首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Following enrichment at 70 degrees C and 80 degrees C, five highly thermophilic aerobic eubacteria have been isolated from cool soil environments. These organisms show a temperature range for growth of 40-80 degrees C and have optimal and very high growth rates around 70 degrees C with generation times less than 30 min. All isolates are narrow rods, which stain Gram-negative, but have a Gram-positive cell wall structure and only one of five isolates is a spore former. All cultures contain a small proportion of previously unreported extremely long flexuous rods, which can be seen to divide eventually. Biochemical testing of five strains reveals a significant ability to utilize alkanes and some aromatic hydrocarbons. Using polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) of 16S rDNA the five strains were differentiated into three categories, which paralleled the biochemical results. 16S rDNA sequences showed high similarity with thermophilic Bacillus species now reclassified as Geobacillus. These bacteria are present in high numbers in apparently all soils and the question is raised of how these organisms, which are apparently unable to grow at the temperatures experienced in these cool soils, are so prominent.  相似文献   

3.
High numbers (10(7) to 10(10) cells per g [dry weight]) of heterotrophic, gram-negative, rod-shaped, non-sporeforming, aerobic, thermophilic bacteria related to the genus Thermus were isolated from thermogenic composts at temperatures between 65 and 82 degrees C. These bacteria were present in different types of wastes (garden and kitchen wastes and sewage sludge) and in all the industrial composting systems studied (open-air windows, boxes with automated turning and aeration, and closed bioreactors with aeration). Isolates grew fast on a rich complex medium at temperatures between 40 and 80 degrees C, with optimum growth between 65 and 75 degrees C. Nutritional characteristics, total protein profiles, DNA-DNA hybridization (except strain JT4), and restriction fragment length polymorphism profiles of the DNAs coding for the 16S rRNAs (16S rDNAs) showed that Thermus strains isolated from hot composts were closely related to Thermus thermophilus HB8. These newly isolated T. thermophilus strains have probably adapted to the conditions in the hot-compost ecosystem. Heterotrophic, ovalspore-forming, thermophilic bacilli were also isolated from hot composts, but none of the isolates was able to grow at temperatures above 70 degrees C. This is the first report of hot composts as habitats for a high number of thermophilic bacteria related to the genus Thermus. Our study suggests that Thermus strains play an important role in organic-matter degradation during the thermogenic phase (65 to 80 degrees C) of the composting process.  相似文献   

4.
Expression of a pyruvate decarboxylase (Pdc) pathway in metabolically versatile thermophilic bacteria could create novel ethanologenic organisms, but no suitable thermostable Pdc is available. We have demonstrated that Pdc from Zymomonas mobilis can be expressed in an active form in Geobacillus thermoglucosidasius at up to 52 degrees C, while expression of Pdc polypeptides up to 54 degrees C was evident from Western blotting. By using an unstable lactate dehydrogenase (ldh) mutant of G. thermoglucosidasius, indirect evidence of Pdc activity in vivo was also obtained.  相似文献   

5.
New and simple numerical criteria based on a codon adaptation index are applied to the complete genomic sequences of 80 Eubacteria and 16 Archaea, to infer weak and strong genome tendencies toward content bias, translational bias, and strand bias. These criteria can be applied to all microbial genomes, even those for which little biological information is known, and a codon bias signature, that is the collection of strong biases displayed by a genome, can be automatically derived. A codon bias space, where genomes are identified by their preferred codons, is proposed as a novel formal framework to interpret genomic relationships. Principal component analysis confirms that although GC content has a dominant effect on codon bias space, thermophilic and mesophilic species can be identified and separated by codon preferences. Two more examples concerning lifestyle are studied with linear discriminant analysis: suitable separating functions characterized by sets of preferred codons are provided to discriminate: translationally biased (hyper)thermophiles from mesophiles, and organisms with different respiratory characteristics, aerobic, anaerobic, facultative aerobic and facultative anaerobic. These results suggest that codon bias space might reflect the geometry of a prokaryotic "physiology space." Evolutionary perspectives are noted, numerical criteria and distances among organisms are validated on known cases, and various results and predictions are discussed both on methodological and biological grounds.  相似文献   

