首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The vacuoles of three "resurrection" plants, Myrothamnus flabellifolia, Anastatica hierochuntica and Selaginella dregei were found to contain large quantities of osmiophilic material which may be part of the "resurrection" mechanism. Myrothamnus differed from the others by having mitochondria, and possibly plastids, which are separated from the remainder of the cytoplasm by sheaths or membranes during desiccation. Upon "resurrection" these barriers appear to be perforated and explain in part the faster rate of "resurrection" in Myrothamnus than in other "resurrection" plants. The chloroplasts of Myrothamnus are remarkable in that they possess "staircase" granum stacks of a type not previously described in any other plant tissue.  相似文献   

2.
Myrothamnus flabellifolia, a short woody shrub from southern Africa, can survive severe desiccation of its vegetative organs. We studied mechanisms protecting this plant from oxidative damage during desiccation for 2 weeks, 4 and 8 months, and also during subsequent rehydration. This plant retains high concentrations of chlorophyll during desiccation, and these chlorophyll molecules are probably a source for potentially harmful singlet oxygen production. Desiccation triggered substantial increases in zeaxanthin and redox shifts of the antioxidants glutathione and ascorbate towards their oxidised forms. Simultaneously, the concentrations of violaxanthin, beta-carotene, ascorbate, alpha-tocopherol, and glutathione reductase activity progressively decreased. Antheraxanthin, gamma-tocopherol, lutein, neoxanthin and glucose-6-phosphate dehydrogenase displayed less pronounced changes in response to desiccation. Even after 4 months of desiccation, Myrothamnus flabellifolia recovered rapidly upon rehydration. Re-watering induced formation of ascorbate and glutathione, simultaneous reduction of their oxidised forms, and rapid production of alpha-tocopherol and of various carotenoids. Only after 8 months of desiccation did the antioxidant system of M. flabellifolia break down; 3 weeks after the onset of rehydration, these plants abscised their leaves, but even then they were still able to recover and develop new ones. Ascorbate, beta-carotene and alpha-tocopherol were totally depleted after 8 months of desiccation and did not recover upon rehydration; glutathione was partly maintained, but only in the oxidised form. We present a model demonstrating which parts of antioxidant pathways break down as oxidative stress becomes detrimental and we discuss some potential implications of our results for the genetic modification of crop plants to improve their drought tolerance.  相似文献   

3.
To understand mechanisms of osmoprotection, the composition of sugars and related compounds were analyzed in extracts of fully hydrated and desiccated leaves of the desiccation-tolerant resurrection plant Myrothamnus flabellifolia . During the dehydration process the concentrations of fructose and glucose decrease, whereas sucrose, arbutin and glucopyranosyl-β-glycerol increase. The substances were identified by GC-MS and NMR-analyses. This is the first report of large amounts of glucopyranosyl-β-glycerol in higher plants which may act as an osmoprotectant. Significant levels of the nonreducing sugar trehalose were present in all samples tested.  相似文献   

4.
5.
Drought is one of the most significant threats to world agriculture and hampers the supply of food and energy. The mechanisms of drought responses can be studied using resurrection plants that are able to survive extreme dehydration. As plant hormones function in an intensive cross-talk, playing important regulatory roles in the perception and response to unfavorable environments, the dynamics of phytohormones was followed in the resurrection plant Haberlea rhodopensis Friv. during desiccation and subsequent recovery. Analysis of both leaves and roots revealed that jasmonic acid, along with and even earlier than abscisic acid, serves as a signal triggering the response of the resurrection plants to desiccation. The steady high levels of salicylic acid could be considered an integral part of the specific set of parameters that prime H. rhodopensis desiccation tolerance. The dynamic changes of cytokinins and auxins suggest that these hormones actively participate in the dehydration response and development of desiccation tolerance in the resurrection plants. Our data contribute to the elucidation of a global complex picture of the resurrection plant’s ability to withstand desiccation, which might be successfully utilized in crop improvement.  相似文献   

6.
更苏被子植物的光合作用   总被引:4,自引:0,他引:4  
更苏植物是一类在极度干燥条件下组织会迅速脱水后遇水又能很快复苏的植物。极少数被子植物有这种能力,在双子叶植物中尤其罕见,而且脱水时叶绿素含量和叶绿体完整性变化较少,称为叶绿素保持型(HDT)。该类植物的复苏机理简单,研究方便,因而得到更广泛注意。更苏被子植物光合作用的最新研究进展说明,光化学活性是研究更苏植物脱水复苏生理状态的灵敏指标。和普通植物一样,在光下,更苏被子植物的光化学活性随着叶片失水而受到抑制,但奇怪的是在失去95%以上的水分后复水仍可迅速复活。在脱水过程中叶黄素循环和抗氧化系统的上调以及光合膜完整性和稳定性的保持,可能对更苏被子植物的耐脱水性起非常重要的作用。磷酸盐对复苏的影响也表现在复水阶段而且与上述两种保护机理关系不大,因此应该加强更苏被子植物复水阶段的研究。  相似文献   

