首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
There are conflicting reports on the effect of exogenous thymidine (dThd) on the frequency of sister-chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells. Thymidine has been reported either to increase or to have no effect on SCE frequency under similar experimental conditions. To resolve this controversy, we have carried out a series of experiments to examine the effect of dThd on CHO cells cultured with 5-bromodeoxyuridine (BrdUrd). In addition, we have examined the effect of dThd on CHO cells cultured with 5-chlorodeoxyuridine (CldUrd), a much more potent inducer of SCEs than BrdUrd. The addition of 100 microM dThd to the culture medium caused a consistent decrease in the yield of SCEs in cells grown in BrdUrd for two cell cycles. The decrease was even greater when cells were grown in dThd and CldUrd. Analysis of twin and single SCEs indicated that dThd must be present during the first cell cycle to reduce the frequency of SCEs. Because excess dThd is thought to have an effect when DNA replicates on a template substituted with a halogenated nucleoside, dThd at concentrations from 100 microM to 9 mM was added to cultures for the second cell cycle after a first cell cycle in BrdUrd. In this experiment, the presence of dThd increased SCE frequency in a dose-dependent manner. The results suggest that if dThd competes with halogenated nucleosides and thus decreases their incorporation into DNA, SCEs are suppressed in the subsequent cell cycle, whereas if excess dThd creates a dNTP pool imbalance, SCEs can be increased.  相似文献   

2.
The existence of a high frequency of spontaneous sister-chromatid exchanges (SCEs) in Bloom syndrome (BS) has thus far been supported by data on a small number of BS cell lines. To examine the cause of baseline SCEs more broadly, the frequencies of SCEs, as well as chromosomal aberrations (CAs) in 4 additional BS fibroblast strains were compared, under different assay and cell culture conditions, with those of normal cells in the range of approximately 0.9-90% 5-bromodeoxyuridine (BrdUrd) substitution into template DNA. SCEs at low levels of BrdUrd substitution were detected by an extremely sensitive immunofluorescent technique. From approximately 0.9% to 4.5% BrdUrd substitution, the SCE frequency in BS cells remained constant, at a level (40/cell) 8 times higher than that of normal cells. As BrdUrd substitution increased further, the SCE frequency in BS cells increased almost linearly, reaching 70-100 per cell at approximately 90% substitution, while the SCE increment in control fibroblasts was less than 5 per cell. Analysis of SCEs in 3 successive replication cycles similarly revealed that the SCE increment in BS cells depended on BrdUrd only at a high BrdUrd substitution level. In contrast to data on SCEs, CA induction by incorporated BrdUrd in BS cells was only slightly higher than that in normal cells. Thus, BS cells are extremely sensitive to BrdUrd for SCE induction, but much less so for CA induction.  相似文献   

3.
Two aphidicolin-resistant cell mutants (AC 12 and AC 41) with a fourfold increase in spontaneous frequency of sister chromatid exchanges (SCEs) were obtained out of over 400 aphidicolin-resistant mutants isolated from mouse lymphoma L5178Y cells. They also exhibited three- to fourfold increases in spontaneous frequency of chromosome aberrations (CAs). To determine whether the high level of SCE frequency in AC 12 is caused by 5-bromodeoxyuridine (BrdUrd) used for visualizing SCEs, the effect of BrdUrd incorporated into DNA on SCE induction was analyzed. The SCE frequencies in AC 12 remained constant at BrdUrd incorporation levels corresponding to 2-90% substitution for thymidine in DNA. In addition, the small amount of BrdUrd incorporated into both daughter and parenteral DNA strands in AC 12 had minimal effect on SCE induction. Furthermore, AC 12 and AC 41 were slightly resistant to BrdUrd with respect to the induction of CAs, the inhibition of cell-cycle progression and the decrease in mitotic activity. These findings suggest that the high incidence of SCEs in AC 12 and AC 41 is formed by their intrinsic defects, not by the effects of BrdUrd used. The analysis of SCE frequencies in hybrid cells between these mutants and the parental L5178Y revealed that the genetic defects in AC 12 and AC 41 appear to be recessive, and that these two mutants belong to the same complementation group. Furthermore, AC 12 belonged to a different complementation group from ES 4, which was isolated previously from L5178Y as an SCE mutant with a twofold higher frequency of spontaneous SCEs. This finding indicates that at least two different genetic defects participate in the formation of the high incidence of spontaneous SCEs in mouse cells. These SCE mutants would provide valuable cell materials for studying the molecular mechanism of SCE formation.  相似文献   

