首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Staphylococcus aureus (S. aureus), a major human pathogen of hospital and community acquired infections, is becoming resistant to almost all commercially available antibiotics. This has prompted development of antimicrobial peptides as therapeutic options. Alpha melanocyte stimulating hormone (α-MSH) is one such peptide known to possess antimicrobial properties. In the present study, we analyzed the antimicrobial activity of α-MSH against 75 clinical strains of S. aureus including both methicillin susceptible S. aureus (MSSA) and methicillin resistant S. aureus (MRSA) strains. Results of our previous study showed that membrane damage is the major mechanism of staphylocidal activity of α-MSH. In this context, we compared the various bacterial membrane parameters, viz., membrane fluidity, lipid composition, and surface charge of a few selected MSSA and MRSA strains that showed variable susceptibility to the melanocortin peptide. Our results showed that α-MSH killed both type of strains efficiently (≥70% killing in 84% clinical strains after exposure with 6μM of α-MSH for 1h). It was observed that compared to the α-MSH-susceptible strains, the α-MSH-non-susceptible strains had a different membrane order and phospholipid pattern. There was no consistent pattern of cell surface charge to distinguish α-MSH-susceptible strain from a non-susceptible strain. In conclusion, α-MSH possessed potential staphylocidal activity for both against MSSA and MRSA strains. S. aureus strains not susceptible to the peptide exhibited a rigid membrane and a higher amount of the cationic phospholipid as compared to the α-MSH-susceptible strains.  相似文献   

2.
This study aimed to find antibiotics or other compounds that could increase the antimicrobial activity of an antimicrobial peptide, lactoferricin B (LFcin B), against Staphylococcus aureus, including antibiotic-resistant strains. Among conventional antibiotics, minocycline increased the bactericidal activity of LFcin B against S. aureus, but methicillin, ceftizoxime, and sulfamethoxazole-trimethoprim did not have such an effect. The combination of minocycline and LFcin B had synergistic effects against three antibiotic-resistant strains of S. aureus, according to result of checkerboard analysis. Screening of 33 compounds, including acids and salts, alcohols, amino acids, proteins and peptides, sugar, and lipids, showed that medium-chain monoacylglycerols increased the bactericidal activity of LFcin B against three S. aureus strains. The short-term killing test in water and the killing curve test in growing cultures showed that a combination of LFcin B and monolaurin (a monoacylglycerol with a 12-carbon acyl chain) killed S. aureus more rapidly than either agent alone. These findings may be helpful in the application of antimicrobial peptides in medical or other situations.  相似文献   

3.
Alpha-defensins are peptides secreted by polymorphonuclear cells and provide antimicrobial protection mediated by disruption of the integrity of bacterial cell walls. Staphylokinase is an exoprotein produced by Staphylococcus aureus, which activates host plasminogen. In this study, we analyzed the impact of interaction between alpha-defensins and staphylokinase on staphylococcal growth. We observed that staphylokinase induced extracellular release of alpha-defensins from polymorphonuclear cells. Moreover, a direct binding between alpha-defensins and staphylokinase was shown to result in a complex formation. The biological consequence of this interaction was an almost complete inhibition of the bactericidal effect of alpha-defensins. Notably, staphylokinase with blocked plasminogen binding site still retained its ability to neutralize the bactericidal effect of alpha-defensins. In contrast, a single mutation of a staphylokinase molecule at position 74, substituting lysine for alanine, resulted in a 50% reduction of its alpha-defensin-neutralizing properties. The bactericidal properties of alpha-defensins were tested in 19 S. aureus strains in vitro and in a murine model of S. aureus arthritis. Staphylococcal strains producing staphylokinase were protected against the bactericidal effect of alpha-defensins. When staphylokinase was added to staphylokinase-negative S. aureus cultures, it almost totally abrogated the effect of alpha-defensins. Finally, human neutrophil peptide 2 injected intra-articularly along with bacteria alleviated joint destruction. In this study, we report a new property of staphylokinase, its ability to induce secretion of defensins, to complex bind them and to neutralize their bactericidal effect. Staphylokinase production may therefore be responsible in vivo for defensin resistance during S. aureus infections.  相似文献   

