首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ferreon AC  Deniz AA 《Biochemistry》2007,46(15):4499-4509
Alpha-synuclein aggregation has been tightly linked with the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Despite the protein's putative function in presynaptic vesicle regulation, the roles of lipid binding in modulating alpha-synuclein conformations and the aggregation process remain to be fully understood. This study focuses on a detailed thermodynamic characterization of monomeric alpha-synuclein folding in the presence of SDS, a well-studied lipid mimetic. Far-UV CD spectroscopy was employed for detection of conformational transitions induced by SDS, temperature, and pH. The data we present here clearly demonstrate the multistate nature of alpha-synuclein folding, which involves two predominantly alpha-helical partially folded thermodynamic intermediates that we designate as F (most folded) and I (intermediately folded) states. Likely structures of these alpha-synuclein conformational states are also discussed. These partially folded forms can exist in the presence of either monomeric or micellar forms of SDS, which suggests that alpha-synuclein has an intrinsic propensity for adopting multiple alpha-helical structures even in the absence of micelle or membrane binding, a feature that may have implications for its biological activity and toxicity. Additionally, we discuss the relation between alpha-synuclein three-state folding and its aggregation, within the context of isothermal titration calorimetry and transmission electron microscopy measurements of SDS-initiated oligomer formation.  相似文献   

2.
The aggregation and fibrillation of alpha-synuclein has been implicated as a causative factor in Parkinson's disease and several other neurodegenerative disorders known as synucleinopathies. The effect of different factors on the process of fibril formation has been intensively studied in vitro. We show here that alpha-synuclein interacts with different unstructured polycations (spermine, polylysine, polyarginine, and polyethyleneimine) to form specific complexes. In addition, the polycations catalyze alpha-synuclein oligomerization. The formation of alpha-synuclein-polycation complexes was not accompanied by significant structural changes in alpha-synuclein. However, alpha-synuclein fibrillation was dramatically accelerated in the presence of polycations. The magnitude of the accelerating effect depended on the nature of the polymer, its length, and concentration. The results illustrate the potential critical role of electrostatic interactions in protein aggregation, and the potential role of naturally occurring polycations in modulating alpha-synuclein aggregation.  相似文献   

3.
Alpha-synuclein is a major component of Lewy bodies in Parkinson's disease and is found associated with several other forms of dementia. As with other neurodegenerative diseases, the ability of alpha-synuclein to aggregate and form fibrillar deposits seems central to its pathology. We have defined a sequence within the NAC region of alpha-synuclein that is necessary for aggregation. Exploitation of chemically modified analogues of this peptide may produce inhibitors of aggregation.  相似文献   

4.
The discovery of two missense mutations in alpha-synuclein gene and the identification of the alpha-synuclein as the major component of Lewy bodies and Lewy neurites have imparted a new direction in understanding Parkinson's disease. Now that alpha-synuclein has been implicated in several neurodegenerative disorders makes it increasingly clear that aggregation of alpha-synuclein is a hallmark feature in neurodegeneration. Although little has been learned about its normal function, alpha-synuclein appears to be associated with membrane phospholipids and may therefore participate in a number of cell signaling pathways. Here, we review the localization, structure, and function of alpha-synuclein and provide a new hypothesis on, (a) the disruption in the membrane binding ability of synuclein which may be the major culprit leading to the alpha-synuclein aggregation and (b) the complexity associated with nuclear localization of alpha-synuclein and its possible binding property to DNA. Further, we postulated the three possible mechanisms of synuclein induced neuronal degeneration in Parkinson's disease.  相似文献   

5.
Alpha-synuclein is a small cytosolic protein involved in the pathogenesis of Parkinson's disease and other neurodegenerative disorders. Recent studies suggested a lipid-related function for this brain-enriched protein. Since the brain carries a high level of docosahexaenoic acid (DHA) and since the extent of alpha-synuclein gene expression increases in response to DHA intake, we have investigated the interaction of alpha-synuclein with this essential omega-3 fatty acid. We show that alpha-synuclein allows DHA to be present in a soluble rather than micellar form. Upon interaction with DHA, the normally unstructured alpha-synuclein rapidly adopts an alpha-helical conformation. Prolonged exposure to DHA, however, gradually converts alpha-synuclein into amyloid-like fibrils. These results identify a potential biological function for alpha-synuclein and define an omega-3-linked pathway leading to alpha-synuclein aggregation.  相似文献   

