specific activity of 100 units per mg protein, and a turnover number of 305 s-1. Succinate-ubiquinone reductase activity of the purified enzyme is inhibited by 3'-methylcarboxin and thenoyltrifluoroacetone. Four subunits, with apparent molecular masses of 64.9, 28.9, 13.4 and 12.5 kDa, were observed on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme contains 5.62 nmol covalently bound flavin and 3.79 nmol cytochrome b per mg protein. The 64.9 kDa subunit was shown to be a flavoprotein by its fluorescence. Polyclonal antibodies raised against this protein cross-reacted with the flavoprotein subunit of bovine heart mitochondrial succinate-ubiquinone reductase. The 28.9 kDa subunit is likely analogous to the bovine heart iron protein, and the cytochrome b heme is probably associated with one or both of the low-molecular-weight polypeptides. The cytochrome b is not reducible with succinate but is reoxidized with fumarate after prereduction with dithionite. Iron-sulfur clusters S-1 and S-3 of the Paracoccus oxidoreductase exhibit EPR spectra very similar to their mitochondrial counterparts. Paracoccus succinate-ubiquinone reductase complex is thus similar to the bovine heart mitochondrial enzyme with respect to prosthetic groups, enzymatic activity, inhibitor sensitivities, and polypeptide subunit composition.  相似文献   

7.
Complex 1 of the respirator) chain (EC 1.6.531, measured as NADH-duroquinone and NADH-ubiquinone, reductase activities, was isolated from purified red beetroot ( Beta vulgaris L.I mitochondria. The mitochondria were disrupted by freeze-thawing and inner membrane vesicles were pelleted. After solubilization of the vesicles with Triton X-100, the enzyme complex was purified 11-fold (compared to the activity in the inner membrane vesicles) by size-exclusion chromatography on a Sephacryl S-400 HR column and then by ion-exchange chromatography on a DEAE-Sepharose CL-6B column. Triton X-100 was present throughout the purification procedure. Tire purified complex showed approximately 30 bands on SDS-PAGE and about 15 polypeptides including those at 80. 54, 53. 51. 27. 25 and 22 kDa cross-reacted with polyclonal antibodies raised against complex I from Neurospora crassa . This is similar lo the pattern obtained with complex I from Neurospera crassa .
Analysis by nativc-SDS 2-dimensional PAGE revealed the existence of several molecular mass forms of the purified complex.
After reconstitution of the purified complex into phosphatidylcholine vesicles, the NADH-ubiquinone reductase activity had a Km (NADH) of about I μ M and was inhibited by both rotenone and dicyclohexylcarbodiimide.  相似文献   

8.
The HLB dependency for the solubilization of membrane proteins and adenylate cyclase activity from a plasma membrane-enriched fraction from rat liver has been determined. The HLB (hydrophilic/lipophilic/balance) number of a detergent is an empirical measure of its relative hydrophobicity. Detergent HLB numbers vary systematically with the length of the ethylene oxide chain for a homologous series of detergents such as the Triton X series. These detergents have a constant hydrophobic moiety, octylphenyl, and a variable polar portion, polyethoxyethanol. Basal-NaF-epine-phrine-, and glucagon-stimulated adenylate cyclase activities were solubilized in the HLB range of 16.8–17.4. Solubilization was most effective in 0.01 M Tris buffers at pH 7.5 containing 1–5 mM mercaptoethanol, 1 mM MgCl2, and 0.1% Triton X-305. The detergent to membrane protein ratio used in these studies was 3:1. Criteria for solubilization included lack of sedimentation at 100,000 × g, the absence of particulate material in the supernatant when examined by electron microscopy, and inclusion of hormonally sensitive adenylate cylcase activity in Sephadex G-200 gels. The apparent molecular weight of the solubilized enzyme was approximately 200,000 in the presence of Triton X-305. The solubilized enzyme was stimulated 5-fold by NaF, 7-fold by glucagon, and 20-fold by epinephrine compared to the particulate enzyme used in this study which was stimulated 10-fold, 3,4-fold, and 4-fold by NaF, epinephrine, and glucagon, respectively. The solubilized enzyme is stable for several weeks when stored at ?60° C.  相似文献   