4.
A common stress encountered by Salmonella serovars involves exposure to membrane-permeabilizing antimicrobial peptides and proteins such as defensins, cationic antibacterial proteins, and polymyxins. We wanted to determine if starvation induces cross-resistance to the membrane-permeabilizing antimicrobial peptide polymyxin B (PmB). We report here that starved and stationary-phase (Luria-Bertani [LB] medium) cells exhibited ca. 200- to 1,500-fold-higher (cross-)resistance to a 60-min PmB challenge than log-phase cells. Genetic analysis indicates that this PmB resistance involves both phoP-dependent and -independent pathways. Furthermore, both pathways were sigma(S) independent, indicating that they are different from other known sigma(S) -dependent cross-resistance mechanisms. Additionally, both pathways were important for PmB resistance early during C starvation and for cells in stationary phase in LB medium. However, only the phoP-independent pathway was important for P-starvation-induced PmB resistance and the sustained PmB resistance seen in 24-h-C-starved (and N-starved) or stationary-phase cells in LB medium. The results indicate the presence of an rpoS- and phoP-independent pathway important to starvation- and stationary-phase-induced resistance to membrane-permeabilizing antimicrobial agents.  相似文献   

5.
Peschel A  Collins LV 《Peptides》2001,22(10):1651-1659
Antimicrobial host defense peptides, such as defensins, protegrins, and platelet microbicidal proteins are deployed by mammalian skin, epithelia, phagocytes, and platelets in response to Staphylococcus aureus infection. In addition, staphylococcal products with similar structures and activities, called bacteriocins, inhibit competing microorganisms. Staphylococci have developed resistance mechanisms, which are either highly specific for certain host defense peptides or bacteriocins or which broadly protect against a range of cationic antimicrobial peptides. Experimental infection models can be used to study the molecular mechanisms of antimicrobial peptides, the peptide resistance strategies of S. aureus, and the therapeutic potential of peptides in staphylococcal diseases.  相似文献   

6.
近年来由于抗生素的不规范使用等多种原因,细菌耐药问题日益严重,人们正努力从各个方面来解决,其中机体天然产生的肽抗生素(peptide antibiotics)由于其对耐药菌的强大抗菌作用而受到人们的关注。肽抗生素是一种阳离子小分子多肽,在天然免疫和获得性免疫中都发挥着重要作用。防御素(defensin)是肽抗生素中较为重要的一种,主要来源于皮肤、呼吸道等的上皮组织,是正常机体抵抗外界病原微生物入侵的重要防线。人β-防御素3(human beta-defensin 3,hβD-3)参与人体免疫屏障,并因具有广谱抗菌和抗菌活性不被盐离子浓度抑制等特点而具特别的研究开发价值:提取中国人扁桃体组织总RNA,以RT-PCR技术扩增编码hβD-3成熟肽的cDNA并构建于原核表达载体pQE-80L,IPTG诱导表达后利用SDS-PAGE、免疫印记等方法对重组蛋白进行分析。重组蛋白表达量达到细菌表达总量的40%。重组蛋白自表达菌包涵体中提取后,经亲和层析法纯化目的蛋白达到电泳纯,经多步透析法复性,在体外抗菌实验中表现出了对金黄色葡萄球菌、多重耐药金黄色葡萄球菌等的抗菌活性,为进一步的研究和开发奠定了基础。  相似文献   

7.
The aim of this study was to evaluate antimicrobial activity of protein extracts from HaCaT cell line against bacterial strains, isolated from clinical materials, obtained from patients with clinical symptoms of acne (Propionibacterium acnes) and gas gangrene (Clostridium perfringens and Sterptococcus pyogenes). Reference strain of Staphylococcus aureus ATCC 25923 also was used. Protein extracts from cultured HaCaT cells were obtained by 3-fold freezing/defreezing cells in dry ice following by centrifugation and incubated with appropriate bacterial suspension (0.5 McFarland scale) during 6 and 24 hours. We observed time-depending and strain-depending activity of HaCaT--protein extract. Interestingly, high activity was demonstrated against strains of S. pyogenes and C. perfringens. Because of increasing bacterial resistance to antibiotics further studies in the field of antimicrobial peptides are required.  相似文献   