6.
Huntington's and Parkinson's diseases are both neurodegenerative disorders caused at least in part by misfolding and aggregation of huntingtin (htt) and alpha-synuclein, respectively. Here we use a single chain antibody fragment (scFv) isolated against oligomeric alpha-synuclein to probe similarities and differences between the aggregation and toxic mechanisms of htt and alpha-synuclein. When incubated with htt, the scFv both blocks formation of and promotes dissociation of fibrillar aggregates, but stabilizes formation of cytotoxic oligomeric aggregates. Previous studies with monomeric alpha-synuclein showed the scFv prevented fibrillar aggregation, but blocked toxicity of oligomeric aggregates. These divergent effects suggest the toxic mechanisms of oligomeric aggregates differ among amyloidogenic protein species.  相似文献   

7.
Nuclear localization of alpha-synuclein and its interaction with histones   总被引:8,自引:0,他引:8  
The aggregation of alpha-synuclein is believed to play an important role in the pathogenesis of Parkinson's disease as well as other neurodegenerative disorders ("synucleinopathies"). However, the function of alpha-synuclein under physiologic and pathological conditions is unknown, and the mechanism of alpha-synuclein aggregation is not well understood. Here we show that alpha-synuclein forms a tight 2:1 complex with histones and that the fibrillation rate of alpha-synuclein is dramatically accelerated in the presence of histones in vitro. We also describe the presence of alpha-synuclein and its co-localization with histones in the nuclei of nigral neurons from mice exposed to a toxic insult (i.e., injections of the herbicide paraquat). These observations indicate that translocation into the nucleus and binding with histones represent potential mechanisms underlying alpha-synuclein pathophysiology.  相似文献   

8.
Detergent-stable multimers of alpha-synuclein have been found specifically in the brains of patients with Parkinson's disease and other neurodegenerative diseases. Here we show that recombinant alpha-synuclein forms multimers in vitro upon exposure to vesicles containing certain polyunsaturated fatty acid (PUFA) acyl groups, including arachidonoyl and docosahexaenoyl. This process occurs at physiological concentrations and much faster than in aqueous solution. PUFA-induced aggregation involves physical association with the vesicle surface via the large apolipoprotein-like lipid-binding domain that constitutes the majority of the protein. beta- and gamma-synucleins, as well as the Parkinson's disease-associated alpha-synuclein variants A30P and A53T, show similar tendencies to multimerize in the presence of PUFAs. Multimerization does not require the presence of any tyrosine residues in the sequence. The membrane-based interaction of the synucleins with specific long chain polyunsaturated phospholipids may be relevant to the protein family's physiological functions and may also contribute to the aggregation of alpha-synuclein observed in neurodegenerative disease.  相似文献   

9.
Brown DR 《The FEBS journal》2007,274(15):3766-3774
alpha-synuclein is one of a family of proteins whose function remains unknown. This protein has become linked to a number of neurodegenerative disease although its potential causative role in these diseases remains mysterious. In diseases such as Parkinson's disease and Lewy body dementias, alpha-synuclein becomes deposited in aggregates termed Lewy bodies. Also, some inherited forms of Parkinson's diseases are linked to mutations in the gene for alpha-synuclein. Studies have mostly focussed on what causes the aggregation of the protein but, like many amyloidogenic proteins associated with a neurodegenerative disorder, this protein has now been suggested to bind copper. This finding is currently controversial. This review examines the evidence that alpha-synuclein is a copper binding protein and discusses whether this has any significance in determining the function of the protein or whether copper binding is at all necessary for aggregation.  相似文献   