9.
Nitrate reductase extracted from the membrane of Escherichia coli by alkaline heat treatment was purified to homogeneity and used to prepare specific antibody. Nitrate reductase, precipitated by this antibody from Triton extracts of the membrane, contained a third subunit not present in the purified enzyme used to prepare the antibody. Nitrate reductase precipitated by antibody from alkaline heat extracts was composed of peptide fragments of various sizes. These fragments were produced by a membrane-bound protease which was activated by alkaline pH and heat. It is the action of this protease that releases the enzyme from the membrane, as shown by the observations that protease inhibitors decreased the amount of solubilization of the enzyme, and the enzyme remaining in the membrane after heating showed much less proteolytic cleavage than that which was released.  相似文献   

10.
Succinate dehydrogenase (SDH) was solubilized from membranes of Mycobacterium phlei by Triton X-100 with a recovery of about 90%. The solubilized SDH was purified about 90-fold by Sephacryl S-300, DEAE-cellulose, hydroxylapatite, and isoelectric focusing in the presence of Triton X-100 with a 20% recovery. SDH was homogeneous, as determined by polyacrylamide gel electrophoresis in nondenaturing gels containing Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme revealed two subunits with molecular weights of 62,000 and 26,000. SDH is a flavoprotein containing 1 mol of flavin adenine dinucleotide, 7 to 8 mol of nonheme iron, and 7 to 8 mol of acid-labile sulfide per mol of protein. Using phenazine methosulfate and 2,6-dichloroindophenol as electron acceptors, the enzyme had an apparent Km of 0.12 mM succinate. SDH exhibited a sigmoidal relationship of rate to succinate concentration, indicating cooperativity. The enzyme was competitively inhibited by fumarate with a Ki of 0.15 mM. In the absence of Triton X-100, the enzyme aggregated, retained 50% of the activity, and could be resolubilized with Triton X-100 with full restoration of activity. Cardiolipin had no effect on the enzyme activity in the absence of Triton X-100, but it stimulated the activity by about 30% in the presence of 0.1% Triton X-100 in the assay mixture. Menaquinone-9(2H), isolated from M. phlei, had no effect on the enzyme activity either in the presence or absence of Triton X-100.  相似文献   

11.
A membrane-bound phosphatidylinositol (PtdIns) kinase has been purified approximately 9500-fold to apparent homogeneity from sheep brains. The purification procedure involves: solubilisation of the membrane fraction with Triton X-100, ammonium sulphate fractionation and a number of ion-exchange and gel-filtration chromatography steps. The purified enzyme exhibited a final specific activity of 1149 nmol.min-1.mg-1. The molecular mass of the enzyme was estimated to be 55 kDa by SDS/PAGE and 150 +/- 10 kDa by HPLC gel filtration in the presence of Triton X-100. Kinetic measurements have shown that the apparent Km value of PtdIns kinase for the utilisation of PtdIns is 22 microM and for ATP 67 microM. Mg2+ was the most effective divalent cation activator of PtdIns kinase, with maximal enzymatic activity reached at a concentration of 10 mM Mg2+. In addition to adenosine and ADP, the 2'(3')-O-(2,4,6-trinitrophenyl) derivative of ATP was found to be a strong competitive inhibitor of the enzyme, with a Ki of 32 microM. Enzymatic activity was found to be stimulated by Triton X-100 but inhibited by deoxycholate.  相似文献   