7.
更苏植物是一类在极度干燥条件下组织会迅速脱水后遇水又能很快复苏的植物.极少数被子植物有这种能力,在双子叶植物中尤其罕见,而且脱水时叶绿素含量和叶绿体完整性变化较少,称为叶绿素保持型(HDT).该类植物的复苏机理简单,研究方便,因而得到更广泛注意.更苏被子植物光合作用的最新研究进展说明,光化学活性是研究更苏植物脱水复苏生理状态的灵敏指标.和普通植物一样,在光下,更苏被子植物的光化学活性随着叶片失水而受到抑制,但奇怪的是在失去95%以上的水分后复水仍可迅速复活.在脱水过程中叶黄素循环和抗氧化系统的上调以及光合膜完整性和稳定性的保持,可能对更苏被子植物的耐脱水性起非常重要的作用.磷酸盐对复苏的影响也表现在复水阶段而且与上述两种保护机理关系不大,因此应该加强更苏被子植物复水阶段的研究.  相似文献   

8.
该文探讨了干燥脱水后的复苏植物密罗木(Myrothamnus flabellifolia)的复水速度和复水后不同时间下的木质部压力与植物对光-暗反应的关系。研究结果表明, 密罗木整株植物和离体枝条复水时水分在茎内的上升速度都很快, 10小时左右水分即可接近枝条的顶端。在植物复水初期, 木质部压力反应随着复水时间的延长不断增加, 3周后达到正常值。这种木质部压力的调节能力可能与气孔功能的恢复程度有关。同时, 密罗木在整个复水恢复过程中受到光照时木质部压力下降的弛豫时间都明显大于植物在光源关闭时木质部压力上升的弛豫时间。表明密罗木对蒸腾速率上升过程的调节速度明显低于对蒸腾速率下降过程的调节速度。  相似文献   

9.
Nitrogen contents were determined in 20 species of “resurrection plants”,i.e. plants with leaves which are able to revive from an air-dry state (viz. Boea hygroscopica, Borya nitida, Cheilanthes sieberi, Coleochloa pallidior, C. setifera, Craterostigma plantagineum, Myrothamnus flabellifolia, Oropetium capense, Pellaea calomelanos, P. falcata, P, viridis, Polypodium polypodioides, Ramondia pyrenaica, Selaginella lepidophylla, Sporobolus stapfianus, Talbotia elegans,Tripogon loliiformis, Xerophyta retinervis, X. villosa, X. viscosa), and in three desiccation sensitive species (Eragrostis tenuifolia, Selaginella kraussiana andSporobolus pyramidalis). In a preponderance of resurrection plants insoluble nitrogen content fell during dehydration of intact plants and soluble non-protein N rose. Both changes were particularly marked in species which lose chlorophyll and thylakoid structure during drying. These trends were usually only partially reversed after 24 h rehydration. Recovery of14C-leucine incorporation in rehydrating leaves was slow. Leaves of desiccation sensitive vascular plants tended on the average to lose soluble protein rather than insoluble N during drying, and tended to have higher soluble non-protein N contents than tolerant plants. However, similarity in the changes in N-contents inXerophyta villosa leaves killed by airdrying compared to leaves surviving air-drying, opposes the view that death was due to excessive loss of protein.  相似文献   

10.
Desiccation tolerance is a complex trait that is broadly but infrequently present throughout the evolutionary tree of life. Desiccation tolerance has played a significant role in land plant evolution, in both the vegetative and reproductive life history stages. In the land plants, the late embryogenesis abundant (LEA) gene families are involved in both abiotic stress tolerance and the development of reproductive propagules. They are also a major component of vegetative desiccation tolerance. Phylogenies were estimated for four families of LEA genes from Arabidopsis, Physcomitrella, and the desiccation tolerant plants Tortula ruralis, Craterostigma plantagineum, and Xerophyta humilis. Microarray expression data from Arabidopsis and a subset of the Physcomitrella LEAs were used to estimate ancestral expression patterns in the LEA families and to evaluate alternative hypotheses for the origins of vegetative desiccation tolerance in the flowering plants. The results contradict the idea that vegetative desiccation tolerance in the resurrection angiosperms Craterostigma and Xerophyta arose through the co-option of genes exclusively related to stress tolerance, and support the propagule-derived origin of vegetative desiccation tolerance in the resurrection plants.  相似文献   