4.
Hideo Tsuji 《Genetics》1982,100(2):259-278
Sister chromatid exchanges (SCEs) under in vivo and in vitro conditions were examined in ganglion cells of third-instar larvae of Drosophila melanogaster (Oregon-R). In the in vivo experiment, third-instar larvae were fed on synthetic media containing 5-bromo-2'-deoxyuridine (BrdUrd). After two cell cycles, ganglia were dissected and treated with colchicine. In the in vitro experiment, the ganglia were also incubated in media containing BrdUrd for two cell cycles, and treated with colchicine. SCEs were scored in metaphase stained with Hoechst 33258 plus Giemsa. The frequencies of SCEs stayed constant in the range of 25-150 micrograms/ml and 0.25-2.5 micrograms/ml of BrdUrd in vivo and in vitro, respectively. SCEs gradually increased at higher concentrations, strongly suggesting that at least a fraction of the detected SCEs are spontaneous. The constant levels of SCE frequency were estimated, on the average, at 0.103 per cell per two cell cycles for females and 0.101 for males in vivo and at 0.096 for females and 0.091 for males in vitro. No difference was found in the SCE frequency between sexes at any of the BrdUrd concentrations. The analysis for the distribution of SCEs within chromosomes revealed an extraordinarily high proportion of the SCEs at the junctions between euchromatin and heterochromatin; the remaining SCEs were preferentially localized in the euchromatic regions of the chromosomes and in the heterochromatic Y chromosome. These results were largely inconsistent with those of Gatti et al. (1979).  相似文献   

5.
The majority of the high (12-fold elevated) baseline sister-chromatid exchanges (SCEs) that occur in the CHO mutant line EM9 appear to be a consequence of incorporated BrdUrd, and they arise during replication of DNA containing BrdUrd in a template strand. In normal CHO cells the alkaline elution patterns of DNA newly replicated on a BrdUrd-containing template are significantly altered compared with those seen during the replication on an unsubstituted template. The nascent DNA synthesized on such an altered template is delayed in reaching mature size, possibly because replication forks are temporarily blocked at sites occurring randomly along the template. Transient blockage of replication forks may be a prerequisite for SCE. The delay in replication on BrdUrd-substituted templates was greater in EM9 cells than in parental AA8 cells and was also greater in AA8 cells treated with benzamide, an inhibitor of poly(ADPR) polymerase, than in untreated AA8 cells. Under these conditions, treatment with benzamide also produced a 7-fold increase in SCEs in AA8. An EM9-derived revertant line that has a low baseline SCE frequency showed less delay in replication on BrdUrd-substituted templates than did EM9. However, under conditions where the template strand contained CldUrd, which was shown to produce 4-fold more SCEs than BrdUrd in AA8 cells, the replication delay in AA8 was not any greater in the CldUrd-substituted cells. Thus, other factors besides the delay appear to be involved in the production of SCEs by the template lesions resulting from incorporation of the halogen-substituted pyrimidine molecules.  相似文献   

6.
Culture of cells in high exogenous levels (>10–4 M) of bromodeoxyuridine (BrdUrd) or thymidine will increase the baseline sister chromatid exchange (SCE) frequency. The effect is thought to be related to the balance of the DNA precursors thymidine and deoxycytidine. Exogenous addition of deoxycytidine will reverse this effect. Single and twin SCEs were analysed in Colcemid-induced tetraploid Chinese hamster ovary cells exposed to different concentrations of BrdUrd to determine at what stage SCEs are induced by high levels of BrdUrd. In cells exposed to low concentrations of BrdUrd (10–5 M), equal numbers of SCEs were induced in each of the two cell cycles. With increasing concentrations of BrdUrd (10–4 to 2×10–4 M), SCE frequency increased in both cell cycles, but far more SCEs were induced in the second cell cycle. Deoxycytidine (2×10–4 M) reduced the frequency of SCEs primarily by reducing the frequency of SCEs induced in the second cell cycle. Treatment with 3-aminobenzamide (3AB), a potent inhibitor of poly(ADP-ribose) polymerase, produced effects similar to exposure to high levels of BrdUrd including inducing SCEs in the second replication cycle. This suggests a similar mechanism of action. Deoxycytidine had no effect on 3AB-induced SCEs, however, and there was no interaction between 3AB and high exogenous levels of BrdUrd in SCE induction. Thus these two agents probably act through different mechanisms.  相似文献   