12.
Crossed immunoelectrophoresis was used to analyze the components of membrane vesicles of anaerobically grown Escherichia coli. The number of precipitation lines in the crossed immunoelectrophoresis patterns of membrane vesicles isolated from E. coli grown anaerobically on glucose plus nitrate and on glycerol plus fumarate were 83 and 70, respectively. Zymogram staining techniques were used to identify immunoprecipitates corresponding to nitrate reductase, formate dehydrogenase, fumarate reductase, and glycerol-3-phosphate dehydrogenase in crossed immunoelectrophoresis reference patterns. The identification of fumarate reductase by its succinate oxidizing activity was confirmed with purified enzyme and with mutants lacking or overproducing this enzyme. In addition, precipitation lines were found for hydrogenase, cytochrome oxidase, the membrane-bound ATPase, and the dehydrogenases for succinate, malate, dihydroorotate, D-lactate, 6-phosphogluconate, and NADH. Adsorption experiments with intact and solubilized membrane vesicles showed that fumarate reductase, hydrogenase, glycerol-3-phosphate dehydrogenase, nitrate reductase, and ATPase are located at the inner surface of the cytoplasmic membrane; on the other hand, the results suggest that formate dehydrogenase is a transmembrane protein.  相似文献   

13.
The methylenetetrahydrofolate reductase from the carbon-monoxide-utilizing homoacetogen Peptostreptococcus productus (strain Marburg) has been purified to apparent homogeneity. The purified enzyme catalyzed the oxidation of NADH with methylenetetrahydrofolate as the electron acceptor at a specific activity of 380 mumols.min-1 mg protein-1 (37 degrees C; pH 5.5). The apparent Km for NADH was near 10 microM. The apparent molecular mass of the enzyme was determined by gel filtration to be approximately 250.0 kDa. The enzyme consists of eight identical subunits with a molecular mass of 32 kDa. It contains 4 FAD/mol octamer which were reduced by the enzyme with NADH as the electron donor; iron could not be detected. Oxygen had no effect on the enzyme. Ultracentrifugation of cell extracts revealed that about 40% of the enzyme activity was recovered in the particulate fraction, suggesting that the enzyme is associated with the membrane. The enzyme also catalyzed the methylenetetrahydrofolate reduction with methylene blue as an artificial electron donor. The oxidation of methyltetrahydrofolate was mediated with methylene blue as the electron acceptor; neither NAD+ nor viologen dyes could replace methylene blue in this reaction. NADP(H) or FAD(H2) were not used to substrates for the reaction in either direction. The activity of the purified enzyme, which was proposed to be involved in sodium translocation across the cytoplasmic membrane, was not affected by the absence or presence of added sodium. The properties of the enzyme differ from those of the ferredoxin-dependent methylenetetrahydrofolate reductase of the homoacetogen Clostridium formicoaceticum and of the NADP(+)-dependent reductase of eucaryotes investigated so far.  相似文献   

14.
1. Human erythrocyte acetylcholinesterase was solubilized by Triton X-100 and purified by affinity chromatography to a specific activity of 3800 IU/mg of protein. The yield of the purified enzyme was 25--45%. 2. Gel filtration on Sepharose 4-B in the presence of Triton X-100 revealed one peak of enzyme activity with a Stokes' radius of 8.7 nm. Density gradient centrifugation in 0.1% Triton X-100 showed one peak of enzyme activity with an S4 value of 6.3S. 3. Isoelectric focusing in Triton X-100 resolved the enzyme into five molecular forms with isoelectric points of 4.55, 4.68, 4.81, 4.98 and 5.18. Upon incubation with neuraminidase the enzyme activity in the first four forms was decreased with a concommitant increase in activity in the form with the higher isoelectric point. 4. After removal of excess Triton X-100 on Bio-Gel HTP, polyacrylamide gel electrophoresis showed seven bands of protein and corresponding bands of enzyme activity. Density gradient centrifugation of the detergent-depleted enzyme at high ionic strength revealed five multiple molecular forms with S4 values of 6.3 S, 10.2 S, 12.2 S, 14.2 S and 16.3 S. At low ionic strength, higher aggregates were observed in addition to the other forms. Dodecylsulfate-polyacrylamide gel electrophoresis gave one subunit only with an apparent molecular weight of 80 000. 5. These results suggest that human erythrocyte acetylcholinesterase, solubilized by Triton X-100, exists in various forms differing in net charge but of apparently similar molecular dimensions. After removal of the detergent, forms with different molecular sizes are observed.  相似文献   

