首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The SEC61, SEC62 and SEC63 yeast gene products are membrane components of the apparatus that catalyses protein translocation into the endoplasmic reticulum (ER). In the hope of uncovering additional components of the translocation apparatus, we sought yeast genes whose overexpression would restore partial thermoresistance in a sec61 translocation-deficient mutant. The first extragenic Sec sixty-one suppressor, SSS1, is an essential single copy gene whose overexpression restores translocation in the sec61 mutant. Another extragenic suppressor was identified as TDH3, which encodes the major isozyme of the most abundant yeast protein, glyceraldehyde-3-phosphate dehydrogenase. TDH3 overexpression could exert an indirect effect by competitively inhibiting protein synthesis, thereby allowing the impaired translocation apparatus to cope with a reduced flow of newly synthesized secretory proteins. Depletion of the Sss1 protein rapidly results in accumulation of multiple secretory or membrane proteins devoid of post-translational modifications; the normally secreted alpha-factor accumulates on the cytosolic side of ER membranes. Thus, the SSS1 gene is required for continued translocation of secretory preproteins beyond their early association to ER membranes. Consistent with its essential role in protein translocation, the Sss1 protein localizes to the ER and homologues were detected in higher eukaryotes.  相似文献   

2.
The pre-S2-coding region in the hepatitis B virus surface antigen M (P31; pre-S2 + S) protein gene was modified to identify a polymerized-albumin receptor (PAR) domain by deleting restriction fragments or performing site-directed mutagenesis. The modified M protein genes (M-P31x; x = d, e, f, h and i) were cloned into the yeast generalized-expression vector pGLD 906-1 and expressed in Saccharomyces cerevisiae under the control of yeast glyceraldehyde-3-phosphate dehydrogenase gene promoter. The PAR activities of these gene products suggested that the PAR domain is located in the hydrophilic and highly conserved domain in the pre-S2 region (around Leu12 approximately Tyr21). Antibodies specific for a pre-S2 peptide (Phe8 approximately Pro34, subtype adr), which covers the PAR domain, were purified from sera of rabbits immunized with yeast-derived M protein particles having a natural PAR domain. Immune electron microscopy showed that the purified antibodies could aggregate HBV particles. Therefore, it was speculated that the PAR domain overlapped with the dominant virus-neutralizing and virus-protecting epitopes.  相似文献   

3.
The DNA sequence of the ground squirrel hepatitis virus (GSHV) genome predicts the existence of several proteins in addition to the major surface (S) and core antigens. These include the pre-S1 and pre-S2 proteins, initiated at sites within the open reading frame preceding and continuous with the coding region for the S gene product, and the X protein, the putative product of an independent reading frame. Using an antibody directed against a peptide predicted by codons 130 to 143 of the pre-S1 reading frame, we identified a 43-kilodalton product of the pre-S1 coding region in preparations of GSHV surface antigen purified from the sera of infected animals. In addition, by immunoprecipitation of S- and pre-S-specific in vitro translation products with ground squirrel sera obtained after GSHV infection, we determined that antibodies arise to both S and pre-S determinants. The antibody response to pre-S includes, in some cases, reactivity to pre-S1-specific domains and is not always associated with an anti-S response. Similarly, by production of the viral X gene product in vitro followed by immunoprecipitation with ground squirrel sera, we showed that antibodies to this viral gene product also arise during infection, indicating that X antigenic determinants are synthesized during viral infection and are recognized by the host immune system.  相似文献   