6.
Several bacterial strains that are obligate for both thermophily and hydrocarbon utilization have been isolated from a number of thermal and non-thermal environments. Mud and water samples obtained from geographic sites across the United States were subjected to enrichment procedures at 60° C with n-heptadecane as sole growth substrate. Organisms forming very small white colonies on agar surfaces were often evident on primary enrichment. These bacteria were Gram negative, aerobic, small, and rodshaped. They lacked pigmentation, motility, and the ability to form endospores. Growth occurred in the temperature range from 45° C to 70° C with the optimum around 60° C and at a pH near neutrality. Only n-alkanes from 13 to 20 carbons in length were utilized by these organisms as growth substrate. The mol% guanine plus cytosine values for these strains were between 68 and 70%. The physiological and morphological characteristics of these organisms are distinctly different from any previously described thermophilic microbes. It is proposed that they be placed in a new genus, Thermoleophilum gen. nov. with the type species being Thermoleophilum album gen. nov., sp. nov. The type strain in ATCC 35263.Paper number 8953 of the Journal Series of the North Carolina Agricultural Research Service Raleigh, NC 27695, USA  相似文献   

7.
Anaerobic digestion has been proposed as an alternative to the conventional disposal methods of burial, incineration, rendering and aerobic composting. A temperature-phased system consisting of one UASB (at 55 degrees C) and three leach-bed reactors (at ambient temperatures) was tested for its efficiencies in treating poultry mortality. The thermophilic UASB was difficult to start-up. It also showed signs of inhibited methanogenesis. Chemical parameters such as long chain fatty acids, volatile fatty acids and ammonia concentrations were all very high for the thermophilic UASB. Lowering its temperature to 35 degrees C enhanced its stability and improved its performances. Lowering the pH of the 55 degrees C UASB also improved its chemical oxygen demand (COD) reduction efficiency as well as its methane production rate. The results were compared to that of another similar system where the UASB reactor was maintained at 35 degrees C instead of at 55 degrees C.  相似文献   

8.
Short-term temperature effects on the aerobic metabolism of glycogen-accumulating organisms (GAO) were investigated within a temperature range from 10 to 40 degrees C. Candidatus Competibacter Phosphatis, known GAO, were the dominant microorganisms in the enriched culture comprising 93 +/- 1% of total bacterial population as indicated by fluorescence in situ hybridization (FISH) analysis. Between 10 and 30 degrees C, the aerobic stoichiometry of GAO was insensitive to temperature changes. Around 30 degrees C, the optimal temperature for most of the aerobic kinetic rates was found. At temperatures higher than 30 degrees C, a decrease on the aerobic stoichiometric yields combined with an increase on the aerobic maintenance requirements were observed. An optimal overall temperature for both anaerobic and aerobic metabolisms of GAO appears to be found around 30 degrees C. Furthermore, within a temperature range (10-30 degrees C) that covers the operating temperature range of most of domestic wastewater treatment systems, GAOs aerobic kinetic rates exhibited a medium degree of dependency on temperature (theta = 1.046-1.090) comparable to that of phosphorus accumulating organisms (PAO). We conclude that GAO do not have metabolic advantages over PAO concerning the effects of temperature on their aerobic metabolism, and competitive advantages are due to anaerobic processes.  相似文献   