15.
Detergent-resistant phospholipase A, which is tightly bound to the outer membranes of Escherichia coli K-12 cells, was purified approximately 2000-fold to near homogeneity by solubilization with sodium dodecylsulfate and butan-1-ol, acid precipitation, acetone fractionation and column chromatographies on Sephadex G-100 in the presence of sodium dodecylsulfate and on DEAE-cellulose in the presence of Triton X-100. The final preparation showed a single band in the sodium dodecylsulfate gel system. The enzyme hydrolyzes both the 1-acyl and 2-acyl chains of phosphatidylethanolamine or phosphatidylcholine. It also attacks 1-acyl and 2-acylglycerylphosphorylethanolamine. Thus, this enzyme shows not only phospholipase A1 and lysophospholipase L1 activities but also phospholipase A2 and lysophospholipase L2 activities. The enzyme lost its activity completely on incubation at 80 degrees C for 5 min at either pH 6.4 or pH 8.0. It was stable in 0.5% sodium dodecylsulfate at below 40 degrees C. The enzyme was inactivated on incubation for 5 min at 90 degrees C in 1% sodium dodecylsulfate/1% 2-mercaptoethanol/4 M urea. The native and inactivated enzymes showed different protein bands with RF values corresponding to Mr 21 000 and Mr 28 000 respectively, in a sodium dodecylsulfate gel system. Triton X-100 seemed to protect the enzyme from inactivation. The purified enzyme was fully active on phosphatidylethanolamine in the presence of 0.0002% or 0.05% Triton X-100. The enzyme requires Ca2+. From its properties this enzyme seems to be identical with the enzyme purified from crude extracts of Escherichia coli B by Scandella and Kornberg. However, it differs from the latter in its positional specificity and susceptibility to sodium dodecylsulfate. Possible explanation of the difference of positional specificity of the two preparations is also described.  相似文献   

16.
Porcine enteropeptidase (EC 3.4.21.9) purified from acetone powders of fresh duodenal fluid shows a molecular weight, as determined on Ultragel AcA-34, of 190000. Enteropeptidase has been solubilised from pig intestinal mucosa using 1% (v/v) Triton X-100. When Triton X-100 extracts of freeze-dried mucosa after partial fractionation on DEAE-cellulose were chromatographed on Sephadex G-200, the bulk of the activity eluted in the void volume rather than with an expected Ve/V0 ratio of about 1.24 corresponding to a molecular weight of around 200000. Gel filtration of aqueous mucosal extracts obtained in the absence of Triton X-100 showed two regions of enzymic activity in approximately equal proportions, one in the void volume, and the other with the expected Ve/V0 ratio of 1.24, whereas the Triton X-100 extracts of the residue from the above extract showed the presence of only the macromolecular species of enteropeptidase. This species was excluded from Sepharose 4B. It was confirmed that aminopeptidase was also extracted by Triton X-100 in a molecular form which was excluded from Sepharose 4B. The results suggest that Triton X-100 extracts enteropeptidase with a membrane component attached and in agreement with this it was found that proteolysis rapidly converted the macromolecular form to a stable smaller molecular species corresponding in size to that found in solution in the duodenal fluid. There was full recovery of the enzymic activity following this conversion. Papain and trypsin brought about an almost complete conversion to the smaller form of enteropeptidase whereas chymotrypsin, pancreatin and an intestinal peptidase preparation were only partially effective. It is concluded that membrane bound enzymes such as enteropeptidase and aminopeptidase are bound to the intestinal brush border membrane in a similar manner and are not actively secreted into the lumen but rather are largely released or solubilised by the combined action of the bile and pancreatic secretions.  相似文献   