8.
The present study examined the antimicrobial activity of the peptide ghrelin. Both major forms of ghrelin, acylated ghrelin (AG) and desacylated ghrelin (DAG), demonstrated the same degree of bactericidal activity against Gram-negative Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa), while bactericidal effects against Gram-positive Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) were minimal or absent, respectively. To elucidate the bactericidal mechanism of AG and DAG against bacteria, we monitored the effect of the cationic peptides on the zeta potential of E. coli. Our results show that AG and DAG similarly quenched the negative surface charge of E. coli, suggesting that ghrelin-mediated bactericidal effects are influenced by charge-dependent binding and not by acyl modification. Like most cationic antimicrobial peptides (CAMPs), we also found that the antibacterial activity of AG was attenuated in physiological NaCl concentration (150mM). Nonetheless, these findings indicate that both AG and DAG can act as CAMPs against Gram-negative bacteria.  相似文献   

9.
A novel antimicrobial peptide, named Bicarinalin, has been isolated from the venom of the ant Tetramorium bicarinatum. Its amino acid sequence has been determined by de novo sequencing using mass spectrometry and by Edman degradation. Bicarinalin contained 20 amino acid residues and was C-terminally amidated as the majority of antimicrobial peptides isolated to date from insect venoms. Interestingly, this peptide had a linear structure and exhibited no meaningful similarity with any known peptides. Antibacterial activities against Staphylococcus aureus and S. xylosus strains were evaluated using a synthetic replicate. Bicarinalin had a potent and broad antibacterial activity of the same magnitude as Melittin and other hymenopteran antimicrobial peptides such as Pilosulin or Defensin. Moreover, this antimicrobial peptide has a weak hemolytic activity compared to Melittin on erythrocytes, suggesting potential for development into an anti-infective agent for use against emerging antibiotic-resistant pathogens.  相似文献   

10.
Thionins are plant antimicrobial peptides with antibacterial and antifungal activities. Thionin Thi2.1 cDNA from Arabidopsis thaliana was expressed in BVE-E6E7 bovine endothelial cell line and its activity was evaluated against Escherichia coli, Staphylococcus aureus, Candida albicans and different mammal cell lines. Total protein (2.5 mug) from conditioned medium (CM) of clone EC-Thi2.1 inhibited the growth of E. coli, S. aureus (>90%) and C. albicans strains (>80%) in relation to the CM from control cells. Also, CM of EC-Thi2.1 inhibited the viability of several transformed and normal mammal cell lines (38-95%). These results suggest that thionin Thi2.1 is an antimicrobial peptide that could be use in the treatment of mammalian infectious diseases.  相似文献   

11.
Pseudomonas aeruginosa has eventually developed resistance against flomoxef sodium, isepamicin and cefpiramide. Therefore, in this study, the antibacterial activity and synergistic effects of the amphipathic-derived P5-18mer antimicrobial peptide were tested against pathogens associated with cholelithiasis that have developed resistance against commonly used antibiotics. The results were then compared with the activities of the amphipathic-derived peptide, P5-18mer, melittin and common antibiotics. Growth inhibition of planktonic bacteria was tested using the National Committee for Clinical Laboratory Standards (NCCLS). The bactericidal activity of the antimicrobial peptides was measured using time-kill curves. Synergistic effects were evaluated by testing the effects of P5-18mer alone and in combination with flomoxef sodium, isepamicin or cefpiramide at 0.5 × MIC. P5-18mer peptide displayed strong activity against pathogens and flomoxef sodium, isepamicin and cefpiramide-resistant bacteria cell lines obtained from a patient with gallstones; however, it did not exert cytotoxicity against the human keratinocyte HaCat cell line. In addition, the results of time-kill curves indicated that P5-18mer peptide exerted bactericidal activity against four strains of P. aeruginosa. Finally, the use of P5-18mer and antibiotics exerted synergistic effects against cell lines that were resistant to commonly used antibiotics. These results indicate that this class of peptides has a rapid microbicidal effect on flomoxef sodium, isepamicin and cefpiramide-resistant strains of P. aeruginosa. Therefore, these peptides may be used as a lead drug for the treatment of acquired pathogens from patients with cholelithiasis who are affected with antibiotic-resistant bacteria.  相似文献   

12.
13.
The antibacterial effect of the endotoxin-binding Sushi peptides against Gram-negative bacteria (GNB) is investigated in this study. Similar characteristics observed for Atomic force microscopy (AFM) images of peptide-treated Escherichia coli and Pseudomonas aeruginosa suggest that the Sushi peptides (S3) evoke comparable mechanism of action against different strains of GNB. The results also indicate that the Sushi peptides appear to act in three stages: damage of the bacterial outer membrane, permeabilization of the inner membrane and disintegration of both membranes. The AFM approach has provided vivid and detailed close-up images of the GNB undergoing various stages of antimicrobial peptide actions at the nanometer scale. The AFM results support our hypothesis that the S3 peptide perturbs the GNB membrane via the "carpet-model" and thus, provide important insights into their antimicrobial mechanisms.  相似文献   