7.
The frequencies of sister chromatid exchanges (SCEs) were examined in phytohaemagglutinin-stimulated blood lymphocytes of a normal individual, a Bloom's syndrome heterozygote (bl/+), and two Bloom's syndrome homozygotes (bl/bl). To determine the baseline SCE frequencies, lymphocytes were cultured with various concentrations of 5-bromodeoxyuridine (BrdUrd) for two cell cycles. The incidence of SCEs per two cell cycles inbl/bl lymphocytes levelled off at BrdUrd concentrations below 10 g/ml while that in normal andbl/+ lymphocytes stayed constant below 7.5 g/ml. The baseline SCE frequency in bl/bl cells was ten times higher than that in normal andbl/+ cells. At BrdUrd concentrations above 15 g/ml, SCEs inbl/bl cells were induced more frequently than in normal andbl/+ cells. These results indicate that at low concentrations BrdUrd has a minimal effect on the induction of SCEs in all individuals, while at higher concentrations the BrdUrd incorporated inbl/bl cells has a larger effect than that in normal andbl/+ cells. To elucidate the effect of BrdUrd incorporated into the daughter and parental DNA strands on SCE induction, SCEs occurring during each cell cycle were examined separately in three-way or two-way differentially stained, third-cycle metaphases. The incidence of SCEs detected in each cell cycle at 5 g/ml BrdUrd was constant in all individuals and the rates of SCEs in each cell cycle inbl/bl cells were remarkably higher than those observed in normal andbl/+ cells. These findings strongly indicate that most of the abnormally increased SCEs in thebl/bl cells used in our study occurred independently of any effect of BrdUrd incorporated into both the daughter and parental DNA strands. In addition, an abnormal response ofbl/bl cells to BrdUrd was not found for cell cycle progression or chromosomal aberration induction. Thus, the bl/bl cells did not exhibit an abnormal hypersensitivity to BrdUrd. From these results, it seems quite probable that the abnormally increased SCEs in thebl/bl lymphocytes used here were spontaneous.  相似文献   

8.
3-Aminobenzamide and benzamide, two potent inhibitors of poly-(ADP-ribose)-polymerase increase the frequencies of SCEs in Chinese hamster ovary cells in a dose-dependent manner. SCEs were studied in cells in which the inhibitors were present either during the first cell cycle or the second cell cycle or both. Most of the induced SCEs were found to be formed during the second cell cycle in which BU-containing DNA was used as template for DNA synthesis. In cells which were pregrown for 4 cell cycles in the presence of BrdUrd, in order to obtain both sister chromatids bifiliarly substituted with BU in their DNA, it was found that the presence of inhibitor even in the first cell cycle increased the frequencies of SCEs. It is concluded that the incorporated BrdUrd plays an important role in the origin of spontaneous and induced SCEs. 3-Aminobenzamide alone or benzamide in the presence of BrdUrd during culture, did not increase the frequencies of mutations to HGPRT? in these cells.  相似文献   

9.
10.
The relative importance of DNA-DNA cross-links and bulky monoadducts in sister chromatid exchange (SCE) formation was investigated in three human fibroblast cell lines with different repair capabilities. These cell lines included normal cells, which can repair both classes of lesions; xeroderma pigmentosum (XP) cells, which cannot repair either psoralen-induced cross-links or monoadducts; and an XP revertant that repairs only cross-links and not monoadducts. SCEs were induced by two psoralen derivatives, 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT) and 5-methylisopsoralen (5-MIP). After activation with long-wave ultraviolet light, HMT produces cross-links and monoadducts in DNA, whereas 5-MIP produces only monoadducts. In normal human cells both psoralens induced SCEs, but if cells were allowed to repair for 18 h before bromodeoxyuridine (BrdUrd) was added for SCE analysis, the SCE frequency was significantly reduced. XP cells showed an SCE frequency that remained high regardless of whether SCEs were analyzed immediately after psoralen exposure or 18 h later. In the XP revertant that repairs only cross-links, both psoralens induced a high yield of SCEs when BrdUrd was added immediately after psoralen treatment. When XP revertant cells were allowed 18 h to repair before addition of BrdUrd, the SCEs induced by HMT were greatly reduced, whereas those induced by 5-MIP were only slightly reduced. These observations indicate that both cross-links and monoadducts are lesions in DNA that can lead to SCE formation.  相似文献   