9.
The genomics of disulfide bonding and protein stabilization in thermophiles   总被引:3,自引:0,他引:3  
Thermophilic organisms flourish in varied high-temperature environmental niches that are deadly to other organisms. Recently, genomic evidence has implicated a critical role for disulfide bonds in the structural stabilization of intracellular proteins from certain of these organisms, contrary to the conventional view that structural disulfide bonds are exclusively extracellular. Here both computational and structural data are presented to explore the occurrence of disulfide bonds as a protein-stabilization method across many thermophilic prokaryotes. Based on computational studies, disulfide-bond richness is found to be widespread, with thermophiles containing the highest levels. Interestingly, only a distinct subset of thermophiles exhibit this property. A computational search for proteins matching this target phylogenetic profile singles out a specific protein, known as protein disulfide oxidoreductase, as a potential key player in thermophilic intracellular disulfide-bond formation. Finally, biochemical support in the form of a new crystal structure of a thermophilic protein with three disulfide bonds is presented together with a survey of known structures from the literature. Together, the results provide insight into biochemical specialization and the diversity of methods employed by organisms to stabilize their proteins in exotic environments. The findings also motivate continued efforts to sequence genomes from divergent organisms.  相似文献   

10.
Growth parameters (temperature and pH) were determined for collection cultures of aerobic heterotrophic bacteria. Analysis of the experimental data with the use of the Rosso model made it possible to calculate the extreme values of temperature and pH permissive for culture growth. The examined cultures were subdivided into three groups with respect to their growth temperature and pH. The first group is represented by the cultures with minimum, maximum, and optimal growth temperatures of < 20, 60-64, and 38-40 degrees C, respectively, and with the optimal growth pH 8.0-8.5. Bacteria of the second group are true alkalithermophilic organisms with a temperature optimum of 45-50 degrees C and pH optimum of 8.5-9.0. The third group includes a culture of a thermophilic alkalitolerant bacterium.  相似文献   

11.
A novel, extremely thermophilic bacterium was isolated from a shallow marine hydrothermal vent at depth of 22 m in Tachibana Bay, Nagasaki Prefecture, Japan. Cells were gram-negative, non-spore-forming, motile rods. Growth was observed between 52 and 78 degrees C (optimum 70 degrees C), pH 5 and 8 (optimum pH 7) and 0-4.5% NaCl (optimum 1.0%). The isolate was a strictly aerobic heterotroph utilizing yeast extract and trypticase peptone. The G+C content of the genomic DNA is 69 mol%. Analysis of 16S rDNA sequences indicated that strain Ts1a is closely related to Thermaerobacter marianensis. The differences in physiology and DNA-DNA similarity between strain Ts1a and T. marianensis showed that strain Ts1a represents a new species of Thermaerobacter. The type strain of T. nagasakiensis is strain Ts1a (=JCM11223, DSM 14512).  相似文献   

12.
The thermophilic, anaerobic, propionate-oxidizing bacterial populations present in the methanogenic granular sludge in a thermophilic (55 degrees C) upflow anaerobic sludge blanket reactor were studied by cultivation and in situ hybridization analysis. For isolation of propionate-degrading microbes, primary enrichment was made with propionate as the sole energy source at 55 degrees C. After several attempts to purify the microbes, a thermophilic, syntrophic, propionate-oxidizing bacterium, designated strain SI, was isolated in both pure culture and coculture with Methanobacterium thermoautotrophicum. Under thermophilic (55 degrees C) conditions, strain SI oxidized propionate, ethanol, and lactate in coculture with M. thermoautotrophicum. In pure culture, the isolate was found to ferment pyruvate. 16S ribosomal DNA sequence analysis revealed that the strain was relatively close to members of the genus Desulfotomaculum, but it was only distantly related to any known species. To elucidate the abundance and spatial distribution of organisms of the strain SI type within the sludge granules, a 16S rRNA-targeted oligonucleotide probe specific for strain SI was developed and applied to thin sections of the granules. Fluorescence in situ hybridization combined with confocal laser scanning microscopy revealed that a number of rod-shaped cells were present in the middle and inner layers of the thermophilic granule sections and that they formed close associations with hydrogenotrophic methanogens. They accounted for approximately 1.1% of the total cells in the sludge. These results demonstrated that strain SI was one of the significant populations in the granular sludge and that it was responsible for propionate oxidation in the methanogenic granular sludge in the reactor.  相似文献   