4.
Proteins destined for the secretory pathway must first fold and assemble in the lumen of endoplasmic reticulum (ER). The pathway maintains a quality control mechanism to assure that aberrantly processed proteins are not delivered to their sites of function. As part of this mechanism, misfolded proteins are returned to the cytosol via the ER protein translocation pore where they are ubiquitinated and degraded by the 26S proteasome. Previously, little was known regarding the recognition and targeting of proteins before degradation. By tracking the fate of several mutant proteins subject to quality control, we demonstrate the existence of two distinct sorting mechanisms. In the ER, substrates are either sorted for retention in the ER or are transported to the Golgi apparatus via COPII-coated vesicles. Proteins transported to the Golgi are retrieved to the ER via the retrograde transport system. Ultimately, both retained and retrieved proteins converge at a common machinery at the ER for degradation. Furthermore, we report the identification of a gene playing a novel role specific to the retrieval pathway. The gene, BST1, is required for the transport of misfolded proteins to the Golgi, although dispensable for the transport of many normal cargo proteins.  相似文献   

5.
《The Journal of cell biology》1989,109(6):2665-2675
When nuclear localization sequences (termed NLS) are placed at the N terminus of cytochrome c1, a mitochondrial inner membrane protein, the resulting hybrid proteins do not assemble into mitochondria when synthesized in the yeast Saccharomyces cerevisiae. Cells lacking mitochondrial cytochrome c1, but expressing the hybrid NLS-cytochrome c1 proteins, are unable to grow on glycerol since the hybrid proteins are associated primarily with the nucleus. A similar hybrid protein with a mutant NLS is transported to and assembled into the mitochondria. To identify proteins that might be involved in recognition of nuclear localization signals, we isolated conditional- lethal mutants (npl, for nuclear protein localization) that missorted NLS-cytochrome c1 to the mitochondria, allowing growth on glycerol. The gene corresponding to one complementation group (NPL1) encodes a protein with homology to DnaJ, an Escherichia coli heat shock protein. npl1-1 is allelic to sec63, a gene that affects transit of nascent secretory proteins across the endoplasmic reticulum. Rothblatt, J. A., R. J. Deshaies, S. L. Sanders, G. Daum, and R. Schekman. 1989. J. Cell Biol. 109:2641-2652. The npl1 mutants reported here also weakly affect translocation of preprocarboxypeptidaseY across the ER membrane. A normally nuclear hybrid protein containing a NLS fused to invertase and a nucleolar protein are not localized to the nucleus in npl1/sec63 cells at the nonpermissive temperature. Thus, NPL1/SEC63 may act at a very early common step in localization of proteins to the nucleus and the ER. Alternatively, by affecting ER and nuclear envelope assembly, npl1 may indirectly alter assembly of proteins into the nucleus.  相似文献   

6.
The Florey Lecture, 1992. The secretion of proteins by cells.   总被引:2,自引:0,他引:2  
In eukaryotic cells, protein secretion provides a complex organizational problem. Secretory proteins are first transported, in an unfolded state, across the membrane of the endoplasmic reticulum (ER), and are then carried in small vesicles to the Golgi apparatus and finally to the cell membrane. The ER contains soluble proteins which catalyse the folding of newly synthesized polypeptides. These proteins are sorted from secretory proteins in the Golgi complex: they carry a sorting signal (the tetrapeptide KDEL or a related sequence) that allows them to be selectively retrieved and returned to the ER. This retrieval process also appears to be used by some bacterial toxins to aid their invasion of the cell: these toxins contain KDEL-like sequences and may, in effect, follow the secretory pathway in reverse. The membrane-bound receptor responsible for sorting luminal ER proteins has been identified in yeast by genetic means, and related receptors are found in mammalian cells. Unexpectedly, this receptor has a second role: in yeast it is required to maintain the normal size and function of the Golgi apparatus. By helping to maintain the composition of both ER and Golgi compartments, the KDEL receptor has an important role in the organization of the secretory pathway.  相似文献   