11.
Three types of Giemsa differential staining of sister chromatids were observed in HeLa cells when they were exposed continuously to 5-bromodeoxyuridine (BrdUrd) for three replication cycles. In type-1, about a half set of chromosome complements were composed of pairs of darkly-stained and intermediately-stained chromatids; the other half consisted of pairs of intermediately-stained and lightly-stained chromatids. In type-2, one fourth of chromatids was stained darkly and the remaining ones were stained lightly. In type-3, about a half set of chromosomes consisted of the pairs of darkly-stained and lightly-stained chromatids and the rest of pairs of intermediately-stained and lightly-stained chromatids. Cells showing each differentiation pattern at the third mitotic phase were dependent on the stages of the first DNA synthetic (S) phase at which BrdUrd treatments were initiated. Type-1 cells were observed, when BrdUrd treatment was initiated anywhere from G1 to early S phase, type-2 when treatments were begun in middle S stage, and type-3 when treatments were initiated in the late stages of the first S phase. The appearance of the three types seems to be caused by a different amount of BrdUrd incorporated into DNA between the first (S1) and the second S period (S2). The amount of BrdUrd incorporated is as follows: in type-1 S1>S2, in type-2 S1 S2 and in type-3 S2>S1.By analysing type-1 cells, all of the sister chromatid exchanges (SCEs) occurring during each replication cycle can be accurately counted and distinguished from one another. In cells exposed to BrdUrd above 5 μg/ml, the frequencies of SCEs occurring during S1, S2, and S3 are higher than those detected at lower BrdUrd concentrations. On the other hand, at lower concentrations (0.1–1.0 μg/ml) they occurred at the same frequency during S1, S2, and S3. Thus, SCEs detected at low concentrations are free from the incremental effect of BrdUrd incorporated, and enable us to estimate the spontaneous level of SCE frequency.  相似文献   

12.
B N Nayak 《Mutation research》1985,143(1-2):45-49
The baseline sister-chromatid exchanges (SCEs) and the percentage of first (M1), second (M2) and third or higher metaphase (M3+) chromosomes were analysed in bone-marrow cells of male and female C57BL/6 mice and Chinese hamsters following serial intraperitoneal injections of 40 micrograms/g body weight (b.w.) of 5-bromo-2'-deoxyuridine (BrdUrd) and 2 micrograms/g b.w. of 5-fluorodeoxyuridine (FdUrd) or 40 micrograms/g b.w. of BrdUrd and 10 micrograms/g b.w. of deoxycytidine (dC). Female animals receiving BrdUrd/FdUrd showed significantly higher (P less than 0.01) baseline SCEs compared to the other groups. No sex difference in the baseline SCEs was found in animals treated with BrdUrd/dC. The distribution patterns of M1, M2 and M3+ metaphases in BrdUrd/FdUrd-treated animals differ significantly from those in BrdUrd/dC-treated animals.  相似文献   

13.
A commercially available bromodeoxyuridine (BrdUrd) antibody was used to demonstrate sister chromatid differentiation (SCD) and to evaluate sister chromatid exchanges (SCEs) in V79 Chinese hamster cells. V79 cells were cultivated for one cell cycle in the presence of BrdUrd, followed by a second cell cycle in the absence of BrdUrd. Chromosome preparations were stained by a common immunologic staining technique. The staining pattern observed is similar to that after FPG (fluorescent plus Giemsa) staining, though with reverse staining specificity. The sensitivity of BrdUrd detection is enhanced by a factor of 20 compared to the FPG technique and thus allows the evaluation of SCEs at very low BrdUrd concentrations. The application of the antibody technique gives information about the origin and localization of SCEs and produces further evidence for the spontaneous occurrence of SCEs.  相似文献   

14.
The effects of deoxyribonucleoside triphosphate (dNTP) pool imbalance on the induction of mutations and siste-chromatid exchanges (SCEs) by 5-bromo-2′-deoxyuridine (BrdUrd) in mammalian cells is reviewed. The INC BrdUrd mutagenesis protocol involves the incorporation of BrdUrd into DNA under conditions of specific dNTP pool imbalance, while the REP BrdUrd mutagenesis protocol involves the replication of 5-bromouracil (BrUra)-substituted DNA in the presence of specific (but different) dNTP pool imbalance. Biochemical and genetic analyses of both the INC and REP mutagenesis protocols provided evidence that (1) INC mutagenesis resulted from errors of incorporation due to the mispairing of BrdUTP with a guanine residue in replicating DNA leading to GC to AT transitions and (2) REP mutagenesis resulted from errors of replication due to the mispairing of dGTP with a BrURA residue in replicating DNA leading to AT to GC transitions. Further analyses involving different cell lines has led to an hypothesis describing the role of mismatch repair in the induction of mutations and SCEs.  相似文献   