17.
Crude extracts of ferredoxin-NADP reductase prepared from spinach by three different methods consistently contained two molecular weight forms of the enzyme: P-1, 117,500, and P-2, 50,000. The lower molecular weight form was purified and shown to consist of two different ionic forms. These three forms of the flavoprotein are immunologically identical. A third molecular weight form of the reductase, excluded by Sephadex G-100, generated P-1 and P-2 on rechromatography. Other experiments demonstrated that this enzyme has NADPH-tetrazolium reductase activity and it accounts for essentially all of the tetrazolium reductase activity of isolated chloroplasts.  相似文献   

18.
Squalene epoxidase (EC 1.14.99.7, squalene 2,3-monooxygenase (epoxidizing) was purified to an apparent homogeneity from rat liver microsomes. The purification was carried out by solubilization of microsomes by Triton X-100, fractionation with ion exchangers, hydroxyapatite, Cibacron Blue Sepharose 4B, and chromatofocusing column chromatography. A total purification of 143-fold over the first DEAE-cellulose fraction was achieved. The purified enzyme gave a single major band on SDS-polyacrylamide gel electrophoresis and the Mr was estimated to be 51 000 as a single polypeptide chain. The enzyme showed no distinct absorption spectrum in the visible regions. The squalene epoxidase activity was reconstituted with the purified enzyme, NADPH-cytochrome P-450 reductase (EC 1.6.2.4), FAD, NADPH and molecular oxygen in the presence of Triton X-100. The apparent Michaelis constants for squalene and FAD were 13 microM and 5 microM, respectively. The Vmax was about 186 nmol per mg protein per 30 min for 2,3-oxidosqualene. The enzyme activity was not inhibited by potent inhibitors of cytochrome P-450. It is suggested that squalene epoxidase is distinct from cytochrome P-450 isozymes.  相似文献   

19.
Nitrate reductase solubilized from the membrane of Escherichia coli by alkaline heat treatment was purified to homogeneity and used to prepare specific antibody. Nitrate reductase, precipitated by this antibody from Triton extracts of the membrane, contained a third subunit, not present in the purified enzyme used to prepare the antibody. This third subunit was identified as the cytochrome b1 apoprotein. This cytochrome is bound to nitrate reductase from wild-type E. coli in a ratio of 2 mol of cytochrome per mol of enzyme complex. In mutants unable to synthesize heme, this cytochrome b1 apoprotein is not bound to nitrate reductase. In these same mutants, the enzyme is overproduced and accumulates in the cytoplasm. The absence of cytochrome also affects the stability of the membrane-bound form of the enzyme.  相似文献   

20.
The proton translocating membrane-bound inorganic pyrophosphatase of Rhodospirillum rubrum S1, has been solubilized with good yield from chromatophores using Triton X-100 (9–10 oxyethylene groups) in the presence of high concentrations of MgCl2 and ethyleneglycol. The enzyme has been purified 80-fold by hydroxylapatite column chromatography, to a state of near homogeneity, according to polyacrylamide-gelelectrophoresis. The enzyme appears to be a very hydrophobic integrally bound membrane protein. Phospholipids or Triton X-100 reconstitutes the enzyme activity after solubilization and purification. The purified enzyme preparation has a specific activity of 24 units. Both the purified and the chromatophore-bound enzyme are inhibited by N-ethylmaleimide, 4-chloro-7-nitrobenzo-2-oxo-1,3-diazol (NBF-Cl), sodium fluoride, imidodiphosphate, methylenediphosphonate and the antibiotic Dio-9 (energy-transfer inhibitor). In the solubilized state the purified enzyme is not stimulated by uncouplers or inhibited by dicyclohexylcarbodiimide in contrast to the chromatophore-bound pyrophosphatase. When reconstituted into liposomes the purified enzyme regains the stimulation by uncouplers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号