11.
Because of their unique tolerance to desiccation, the so‐called resurrection plants can be considered as excellent models for extensive research on plant reactions to environmental stresses. The vegetative tissues of these species are able to withstand long dry periods and to recover very rapidly upon re‐watering. This study follows the dynamics of key components involved in leaf tissue antioxidant systems under desiccation in the resurrection plant Haberlea rhodopensis and the related non‐resurrection species Chirita eberhardtii. In H. rhodopensis these parameters were also followed during recovery after full drying. A well‐defined test system was developed to characterise the different responses of the two species under drought stress. Results show that levels of H2O2 decreased significantly both in H. rhodopensis and C. eberhardtii, but that accumulation of malondialdehyde was much more pronounced in the desiccation‐tolerant H. rhodopensis than in the non‐resurrection C. eberhardtii. A putative protective role could be attributed to accumulation of total phenols in H. rhodopensis during the late stages of drying. The total glutathione concentration and GSSG/GSH ratio increased upon complete dehydration of H. rhodopensis. Our data on soluble sugars suggest that sugar ratios might be important for plant desiccation tolerance. An array of different adaptations could thus be responsible for the resurrection phenotype of H. rhodopensis.  相似文献   

12.
A variety of Southern African resurrection plants were surveyed using high-throughput cell wall profiling tools. Species evaluated were the dicotyledons, Myrothamnus flabellifolia and Craterostigma plantagineum; the monocotyledons, Xerophyta viscosa, Xerophyta schlecterii, Xerophyta humilis and the resurrection grass Eragrostis nindensis, as well as a pteridophyte, the resurrection fern, Mohria caffrorum. Comparisons were made between hydrated and desiccated leaf and frond material, with respect to cell wall composition and polymer abundance, using monosaccharide composition analysis, FT-IR spectroscopy and comprehensive microarray polymer profiling in combination with multivariate data analysis. The data obtained suggest that three main functional strategies appear to have evolved to prepare plant cell walls for desiccation. Arabinan-rich pectin and arabinogalactan proteins are found in the resurrection fern M. caffrorum and the basal angiosperm M. flabellifolia where they appear to act as ‘pectic plasticizers’. Dicotyledons with pectin-rich walls, such as C. plantagineum, seem to use inducible mechanisms which consist of up-regulating wall proteins and osmoprotectants. The hemicellulose-rich walls of the grass-like Xerophyta spp. and the resurrection grass E. nindensis were found to contain highly arabinosylated xylans and arabinogalactan proteins. These data support a general mechanism of ‘plasticising’ the cell walls of resurrection plants to desiccation and implicate arabinose-rich polymers (pectin-arabinans, arabinogalactan proteins and arabinoxylans) as the major contributors in ensuring flexibility is maintained and rehydration is facilitated in these plants.  相似文献   

13.
Myrothamnus flabellifoliusWelw. is a desiccation-tolerant (‘resurrection’)plant with a woody stem. Xylem vessels are narrow (14 µmmean diameter) and perforation plates are reticulate. This leadsto specific and leaf specific hydraulic conductivities thatare amongst the lowest recorded for angiosperms (ks0.87 kg m-1MPa-1s-1;kl3.28x10-5kg m-1MPa-1s-1, stem diameter 3 mm). Hydraulic conductivitiesdecrease with increasing pressure gradient. Transpiration ratesin well watered plants were moderate to low, generating xylemwater potentials of -1 to -2 MPa. Acoustic emissions indicatedextensive cavitation events that were initiated at xylem waterpotentials of -2 to -3 MPa. The desiccation-tolerant natureof the tissue permits this species to survive this interruptionof the water supply. On rewatering the roots pressures thatwere developed were low (2.4 kPa). However capillary forceswere demonstrated to be adequate to account for the refillingof xylem vessels and re-establishment of hydraulic continuityeven when water was under a tension of -8 kPa. During dehydrationand rehydration cycles stems showed considerable shrinking andswelling. Unusual knob-like structures of unknown chemical compositionwere observed on the outer surface of xylem vessels. These maybe related to the ability of the stem to withstand the mechanicalstresses associated with this shrinkage and swelling.Copyright1998 Annals of Botany Company cavitation, desiccation, hydraulic conductivity, refilling, resurrection plant, root pressure, xylem anatomy,Myrothamnus flabellifolius  相似文献   