7.
Glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins is the most complex and metabolically expensive of the lipid posttranslational modifications described to date. The GPI anchor is synthesized via a membrane-bound multistep pathway in the endoplasmic reticulum (ER) requiring >20 gene products. The pathway is initiated on the cytoplasmic side of the ER and completed in the ER lumen, necessitating flipping of a glycolipid intermediate across the membrane. The completed GPI anchor is attached to proteins that have been translocated across the ER membrane and that display a GPI signal anchor sequence at the C terminus. GPI proteins transit the secretory pathway to the cell surface; in yeast, many become covalently attached to the cell wall. Genes encoding proteins involved in all but one of the predicted steps in the assembly of the GPI precursor glycolipid and its transfer to protein in mammals and yeast have now been identified. Most of these genes encode polytopic membrane proteins, some of which are organized in complexes. The steps in GPI assembly, and the enzymes that carry them out, are highly conserved. GPI biosynthesis is essential for viability in yeast and for embryonic development in mammals. In this review, we describe the biosynthesis of mammalian and yeast GPIs, their transfer to protein, and their subsequent processing.  相似文献   

8.
M Pilon  R Schekman    K R?misch 《The EMBO journal》1997,16(15):4540-4548
Degradation of misfolded secretory proteins has long been assumed to occur in the lumen of the endoplasmic reticulum (ER). Recent evidence, however, suggests that such proteins are instead degraded by proteasomes in the cytosol, although it remains unclear how the proteins are transported out of the ER. Here we provide the first genetic evidence that Sec61p, the pore-forming subunit of the protein translocation channel in the ER membrane, is directly involved in the export of misfolded secretory proteins. We describe two novel mutants in yeast Sec61p that are cold-sensitive for import into the ER in both intact yeast cells and a cell-free system. Microsomes derived from these mutants are defective in exporting misfolded secretory proteins. These proteins become trapped in the ER and are associated with Sec61p. We conclude that misfolded secretory proteins are exported for degradation from the ER to the cytosol via channels formed by Sec61p.  相似文献   

9.
The major phosphate-repressible acid phosphatase (APase) of Saccharomyces cerevisiae, a cell wall glycoprotein, has been extensively used as a reporter protein to analyse successive steps in the yeast secretory pathway. In contrast to other yeast secretory proteins, APase can still be translocated into the endoplasmic reticulum (ER) even when it is made without its signal peptide. This property illustrates the permissiveness of targeting to the ER in yeast. Studies on APase-containing hybrid proteins have provided some of the evidence that specific soluble factors must interact with secretory proteins prior to their translocation across the ER membrane. A systematic analysis of mutations affecting the sequence of the APase signal peptide cleavage site demonstrated that cleavage occurs only when the last amino acid of the signal sequence is small and neutral. This was one of the first studies to verify the requirements for signal peptidase cleavage that had previously only been predicted from statistical analysis. Studies performed either with inhibitors of glycosylation or with mutant APases demonstrated the critical role of core glycosylation for APase folding, which is essential for efficient transport beyond the ER. Following the fate of particular modified APases along the secretory pathway provided insights into some general properties of the secretory apparatus and illustrated the specific requirements for a given protein during its intracellular traffic.  相似文献   

10.
A role for N-glycanase in the cytosolic turnover of glycoproteins   总被引:6,自引:0,他引:6  
Hirsch C  Blom D  Ploegh HL 《The EMBO journal》2003,22(5):1036-1046
Successful maturation determines the intracellular fate of secretory and membrane proteins in the endoplasmic reticulum (ER). Failure of proteins to fold or assemble properly can lead to their retention in the ER and redirects them to the cytosol for degradation by the proteasome. Proteasome inhibitors can yield deglycosylated cytoplasmic intermediates that are the result of an N-glycanase activity, believed to act prior to destruction of these substrates by the proteasome. A gene encoding a yeast peptide:N-glycanase, PNG1, has been cloned, but this N-glycanase and its mammalian homolog were reported to be incapable of deglycosylating full-length glycoproteins. We show that both the yeast PNG1 enzyme and its mammalian homolog display N-glycanase activity towards intact glycoproteins. As substrates, cytosolic PNGase activity prefers proteins containing high-mannose over those bearing complex type oligosaccharides. Importantly, PNG1 discriminates between non-native and folded glycoproteins, consistent with a role for N-glycanase in cytoplasmic turnover of glycoproteins.  相似文献   