13.
Cenarchaeum symbiosum, an archaeon which lives in specific association with a marine sponge, belongs to a recently recognized nonthermophilic crenarchaeotal group that inhabits diverse cold and temperate environments. Nonthermophilic crenarchaeotes have not yet been obtained in laboratory culture, and so their phenotypic characteristics have been inferred solely from their ecological distribution. Here we report on the first protein to be characterized from one of these organisms. The DNA polymerase gene of C. symbiosum was identified in the vicinity of the rRNA operon on a large genomic contig. Its deduced amino acid sequence is highly similar to those of the archaeal family B (alpha-type) DNA polymerases. It shared highest overall sequence similarity with the crenarchaeal DNA polymerases from the extreme thermophiles Sulfolobus acidocaldarius and Pyrodictium occultum (54% and 53%, respectively). The conserved motifs of B (alpha-)-type DNA polymerases and 3'-5' exonuclease were identified in the 845-amino-acid sequence. The 96-kDa protein was expressed in Escherichia coli and purified with affinity tags. It exhibited its highest specific activity with gapped-duplex (activated) DNA as the substrate. Single-strand- and double-strand-dependent 3'-5' exonuclease activity was detected, as was a marginal 5'-3' exonuclease activity. The enzyme was rapidly inactivated at temperatures higher than 40 degrees C, with a half-life of 10 min at 46 degrees C. It was found to be less thermostable than polymerase I of E. coli and is substantially more heat labile than its most closely related homologs from thermophilic and hyperthermophilic crenarchaeotes. Although phylogenetic studies suggest a thermophilic ancestry for C. symbiosum and its relatives, our biochemical analysis of the DNA polymerase is consistent with the postulated nonthermophilic phenotype of these crenarchaeotes, to date inferred solely from their ecological distribution.  相似文献   

14.
Thermophiles are microorganisms that can grow at temperatures higher than 50 or 60 degrees C. There are thermophilic eubacteria and thermophilic archaebacteria. Thermophilic microorganisms can be found geothermally and hydrothermally active area. The water penetrates into deep subsurface around thermal area and reacts with hot basalt. Some of the compounds in the water are reduced by the reaction. The water returned to the surface and reacts with seawater or air, depending on the location of the thermal area. Many types of autotrophes and heterotrophes were found near thermally active area. The microorganisms form the ecosystem based on the redox chemical reactions. All of the structural elements in thermophilic microorganisms are thermophilic or thermostable. Proteins found in microorganisms are thermostable. Though several common characteristics can be found in thermostable proteins, it is not easy to attribute the stability to specific amino acid residues. DNA in thermophiles is stabilized by increasing the G+C content or by histone-like DNA binding proteins. There are several molecular biological and geological evidences to support the relation between ancient life forms and thermal activity on the Earth. Thermophiles of different life forms may be found in thermally active area, in such as those that may be present in satellites of Jupiter.  相似文献   