15.
The induction of sister-chromatid exchanges (SCEs) by the replication of 5-bromouracil(BrUra)-containing DNA under conditions of nucleotide-pool imbalance was investigated. A modification of a protocol developed for the induction of mutations under these conditions (E.R. Kaufman, Mol. Cell. Biol., 4, 2449-2454, 1984) was used. To induce SCEs, Chinese hamster ovary cells were grown under non-mutagenic conditions which allowed the uniform incorporation of BrUra into their DNA at specific levels of substitution for thymine residues (25, 50 and 75% BrUra substitution). After 4 and 5 days of growth, the cells, which had incorporated BrUra into their DNA, were washed free of 5-bromodeoxyuridine (BrdUrd) and provided with fresh culture medium supplemented with various concentrations of thymidine (10 microM to 3 mM) and no BrdUrd. The cells were allowed to replicate their BrUra-containing DNA under these conditions, in the absence of BrdUrd, for two rounds of DNA synthesis to achieve sister-chromatid differentiation, and second-division metaphases were scored for SCEs. The results of these studies indicated that the SCEs observed were proportional to the level of BrUra substituted for thymine in the cellular DNA, were induced by increasing concentrations of thymidine in the culture medium during replication of the BrUra-containing DNA, correlated well with the induction of mutations to thioguanine resistance and to ouabain resistance, correlated with increases in the intracellular levels of dTTP and dGTP generated by the high concentrations of thymidine. These findings provide direct evidence for the induction of SCEs by the replication of BrUra-containing DNA and for the importance of the pools of nucleoside triphosphate precursors for DNA replication in these processes. When the effects of 3-aminobenzamide, a potent inhibitor of poly(ADP-?ibose) synthesis, were tested, it was found that 3-aminobenzamide significantly increased SCEs, but it had no effect on mutations induced.  相似文献   

16.
C. Gutiérrez  A. Calvo 《Chromosoma》1981,83(5):685-695
In the present paper we have developed a new rationale and an experimental schedule to approximate the frequency of SCEs which occur independently of BrdU incorporation, namely, the baseline frequency of SCEs. The method used includes the analysis of SCE yields in second and third division chromosomes after BrdU-substitution for 1, 2, and/or 3 successive replication rounds in the presence of this thymidine analogue, leading to a set of ten different experimental results. As a result of formulating various mathematical equations and applying them to the data, an accurate estimation of the frequency of baseline (BrdU-independent) and BrdU-induced SCEs, can be made, thus avoiding the difficulties inherent in the current extrapolation methods. The conclusions are that 1) SCEs seem to be formed after DNA synthesis (by exchanging post-replicative DNA portions), but, obviously, very near to the replication fork and 2) that under our experimental conditions about 0.065 SCEs per picogram of DNA per cell cycle occur as a consequence of chromosome replication, this frequency being increased by BrdU-substitution. The methodology seems to be reliable enough to be used in other species and systems in order to compare baseline SCE frequencies.Abbreviations SCEs sister-chromatid exchanges - BrdU(BrdUrd) 5-bromodeoxyuridine - dTh(dThd) thymidine - 3H-dTh(3H-dThd) tritiated thymidine - FdU(FdUrd) 5-fluorodeoxyuridine - Urd uridine - FPG fluorescent plus Giemsa  相似文献   

17.
G Speit  S Haupter 《Mutation research》1987,190(3):197-203
Penicillamine (PA), a drug used for the treatment of rheumatoid arthritis induces sister-chromatid exchanges (SCEs) and chromosome aberrations in cultivated mammalian cells. PA in concentrations from 400 micrograms/ml upward induced SCEs and proliferative delay in human blood cultures when added for the last 24 h of the culture period. In V79 Chinese hamster cells SCE induction was found after acute exposure to PA before the addition of BrdUrd and after chronic exposure during one cell cycle in the presence of BrdUrd. The effect of PA on SCE frequencies occurred both after treatment in complete medium and in serum-free medium and was not influenced by the application of an S9 mix. The simultaneous addition of peroxidase reduced the PA-induced SCEs whereas catalase did not show any effect. Chromosome analysis in the first mitosis after PA treatment revealed a significant increase in the incidence of chromosome aberrations and endoreduplication. The results are discussed with respect to the cause and the significance of the observed effects in connection with mutagenicity testing.  相似文献   