14.
This review will focus on the acquisition of desiccation tolerancein the resurrection plant Craterostigma plantagineum. Molecularaspects of desiccation tolerance in this plant will be comparedwith the response of non-tolerant plants to dehydration. Uniquefeatures of C. plantagineum are described like the CDT-1 (Craterostigmadesiccation tolerance gene-1) gene and the carbohydrate metabolism.Abundant proteins which are associated with the desiccationtolerance phenomenon are the late embryogenesis abundant (=LEA)proteins. These proteins are very hydrophilic and occur in severalother species which have acquired desiccation tolerance.  相似文献   

15.
The resurrection plant, Haberlea rhodopensis can survive nearly total desiccation only in its usual low irradiation environment. However, populations with similar capacity to recover were discovered recently in several sunny habitats. To reveal what kind of morphological, structural and thylakoid-level alterations play a role in the acclimation of this low-light adapted species to high-light environment and how do they contribute to the desiccation tolerance mechanisms, the structure of the photosynthetic apparatus, the most sensitive component of the chlorophyll-retaining resurrection plants, was analyzed by transmission electron microscopy, steady state low-temperature fluorescence and two-dimensional Blue-Native/SDS PAGE under desiccation and rehydration.  相似文献   

16.
Desiccation tolerance is among the most important parameters for crop improvement under changing environments. Resurrection plants are useful models for both theoretical and practical studies. We performed metabolite profiling via gas chromatography coupled with mass spectrometry (GC‐MS) and high‐performance liquid chromatography (HPLC) and analyzed the antioxidant capacity of the endemic resurrection plant Haberlea rhodopensis at desiccation and recovery. More than 100 compounds were evaluated. Stress response included changes in both primary and secondary metabolic pathways. The high amounts of the specific glycoside myconoside and some phenolic acids – e.g. syringic and dihydrocaffeic acid under normal conditions tend to show their importance for the priming of H. rhodopensis to withstand severe desiccation and oxidative stress. The accumulation of sucrose (resulting from starch breakdown), total phenols, β‐aminoisobutyric acid, β‐sitosterol and α‐tocopherol increased up to several times at later stages of desiccation. Extracts of H. rhodopensis showed high antioxidant capacity at stress and normal conditions. Myconoside was with the highest antioxidant properties among tested phenolic compounds. Probably, the evolution of resurrection plants under various local environments has resulted in unique desiccation tolerance with specific metabolic background. In our case, it includes the accumulation of a relatively rare compound (myconoside) that contributes alone and together with other common metabolites. Further systems biology studies on the involvement of carbohydrates, phenolic acids and glycosides in the desiccation tolerance and antioxidant capacity of H. rhodopensis will definitely help in achieving the final goal – improving crop drought tolerance.  相似文献   

17.
Resurrection plants are a perennial fascination to botanists. The transformation, within a few hours (or even minutes) of supplying them with water, from a plant that has all the appearances of being dead – dry, brown, crisp and shrivelled – to a plant that is obviously living and functioning – turgid, green, pliable and growing – suggests the miraculous. Studies of the complex processes of restoration and repair have been made on a number of resurrection plants, and at many levels of organization from molecules through membranes, organelles and cells to the whole plant (Gaff, 1989). The woody South African shrub Myrothamnus is the most extreme example of such plants, in that it has the highest level of organization to be repaired. It is transformed from lifeless-looking sticks with a water content below 5% to a flourishing bush in a day after its roots receive water. Two papers in this issue from Ulrich Zimmermann's group in Würzburg concentrate on the restoration of the functioning hydraulic systems of the stems (see pp. 221–238, and 239–255).  相似文献   

18.
19.
A few genera of angiosperms are known as 'resurrection plants' since their leaves withstand complete desiccation. In many organisms, including some resurrection plants, desiccation tolerance is associated with the accumulation of special carbohydrates. We examined whether this is also true for the two European angiosperm genera of resurrection plants, Ramonda and Haberlea in the Gesneriaceae. Using gas chromatography, non-structural carbohydrates were determined as a percentage of the dry weight in leaves of Ramonda nathaliae subjected to various desiccation regimes. Sucrose was the predominant soluble carbohydrate in all samples, and its level steadily increased from 2 to 10% during desiccation. Starch amounted to ca 2% in control leaves and disappeared completely within 8 days of desiccation. Considerable amounts (1–2.5%) of raffinose and smaller amounts of its precursor galactinol (1-a-galactosyl- myo -inositol) were present in control leaves; these carbohydrates showed only minor changes upon desiccation. Similar results were obtained when excised leaves of Ramonda nathaliae, Ramonda myconi and Haberlea rhodopensis were subjected to desiccation. These data indicate that sucrose accumulation is connected to desiccation tolerance in Gesneriaceae; the presence of raffinose may be a pre-adaptation since this sugar prevents crystallization of sucrose during drying.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号