15.
Inactivation of animal viruses during sewage sludge treatment.   总被引:3,自引:2,他引:1       下载免费PDF全文
Using a previously developed filter adsorption technique, the inactivation of a human rotavirus, a coxsackievirus B5, and a bovine parvovirus was monitored during sludge treatment processes. During conventional anaerobic mesophilic digestion at 35 to 36 degrees C, only minor inactivation of all three viruses occurred. The k' values measured were 0.314 log10 unit/day for rotavirus, 0.475 log10 unit/day for coxsackievirus B5, and 0.944 log10 unit/day for parvovirus. However, anaerobic thermophilic digestion at 54 to 56 degrees C led to rapid inactivation of rotavirus (k' greater than 8.5 log10 units/h) and of coxsackievirus B5 (k' greater than 0.93 log10 unit/min). Similarly, aerobic thermophilic fermentation at 60 to 61 degrees C rapidly inactivated rotavirus (k' = 0.75 log10 unit/min) and coxsackievirus B5 (k' greater than 1.67 log10 units/min). Infectivity of parvovirus, however, was only reduced by 0.213 log10 unit/h during anaerobic thermophilic digestion and by 0.353 log10 unit/h during aerobic thermophilic fermentation. Furthermore, pasteurization at 70 degrees C for 30 min inactivated the parvovirus by 0.72 log10 unit/30 min. In all experiments the contribution of temperature to the total inactivation was determined separately and was found to be predominant at process temperatures above 54 degrees C. In conclusion, the most favorable treatment to render sludge hygienically safe from the virological point of view would be a thermal treatment (60 degrees C) to inactivate thermolabile viruses, followed by an anaerobic mesophilic digestion to eliminate thermostable viruses that are more sensitive to chemical and microbial inactivations.  相似文献   

16.
Using a previously developed filter adsorption technique, the inactivation of a human rotavirus, a coxsackievirus B5, and a bovine parvovirus was monitored during sludge treatment processes. During conventional anaerobic mesophilic digestion at 35 to 36 degrees C, only minor inactivation of all three viruses occurred. The k' values measured were 0.314 log10 unit/day for rotavirus, 0.475 log10 unit/day for coxsackievirus B5, and 0.944 log10 unit/day for parvovirus. However, anaerobic thermophilic digestion at 54 to 56 degrees C led to rapid inactivation of rotavirus (k' greater than 8.5 log10 units/h) and of coxsackievirus B5 (k' greater than 0.93 log10 unit/min). Similarly, aerobic thermophilic fermentation at 60 to 61 degrees C rapidly inactivated rotavirus (k' = 0.75 log10 unit/min) and coxsackievirus B5 (k' greater than 1.67 log10 units/min). Infectivity of parvovirus, however, was only reduced by 0.213 log10 unit/h during anaerobic thermophilic digestion and by 0.353 log10 unit/h during aerobic thermophilic fermentation. Furthermore, pasteurization at 70 degrees C for 30 min inactivated the parvovirus by 0.72 log10 unit/30 min. In all experiments the contribution of temperature to the total inactivation was determined separately and was found to be predominant at process temperatures above 54 degrees C. In conclusion, the most favorable treatment to render sludge hygienically safe from the virological point of view would be a thermal treatment (60 degrees C) to inactivate thermolabile viruses, followed by an anaerobic mesophilic digestion to eliminate thermostable viruses that are more sensitive to chemical and microbial inactivations.  相似文献   

17.
Eight closely related thermophilic strains were isolated from an aerobic and thermophilic treatment of swine wastes. The pleomorphic cells (short and long rods; cocci) showed peritrichous flagella, terminally swollen sporangium, and liberated spores exhibiting hairy appendages. The Gram reaction was negative for both young (4 h) and old (48 h) cultures. Several features, such as colonial morphology, growth between 35 degrees C and 65 degrees C, presence of catalase, presence of spores, and strictly aerobic metabolism (except for one strain), are similar to those found for the genus Bacillus. The inability of the strains to use sugars, except esculin, as source of carbon and energy and the whole cell fatty acid composition are similar to those found in Bacillus thermosphaericus DSM 10633. Sequence analysis of the 16S rRNA gene revealed 99.8%-99.9% identity for seven of the thermophilic strains with this species. A new genus, Ureibacillus, was recently proposed for type strain B. thermosphaericus DSM 10633 The last strain exhibits 97.8% and 97.3% identity with Ureibacillus terrenus DSM12654 and Bacillus sp. TP-84, respectively. Esterase activities were detected for all strains, and assays on p-nitrophenyl butyrate and p-nitrophenyl caprylate revealed that strains were more active on the shorter substrate.  相似文献   