10.
Fibrillization and aggregation of alpha-synuclein may play a critical role in neurodegenerative diseases like Parkinson's diseases. Adeno-associated virus (AAV) vector delivery of an alpha-synuclein ribozyme was tested for its silencing effect on degenerating nigrostriatal neurons in the MPP(+) model of Parkinson's disease. We designed alpha-synuclein ribozyme against human alpha-synuclein gene expression and constructed alpha-synuclein ribozymes-carrying rAAV vector (designated rAAV-SynRz). Co-transfection of rAAV-SynRz and rAAV-alpha-synuclein into HEK293 cells resulted in down-regulation of alpha-synuclein protein expression in vitro. Then, rAAV-SynRz was injected into the substantia nigra (SN) of MPP(+)-treated rats. Cell counts of TH-positive neurons in the SN revealed that rAAV-SynRz significantly protected TH-positive cells against apoptotic death, compared with those of rAAV-EGFP or no rAAV injected rats. Our results indicate that the use of rAAV-SynRz allowed the survival of higher number of TH-positive neurons in SN in the MPP(+) model. Down-regulation of alpha-synuclein expression could be potentially a suitable target for gene therapy of Parkinson's disease.  相似文献   

11.
Aggregation of the nerve cell protein alpha-synuclein is a characteristic of the common neurodegenerative alpha-synucleinopathies like Parkinson's disease and Lewy body dementia, and it plays a direct pathogenic role as demonstrated by early onset diseases caused by mis-sense mutations and multiplication of the alpha-synuclein gene. We investigated the existence of alpha-synuclein pro-aggregatory brain proteins whose dysregulation may contribute to disease progression, and we identified the brain-specific p25alpha as a candidate that preferentially binds to alpha-synuclein in its aggregated state. Functionally, purified recombinant human p25alpha strongly stimulates the aggregation of alpha-synuclein in vitro as demonstrated by thioflavin-T fluorescence and quantitative electron microscopy. p25alpha is normally only expressed in oligodendrocytes in contrast to alpha-synuclein, which is normally only expressed in neurons. This expression pattern is changed in alpha-synucleinopathies. In multiple systems atrophy, degenerating oligodendrocytes displayed accumulation of p25alpha and dystopically expressed alpha-synuclein in the glial cytoplasmic inclusions. In Parkinson's disease and Lewy body dementia, p25alpha was detectable in the neuronal Lewy body inclusions along with alpha-synuclein. The localization in alpha-synuclein-containing inclusions was verified biochemically by immunological detection in Lewy body inclusions purified from Lewy body dementia tissue and glial cytoplasmic inclusions purified from tissue from multiple systems atrophy. We suggest that p25alpha plays a pro-aggregatory role in the common neurodegenerative disorders hall-marked by alpha-synuclein aggregates.  相似文献   

12.
alpha-Synuclein is a pre-synaptic protein, the function of which is not completely understood, but its pathological form is involved in neurodegenerative diseases. In vitro, alpha-synuclein spontaneously forms amyloid fibrils. Here, we report that alphaB-crystallin, a molecular chaperone found in Lewy bodies that are characteristic of Parkinson's disease (PD), is a potent in vitro inhibitor of alpha-synuclein fibrillization, both of wild-type and the two mutant forms (A30P and A53T) that cause familial, early onset PD. In doing so, large irregular aggregates of alpha-synuclein and alphaB-crystallin are formed implying that alphaB-crystallin redirects alpha-synuclein from a fibril-formation pathway towards an amorphous aggregation pathway, thus reducing the amount of physiologically stable amyloid deposits in favor of easily degradable amorphous aggregates. alpha-Synuclein acts as a molecular chaperone to prevent the stress-induced, amorphous aggregation of target proteins. Compared to wild-type alpha-synuclein, both mutant forms have decreased chaperone activity in vitro against the aggregation of reduced insulin at 37 degrees C and the thermally induced aggregation of betaL-crystallin at 60 degrees C. Wild-type alpha-synuclein abrogates the chaperone activity of alphaB-crystallin to prevent the precipitation of reduced insulin. Interaction between these two chaperones and formation of a complex are also indicated by NMR spectroscopy, size-exclusion chromatography and mass spectrometry. In summary, alpha-synuclein and alphaB-crystallin interact readily with each other and affect each other's properties, in particular alpha-synuclein fibril formation and alphaB-crystallin chaperone action.  相似文献   