14.
Antimicrobial peptides attract a lot of interest as potential candidates to overcome bacterial resistance. So far, nearly all the proposed scenarios for their mechanism of action are associated with perforating and breaking down bacterial membranes after a binding process. In this study we obtained additional information on peptide induced demixing of bacterial membranes as a possible mechanism of specificity of antimicrobial peptides. We used DSC and FT-IR to study the influence of a linear and cyclic arginine- and tryptophan-rich antimicrobial peptide having the same sequence (RRWWRF) on the thermotropic phase transitions of lipid membranes. The cyclization of the peptide was found to enhance its antimicrobial activity and selectivity ( Dathe, M. Nikolenko, H. Klose, J. Bienert, M. Biochemistry 43 (2004) 9140-9150). A particular preference of the binding of the peptides to DPPG headgroups compared to other headgroups of negatively charged phospholipids, namely DMPA, DPPS and cardiolipin was observed. The main transition temperature of DPPG bilayers was considerably decreased by the bound peptides. The peptides caused a substantial down-shift of the transition of DPPG/DMPC. In contrast, they induced a demixing in DPPG/DPPE bilayers and led to the appearance of two peaks in the DSC curves indicating a DPPG-peptide-enriched domain and a DPPE-enriched domain. These results could be confirmed by FT-IR-spectroscopic measurements. We therefore propose that the observed peptide-induced lipid demixing in PG/PE-membranes could be a further specific effect of the antimicrobial peptides operating only on bacterial membranes, which contain appreciable amounts of PE and PG, and which could in principle also occur in liquid-crystalline membranes.  相似文献   

15.
P18 (KWKLFKKIPKFLHLAKKF-NH(2)) is an alpha-helical antimicrobial peptide designed from a cecropin A-magainin 2 hybrid. In this study, P18 was found to show strong antimicrobial activity against several antibiotic-resistant bacterial and fungal strains. Both the salt resistance on antimicrobial activity and the synergistic effect with clinically used antibiotic agents are critical factors in developing effective peptide antibiotic drugs. For this reason, we investigated the salt resistance of P18 to antagonism by NaCl, CaCl(2), and MgCl(2) on antimicrobial activity and the synergistic effect of P18 with vancomycin against vancomycin-resistant Enterococcus faecium (VREF). Compared to magainin 2, P18 showed strong resistance on antimicrobial activity against bacterial strains and C. albicans under high NaCl concentrations of 100-200 mM. In addition, P18 displayed much greater salt resistance on antibacterial activity against Gram-negative bacteria at the physiological or elevated concentrations of CaCl(2) and MgCl(2) than magainin 2. Furthermore, the combination study revealed that P18 has a relatively effective synergistic effect with vancomycin against VREF. Thus, these results support that P18 may prove to be a salt-resistant antibiotic peptide potentially useful in the treatment of cystic fibrosis patients as well as a valuable adjuvant for antimicrobial chemotherapy.  相似文献   

16.
The antibacterial effect of the endotoxin-binding Sushi peptides against Gram-negative bacteria (GNB) is investigated in this study. Similar characteristics observed for Atomic force microscopy (AFM) images of peptide-treated Escherichia coli and Pseudomonas aeruginosa suggest that the Sushi peptides (S3) evoke comparable mechanism of action against different strains of GNB. The results also indicate that the Sushi peptides appear to act in three stages: damage of the bacterial outer membrane, permeabilization of the inner membrane and disintegration of both membranes. The AFM approach has provided vivid and detailed close-up images of the GNB undergoing various stages of antimicrobial peptide actions at the nanometer scale. The AFM results support our hypothesis that the S3 peptide perturbs the GNB membrane via the “carpet-model” and thus, provide important insights into their antimicrobial mechanisms.  相似文献   