11.
BiP/GRP78 is an essential member of the HSP70 family that resides in the lumen of the endoplasmic reticulum. In yeast, BiP/GRP78 is encoded by the KAR2 gene. A temperature sensitive mutation was isolated in KAR2 and found to cause a rapid block in protein secretion. Secretory precursors of a number of proteins (invertase, carboxypeptidase Y, alpha-factor, and BiP) accumulated that were characteristic of a block in translocation into the lumen of the ER. Protease protection experiments confirmed that the precursors accumulated on the cytoplasmic side of the ER membrane. Moreover, depletion of wild-type KAR2 protein also resulted in a block in translocation of secretory proteins. These results implicate BiP/GRP78 function in the continued translocation of proteins into the lumen of the ER.  相似文献   

12.
Multispecific antigen-binding fragments (Fab) from rabbit antisera against rat very low density lipoproteins (VLDL) and Fab against rat low density lipoproteins that were monospecific for the B apoprotein were conjugated to horseradish peroxidase. Conjugates were incubated with 6-mum frozen sections from fresh and perfusion-fixed livers and with tissue chopper sections (40 mum thick) from perfusion-fixed livers. In the light microscope, specific reaction product was present in all hepatocytes of experimental sections as intense brown to black spots whose locations corresponded to the distribution of the Golgi apparatus: along the bile canaliculi, near the nuclei, and between the nuclei and bile canaliculi. Perfusion fixation with formaldehyde produced satisfactory ultrastructural preservation with retention of lipoprotein antigenic determinants. In the electron microscope, patches of cisternae and ribosomes of the rough endoplasmic reticulum (ER) and particularly its smooth-surfaced ends, vesicles located between the rough ER and the Golgi apparatus, the Golgi apparatus and its secretory vesicles and VLDL particles in the space of Disse all bore reaction product. The tubules and vesicles of typical hepatocyte smooth ER did not contain reaction product, nor did the osmiophilic particles contained therin. The localization obtained in this study together with other evidence suggests a sequence for the biosynthesis of VLDL that differs in some respects from that proposed by others: (a) the triglyceride-rich particle originates in smooth ER where triglycerides are synthesized; (b) at the junction of the smooth and rough ER the particle receives apoproteins synthesized in the rough ER; (c) specialized tubules transport the particle, now a nascent lipoprotein, to the Golgi apparatus where concentration occurs in secretory vesicles; (d) secretory vesicles move to the sinusoidal surface where the particles are secreted into the space of Disse by fusion of the vesicular membrane with the plasma membrane of the hepatocyte.  相似文献   

13.
Signals and mechanisms for protein retention in the endoplasmic reticulum   总被引:1,自引:0,他引:1  
After their co-translational insertion into the ER lumen or the ER membrane, most proteins are transported via the Golgi apparatus downstream on the secretory pathway while a few protein species are retained in the ER. Polypeptide retention in the ER is either signal-independent or depends on specific retention signals encoded by the primary sequence of the polypeptide. A first category, i.e. the newly synthesized polypeptides that are unable to reach their final conformation, are retained in the ER where this quality control generally results in their degradation. A second category, namely the ER-resident proteins escape the bulk flow of secretion due to the presence of a specific N- or C-terminal signal that interacts with integral membrane or soluble receptors. ER retention of soluble proteins mediated by either KDEL, HDEL or related sequences and membrane receptors has been relatively well characterized in plants. Recent efforts has been relatively well characterized in plants. Recent efforts have aimed at a characterization of the retention signal(s) of type I membrane proteins in the plant ER.  相似文献   