13.
We characterized beta-synuclein, the non-amyloidogenic homolog of alpha-synuclein, as an inhibitor of aggregation of alpha-synuclein, a molecule implicated in Parkinson's disease. For this, doubly transgenic mice expressing human (h) alpha- and beta-synuclein were generated. In doubly transgenic mice, beta-synuclein ameliorated motor deficits, neurodegenerative alterations, and neuronal alpha-synuclein accumulation seen in halpha-synuclein transgenic mice. Similarly, cell lines transfected with beta-synuclein were resistant to alpha-synuclein accumulation. halpha-synuclein was coimmunoprecipitated with hbeta-synuclein in the brains of doubly transgenic mice and in the double-transfected cell lines. Our results raise the possibility that beta-synuclein might be a natural negative regulator of alpha-synuclein aggregation and that a similar class of endogenous factors might regulate the aggregation state of other molecules involved in neurodegeneration. Such an anti-amyloidogenic property of beta-synuclein might also provide a novel strategy for the treatment of neurodegenerative disorders.  相似文献   

14.
alpha-Synuclein is a major component of aggregates forming amyloid-like fibrils in diseases with Lewy bodies and other neurodegenerative disorders, yet the mechanism by which alpha-synuclein is intracellularly aggregated during neurodegeneration is poorly understood. Recent studies suggest that oxidative stress reactions might contribute to abnormal aggregation of this molecule. In this context, the main objective of the present study was to determine the potential role of the heme protein cytochrome c in alpha-synuclein aggregation. When recombinant alpha-synuclein was coincubated with cytochrome c/hydrogen peroxide, alpha-synuclein was concomitantly induced to be aggregated. This process was blocked by antioxidant agents such as N-acetyl-L-cysteine. Hemin/hydrogen peroxide similarly induced aggregation of alpha-synuclein, and both cytochrome c/hydrogen peroxide- and hemin/hydrogen peroxide-induced aggregation of alpha-synuclein was partially inhibited by treatment with iron chelator deferoxisamine. This indicates that iron-catalyzed oxidative reaction mediated by cytochrome c/hydrogen peroxide might be critically involved in promoting alpha-synuclein aggregation. Furthermore, double labeling studies for cytochrome c/alpha-synuclein showed that they were colocalized in Lewy bodies of patients with Parkinson's disease. Taken together, these results suggest that cytochrome c, a well known electron transfer, and mediator of apoptotic cell death may be involved in the oxidative stress-induced aggregation of alpha-synuclein in Parkinson's disease and related disorders.  相似文献   

15.
TorsinA, a protein with homology to yeast heat shock protein104, has previously been demonstrated to colocalize with alpha-synuclein in Lewy bodies, the pathological hallmark of Parkinson's disease. Heat shock proteins are a family of chaperones that are both constitutively expressed and induced by stressors, and that serve essential functions for protein refolding and/or degradation. Here, we demonstrate that, like torsinA, specific molecular chaperone heat shock proteins colocalize with alpha-synuclein in Lewy bodies. In addition, using a cellular model of alpha-synuclein aggregation, we demonstrate that torsinA and specific heat shock protein molecular chaperones colocalize with alpha-synuclein immunopositive inclusions. Further, overexpression of torsinA and specific heat shock proteins suppress alpha-synuclein aggregation in this cellular model, whereas mutant torsinA has no effect. These data suggest that torsinA has chaperone-like activity and that the disease-associated GAG deletion mutant has a loss-of-function phenotype. Moreover, these data support a role for chaperone proteins, including torsinA and heat shock proteins, in cellular responses to neurodegenerative inclusions.  相似文献   

16.
The aggregation and fibrillation of alpha-synuclein has been implicated as a key step in the etiology of Parkinson's disease and several other neurodegenerative disorders. In addition, oxidative stress and certain environmental factors, including metals, are believed to play an important role in Parkinson's disease. Previously, we have shown that methionine-oxidized human alpha-synuclein does not fibrillate and also inhibits fibrillation of unmodified alpha-synuclein (Uversky, V. N., Yamin, G., Souillac, P. O., Goers, J., Glaser, C. B., and Fink, A. L. (2002) FEBS Lett. 517, 239-244). Using dynamic light scattering, we show that the inhibition results from stabilization of the monomeric form of Met-oxidized alpha-synuclein. We have now examined the effect of several metals on the structural properties of methionine-oxidized human alpha-synuclein and its propensity to fibrillate. The presence of metals induced partial folding of both oxidized and non-oxidized alpha-synucleins, which are intrinsically unstructured under conditions of neutral pH. Although the fibrillation of alpha-synuclein was completely inhibited by methionine oxidation, the presence of certain metals (Ti3+, Zn2+, Al3+, and Pb2+) overcame this inhibition. These findings indicate that a combination of oxidative stress and environmental metal pollution could play an important role in triggering the fibrillation of alpha-synuclein and thus possibly Parkinson's disease.  相似文献   