17.
Antimicrobial peptides (AMPs) represent the first defense line against infection when organisms are infected by pathogens. These peptides are generally good targets for the development of antimicrobial agents. Peptide amide analogs of Ixosin-B, an antimicrobial peptide with amino acid sequence of QLKVDLWGTRSGIQPEQHSSGKSDVRRWRSRY, were designed, synthesized and examined for antimicrobial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Within the peptides synthesized, we discovered an 11-mer peptide, KRLRRVWRRWR-amide, which exhibited potent antimicrobial activity while very little hemolytic activity in human erythrocytes was observed even at high dose level (100 μM). With further modifications, this peptide could be developed into a potent antimicrobial agent in the future.  相似文献   

18.
A number of shortened derivatives of the lactoferrin model peptide L12, PAWRKAFRWAKRMLKKAA, were designed in order to elucidate the structural basis for antitumour activity of lactoferrin derivatives. Three tumour cell lines were included in the study and toxicity determined by measuring lysis of human red blood cells and fibroblasts. The results demonstrated a strong correlation between antitumour activity and net positive charge, in which a net charge close to +7 was essential for a high antitumour activity. In order to increase the antitumour activity of the shortest peptide with a net charge less than +7, the hydrophobicity had to be increased by adding a bulky Trp residue. None of the peptides were haemolytic, but toxicity against fibroblasts was observed. However, modifications of the peptides had a higher effect on reducing fibroblast toxicity than antitumour activity and thereby resulted in peptides displaying an almost 7-fold selectivity for tumour cells compared with fibroblasts. The antimicrobial activity against the Gram-negative bacteria Escherichia coil and the Gram-positive bacteria Staphylococcus aureus was also included in order to compare the structural requirements for antitumour activity with those required for a high antimicrobial activity. The results showed that most of the peptides were highly active against both bacterial strains. Less modification by shortening the peptide sequences was tolerated for maintaining a high antitumour activity and selectivity compared with antimicrobial activity. The order of the amino acid residues and thereby the conformation of the peptides was highly essential for antitumour activity, whereas the antimicrobial activity was hardly influenced by changes in this parameter. Thus, in addition to a certain net positive charge and hydrophobicity, the ability to adopt an amphipathic conformation was a more critical structural parameter for antitumour activity than for antimicrobial activity, and implied that a higher flexibility or number of active conformations was tolerated for the peptides to exert a high antimicrobial activity.  相似文献   

19.
In a previous study, we reported that truncation of HP (2-20) (derived from the N-terminal region of Helicobacter pylori Ribosomal Protein L1 (RPL1)) at the N- (residues 2-3) and C-terminal (residues 17-20) truncated fragments to give HP (4-16) induces increased antibiotic activity against several bacterial strains without hemolysis. In this study, to develop novel short antibiotic peptides useful as therapeutic drugs, an analogue was designed to possess increased hydrophobicity by Trp substitution in position 2 region of HP (4-16). Synthetic HP (4-16)-W showed an enhanced antimicrobial and antitumor activity. The antimicrobial activity of this peptide and others was measured by their growth inhibitory effect upon S. aureus, B. subtilis, S. epidermidis, E. coli, S. typimurium, P. aeruginosa, C. albicans, T. beigelii and S. cerevisiae. None of the peptides exhibited hemolytic activity against human erythrocyte cells except melittin as a positive control. Its antibiotic activity suggests that HP (4-16)-W is an excellent candidate as a lead compound for the development of novel antibiotic agents.  相似文献   

20.
Amphibian skin secretions are rich in antimicrobial peptides acting as important components of innate defense system against invading microorganisms. A novel type of peptide, designated as maximin S, was deduced by random sequencing of 793 clones from a constructed Bombina maxima skin cDNA library. The putative primary structures of maximin S peptides can be grouped into five species, in which maximin S1 has 14 amino acid residues and the rest of maximin S peptides (S2-S5) all have 18 amino acid residues. Unlike most of the amphibian antimicrobial peptides so far identified, the newly characterized four maximin S precursors are composed of maximin S1 and different combinations of tandem repeated maximin S2-S5 linked by internal peptides. Except maximin S1, the predicted secondary structures of maximin S2-S5 show a similar amphipathic alpha-helical structure. MALDI-TOF mass spectrometry analysis of partially isolated skin secretions of the toad indicates that most of the deduced maximin S peptides are expressed. Two deduced maximin S peptides (S1, S4) were synthesized and their antimicrobial activities were tested. Maximin S4 only had an antibiotic activity against mycoplasma and had no antibacterial or antifungal activity toward tested strains. Maximin S1 had no activity under the same conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号