14.
P Ostapchuk  P Hearing    D Ganem 《The EMBO journal》1994,13(5):1048-1057
The envelope of hepatitis B virus contains three related glycoproteins (termed L, M and S) produced by alternative translation initiation in a single coding region. The smallest of these, the S protein, is a 24 kDa glycoprotein with multiple transmembrane domains. The M and L proteins contain the entire S domain at their C-termini, but harbor at their N-terminal additional (preS) domains of 55 or 174 amino acids, respectively. Most of these preS residues are displayed on the surface of mature virions and hence would be expected to be translocated into the endoplasmic reticulum (ER) lumen during biosynthesis. Using a coupled, in vitro translation/translocation system we now demonstrate that, contrary to expectation, virtually all preS residues of the L protein are cytoplasmically disposed in the initial translocation product. This includes some preS sequences which in the M protein are indeed translocated into the ER lumen. Since preS sequences are found on the external surface of the virion envelope, our results indicate that during or following budding a dramatic reorganization of either the envelope proteins or the lipid bilayer (or both components) must occur to allow surface display of these sequences. These findings imply that some membrane budding events can have remarkable and previously unsuspected topological consequences.  相似文献   

15.
Most glycosphingolipids are synthesized by the sequential addition of monosaccharides to glucosylceramide (GlcCer) in the lumen of the Golgi apparatus. Because GlcCer is synthesized on the cytoplasmic face of Golgi membranes, it must be flipped to the non-cytoplasmic face by a lipid flippase in order to nucleate glycosphingolipid synthesis. Halter et al. (Halter, D., Neumann, S., van Dijk, S. M., Wolthoorn, J., de Mazière, A. M., Vieira, O. V., Mattjus, P., Klumperman, J., van Meer, G., and Sprong, H. (2007) Pre- and post-Golgi translocation of glucosylceramide in glycosphingolipid synthesis. J. Cell Biol. 179, 101–115) proposed that this essential flipping step is accomplished via a complex trafficking itinerary; GlcCer is moved from the cytoplasmic face of the Golgi to the endoplasmic reticulum (ER) by FAPP2, a cytoplasmic lipid transfer protein, flipped across the ER membrane, then delivered to the lumen of the Golgi complex by vesicular transport. We now report biochemical reconstitution studies to analyze GlcCer flipping at the ER. Using proteoliposomes reconstituted from Triton X-100-solubilized rat liver ER membrane proteins, we demonstrate rapid (t½ < 20 s), ATP-independent flip-flop of N-(6-((7-nitro-2–1,3-benzoxadiazol-4-yl)amino)hexanoyl)-d-glucosyl-β1–1′-sphingosine, a fluorescent GlcCer analog. Further studies involving protein modification, biochemical fractionation, and analyses of flip-flop in proteoliposomes reconstituted with ER membrane proteins from yeast indicate that GlcCer translocation is facilitated by well characterized ER phospholipid flippases that remain to be identified at the molecular level. By reason of their abundance and membrane bending activity, we considered that the ER reticulons and the related Yop1 protein could function as phospholipid-GlcCer flippases. Direct tests showed that these proteins have no flippase activity.  相似文献   

16.
The SEC20 gene product (Sec20p) is required for endoplasmic reticulum (ER) to Golgi transport in the yeast secretory pathway. We have cloned the SEC20 gene by complementation of the temperature sensitive phenotype of a sec20-1 strain. The DNA sequence predicts a 44 kDa protein with a single membrane-spanning region; Sec20p has an apparent molecular weight of 50 kDa and behaves as an integral membrane protein with carbohydrate modifications that appear to be O-linked. A striking feature of this protein is its C-terminal sequence, which consists of the tetrapeptide HDEL. This signal is known to be required for the retrieval of soluble ER proteins from early Golgi compartments, but has not previously been observed on a membrane protein. The HDEL sequence of Sec20p is not essential for viability but helps to maintain intracellular levels of the protein. Depletion of Sec20p from cells results in the accumulation of an extensive network of ER and clusters of small vesicles. We suggest a possible role for the SEC20 product in the targeting of transport vesicles to the Golgi apparatus.  相似文献   