17.
Tubulin seeds alpha-synuclein fibril formation.   总被引:5,自引:0,他引:5  
Increasing evidence suggests that alpha-synuclein is a common pathogenic molecule in several neurodegenerative diseases, particularly in Parkinson's disease. To understand alpha-synuclein pathology, we investigated molecules that interact with alpha-synuclein in human and rat brains and identified tubulin as an alpha-synuclein binding/associated protein. Tubulin co-localized with alpha-synuclein in Lewy bodies and other alpha-synuclein-positive pathological structures. Tubulin initiated and promoted alpha-synuclein fibril formation under physiological conditions in vitro. These findings suggest that an interaction between tubulin and alpha-synuclein might accelerate alpha-synuclein aggregation in diseased brains, leading to the formation of Lewy bodies.  相似文献   

18.
Fan GH  Zhou HY  Yang H  Chen SD 《FEBS letters》2006,580(13):3091-3098
Alpha-synuclein has been implicated in the pathogenesis of Parkinson's disease (PD). Heat shock proteins (HSPs) can reduce protein misfolding and accelerate the degradation of misfolded proteins. 1-methyl-4-phenylpyridinium ion (MPP+) is the compound responsible for the PD-like neurodegeneration caused by MPTP. In this study, we found that MPP+ could increase the expression of alpha-synuclein mRNA but could not elevate proteasome activity sufficiently, leading to alpha-synuclein protein accumulation followed by aggregation. Both HSPs and HDJ-1, a homologue of human Hsp40, can inhibit MPP+-induced alpha-synuclein mRNA expression, promote ubiquitination and elevate proteasome activity. These findings suggest that HSPs may inhibit the MPP+-induced alpha-synuclein expression, accelerate alpha-synuclein degradation, thereby reducing the amount of alpha-synuclein protein and accordingly preventing its aggregation.  相似文献   

19.
Spencer B  Crews L  Masliah E 《Neuron》2007,53(4):469-470
Several neurodegenerative disorders, including Parkinson's and Alzheimer's diseases, are characterized neuropathologically by accumulation of misfolded proteins such as alpha-synuclein that disrupts scaffold molecules in the caveolae. A new study by Ihara et al. in this issue of Neuron shows that a novel scaffold protein, Sept4, may be an important player in modulating the pathological alterations of alpha-synuclein in models of Parkinson's disease, suggesting that gene therapies targeting scaffold proteins might be effective in the treatment of neurodegenerative disorders.  相似文献   

20.
Hsp70 Reduces alpha-Synuclein Aggregation and Toxicity   总被引:5,自引:0,他引:5  
Aggregation and cytotoxicity of misfolded alpha-synuclein is postulated to be crucial in the disease process of neurodegenerative disorders such as Parkinson's disease and DLB (dementia with Lewy bodies). In this study, we detected misfolded and aggregated alpha-synuclein in a Triton X-100 insoluble fraction as well as a high molecular weight product by gel electrophoresis of temporal neocortex from DLB patients but not from controls. We also found similar Triton X-100 insoluble forms of alpha-synuclein in an alpha-synuclein transgenic mouse model and in an in vitro model of alpha-synuclein aggregation. Introducing the molecular chaperone Hsp70 into the in vivo model by breeding alpha-synuclein transgenic mice with Hsp70-overexpressing mice led to a significant reduction in both the high molecular weight and detergent-insoluble alpha-synuclein species. Concomitantly, we found that Hsp70 overexpression in vitro similarly reduced detergent-insoluble alpha-synuclein species and protected cells from alpha-synuclein-induced cellular toxicity. Taken together, these data demonstrate that the molecular chaperone Hsp70 can reduce the amount of misfolded, aggregated alpha-synuclein species in vivo and in vitro and protect it from alpha-synuclein-dependent toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号