18.
Cells of some excision-proficient xeroderma pigmentosum (XP) cell lines are highly sensitive to post-UV caffeine treatment in terms of sister-chromatid exchange (SCE) induction as well as cell lethality. In the present study, we conducted a detailed investigation of the enhancing effect of caffeine on SCE frequency induced by UV in excision-proficient XP cells, and obtained the following results. (1) Continuous post-UV treatment with 1 mM caffeine markedly enhances UV-induced SCEs and such enhanced SCEs occur with similar frequency during either the 1st or the 2nd cell cycle in the presence of caffeine and 5-bromodeoxyuridine (BrdUrd). (2) The high sensitivity of the cells to post-UV caffeine treatment persists for at least 2 days after UV when irradiated cells are held in either the proliferating or the nonproliferating state prior to the addition of BrdUrd. (3) Caffeine exerts its effect on cells in S phase. (4) Neither BrdUrd in the medium nor the incorporated 5-bromodeoxyuridine monophosphate (BrdUMP) in DNA plays an appreciable role in the expression of the enhancing effect of caffeine. The most likely explanation for our findings is as follows. In excision-proficient XP cells, the cause of SCE formation such as UV-induced lesions or resulting perturbations of DNA replication persists until the 2nd round or more of post-UV DNA replication. If caffeine is given as post-UV treatment, such abnormalities may be amplified, resulting in a synergistic increase in SCE frequency.  相似文献   

19.
Somatic cell hybrids were derived from the fusion of Chinese hamster ovary (CHO) cells and Syrian hamster melanoma cells (2E). These two cell lines had previously been shown to differ in their response to the induction of mutations and sister-chromatid exchanges (SCEs) by 5-bromo-2'-deoxyuridine (BrdUrd) (Kaufman, 1987). The parental cells and a number of representative, independent hybrid clones were tested for their response to both the INC and REP mutagenesis protocols. INC mutagenesis involves the incorporation of BrdUrd into DNA under conditions of deoxyribonucleoside triphosphate (dNTP) pool imbalance, while REP mutagenesis involves the replication of 5-bromouracil-substituted DNA in the presence of dNTP pool imbalance. When tested for the toxic effects of high concentrations of BrdUrd and for the induction of mutations by the INC protocol, the hybrid clones all expressed the 2E phenotype, i.e., sensitivity to relatively low concentrations of BrdUrd and thymidine for the induction of mutations, dNTP pool perturbation, and the toxic effects of BrdUrd. When the hybrid clones were tested for the induction of mutations and SCEs by the REP protocol, it was found that they expressed the 2E phenotype for the induction of mutations and the CHO phenotype for the induction of SCEs. Thus, various aspects of the 2E phenotype, such as high mutation frequencies associated with large dNTP pool perturbations, appeared to be dominantly expressed in the cell hybrids, while the lack of induction of SCEs by these mutagenic conditions in 2E cells was found to be a recessive characteristic.  相似文献   

20.
Mutations induced by repeated EMS treatments were investigated by using mouse L5178Y cells. The frequency of TGr mutations increased linearly with the number of EMS treatments whereas the yield of BrdUrdr mutations showed a curvilinear dose-response curve. The BrdUrdr frequency was roughly proportional to the square of the TGr frequency and the results were compatible with the hypothesis that BrdUrdr cells were induced by two mutational events within a cell. Most of the BrdUrdr colonies isolated after 6 EMS treatments, however, were unstable. When BrdUrdr colonies that had arisen in BrdUrd medium after 2 weeks' incubation were isolated in normal medium, the descendant cells showed a nearly normal level of thymidine incorporation and low plating efficiencies of about 1% in BrdUrd medium. In contrast, after isolation of the same colonies in BrdUrd medium, a low level of thymidine incorporation and high plating efficiencies in BrdUrd medium were observed in the descendant cells.

Reverse selection from BrdUrdr to HATr was accomplished with frequencies of 10−6−10−3 for the descendants grown in BrdUrd medium, and AzaCyd treatment drastically increased the reversion frequency to nearly 10−1. Further re-revertants from HATr to BrdUrdr were also found with frequencies of 10−3−10−2 without treatment. These results indicate that the initial BrdUrdr cells did not result from inactivation of the thymidine-kinase gene but that the mode of gene expression was altered in some way.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号