17.
The substrates for glycan synthesis in the lumen of the Golgi are nucleotide sugars that must be transported from the cytosol by specific membrane-bound transporters. The principal nucleotide sugar used for glycosylation in the Golgi of the yeast Saccharomyces cerevisiae is GDP-mannose, whose lumenal transport is mediated by the VRG4 gene product. As the sole provider of lumenal mannose, the Vrg4 protein functions as a key regulator of glycosylation in the yeast Golgi. We have undertaken a functional analysis of Vrg4p as a model for understanding nucleotide sugar transport in the Golgi. Here, we analyzed epitope-tagged alleles of VRG4. Gel filtration chromatography and co-immunoprecipitation experiments demonstrate that the Vrg4 protein forms homodimers with specificity and high affinity. Deletion analyses identified two regions essential for Vrg4p function. Mutant Vrg4 proteins lacking the predicted C-terminal membrane-spanning domain fail to assemble into oligomers (Abe, M., Hashimoto, H., and Yoda, K. (1999) FEBS Lett. 458, 309-312) and are unstable, while proteins lacking the N-terminal cytosolic tail are stable and multimerize efficiently, but are mislocalized to the endoplasmic reticulum (ER). Fusion of the N terminus of Vrg4p to related ER membrane proteins promote their transport to the Golgi, suggesting that sequences in the N terminus supply information for ER export. The dominant negative phenotype resulting from overexpression of truncated Vrg4-DeltaN proteins provides strong genetic evidence for homodimer formation in vivo. These studies are consistent with a model in which Vrg4p oligomerizes in the ER and is subsequently transported to the Golgi via a mechanism that involves positive sorting rather than passive default.  相似文献   

18.
《The Journal of cell biology》1995,131(6):1377-1386
Protein translocation into the yeast endoplasmic reticulum requires the transport of ATP into the lumen of this organelle. Microsomal ATP transport activity was reconstituted into proteoliposomes to characterize and identify the transporter protein. A polypeptide was purified whose partial amino acid sequence demonstrated its identity to the product of the SAC1 gene. Accordingly, microsomal membranes isolated from strains harboring a deletion in the SAC1 gene (sac1 delta) were found to be deficient in ATP-transporting activity as well as severely compromised in their ability to translocate nascent prepro- alpha-factor and preprocarboxypeptidase Y. Proteins isolated from the microsomal membranes of a sac1 delta strain were incapable of stimulating ATP transport when reconstituted into the in vitro assay system. When immunopurified to homogeneity and incorporated into artificial lipid vesicles, Sac1p was shown to reconstitute ATP transport activity. Consistent with the requirement for ATP in the lumen of the ER to achieve the correct folding of secretory proteins, the sac1 delta strain was shown to have a severe defect in transport of procarboxypeptidase Y out of the ER and into the Golgi complex in vivo. The collective data indicate an intimate role for Sac1p in the transport of ATP into the ER lumen.  相似文献   

19.
The endoplasmic reticulum (ER) is a fundamental organelle required for protein assembly, lipid biosynthesis, and vesicular traffic, as well as calcium storage and the controlled release of calcium from the ER lumen into the cytosol. Membranes functionally linked to the ER by vesicle-mediated transport, such as the Golgi complex, endosomes, vacuoles-lysosomes, secretory vesicles, and the plasma membrane, originate largely from proteins and lipids synthesized in the ER. In this review we will discuss the structural organization of the ER and its inheritance.  相似文献   

20.
The endoplasmic reticulum (ER) is a multifunctional organelle responsible for production of both lumenal and membrane components of secretory pathway compartments. Secretory proteins are folded, processed, and sorted in the ER lumen and lipid synthesis occurs on the ER membrane itself. In the yeast Saccharomyces cerevisiae, synthesis of ER components is highly regulated: the ER-resident proteins by the unfolded protein response and membrane lipid synthesis by the inositol response. We demonstrate that these two responses are intimately linked, forming different branches of the same pathway. Furthermore, we present evidence indicating that this coordinate regulation plays a role in ER biogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号