18.
Enrichment cultures for heliobacteria at 50°C yielded several strains of a thermophilic heliobacterium species from Yellowstone hot spring microbial mats and volcanic soils from Iceland. The novel organisms grew optimally above 50°C, contained bacteriochlorophyll g, and lacked intracytoplasmic membranes. All isolates were strict anaerobes and grew best as photoheterotrophs, although chemotrophic dark growth on pyruvate was also possible. These thermophilic heliobacteria were diazotrophic and fixed N2 up to their growth temperature limit of 56°C. Phylogenetic studies showed the new isolates to be specific relatives of Heliobacterium gestii and, as has been found in H. gestii, they produce heat-resistant endospores. The unique assemblage of properties found in these thermophilic heliobacteria implicate them as a new species of this group, and we describe them herein as a new species of the genus Heliobacterium, Heliobacterium modesticaldum.  相似文献   

19.
Thermophilic fungi: their physiology and enzymes.   总被引:8,自引:0,他引:8  
Thermophilic fungi are a small assemblage in mycota that have a minimum temperature of growth at or above 20 degrees C and a maximum temperature of growth extending up to 60 to 62 degrees C. As the only representatives of eukaryotic organisms that can grow at temperatures above 45 degrees C, the thermophilic fungi are valuable experimental systems for investigations of mechanisms that allow growth at moderately high temperature yet limit their growth beyond 60 to 62 degrees C. Although widespread in terrestrial habitats, they have remained underexplored compared to thermophilic species of eubacteria and archaea. However, thermophilic fungi are potential sources of enzymes with scientific and commercial interests. This review, for the first time, compiles information on the physiology and enzymes of thermophilic fungi. Thermophilic fungi can be grown in minimal media with metabolic rates and growth yields comparable to those of mesophilic fungi. Studies of their growth kinetics, respiration, mixed-substrate utilization, nutrient uptake, and protein breakdown rate have provided some basic information not only on thermophilic fungi but also on filamentous fungi in general. Some species have the ability to grow at ambient temperatures if cultures are initiated with germinated spores or mycelial inoculum or if a nutritionally rich medium is used. Thermophilic fungi have a powerful ability to degrade polysaccharide constituents of biomass. The properties of their enzymes show differences not only among species but also among strains of the same species. Their extracellular enzymes display temperature optima for activity that are close to or above the optimum temperature for the growth of organism and, in general, are more heat stable than those of the mesophilic fungi. Some extracellular enzymes from thermophilic fungi are being produced commercially, and a few others have commercial prospects. Genes of thermophilic fungi encoding lipase, protease, xylanase, and cellulase have been cloned and overexpressed in heterologous fungi, and pure crystalline proteins have been obtained for elucidation of the mechanisms of their intrinsic thermostability and catalysis. By contrast, the thermal stability of the few intracellular enzymes that have been purified is comparable to or, in some cases, lower than that of enzymes from the mesophilic fungi. Although rigorous data are lacking, it appears that eukaryotic thermophily involves several mechanisms of stabilization of enzymes or optimization of their activity, with different mechanisms operating for different enzymes.  相似文献   

20.
A growing number of organisms have been discovered inhabiting extreme environments, including temperatures in excess of 100 degrees C. How cellular proteins from such organisms retain their native folds under extreme conditions is still not fully understood. Recent computational and structural studies have identified disulfide bonding as an important mechanism for stabilizing intracellular proteins in certain thermophilic microbes. Here, we present the first proteomic analysis of intracellular disulfide bonding in the hyperthermophilic archaeon Pyrobaculum aerophilum. Our study reveals that the utilization of disulfide bonds extends beyond individual proteins to include many protein-protein complexes. We report the 1.6 A crystal structure of one such complex, a citrate synthase homodimer. The structure contains two intramolecular disulfide bonds, one per subunit, which result in the cyclization of each protein chain in such a way that the two chains are topologically interlinked, rendering them inseparable. This unusual feature emphasizes the variety and sophistication of the molecular mechanisms that can be achieved by evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号