首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The production of biosurfactants was evaluated for seven bacterial strains isolated from different oil contaminated sites by the Emulsification Index using diesel oil as the hydrocarbon source. Minimum Inhibitory Concentrations of Mg2+, Cr3+ and Cu2+ were determined to identify the less sensitive bacteria in order to select the best strains for bioremediation. Plasmid extraction was also performed in order to search for gene sequences involved with biosurfactant synthesis. All strains were able to emulsify diesel oil. Rhodococcus ruber AC239 presented the best index (58%), followed by other Rhodococcus strains. Pseudomonas aeruginosa, R. ruber AC239, AC87 and R. erytropolis AC272 presented smallest sensitivities to heavy metals used, being suitable for use in sites contaminated with high concentrations of them. No plasmid DNA was detected showing that biosurfactant coding genes should be in the chromosomal DNA.  相似文献   

2.
Pseudomonas sp. strain LP1, an organism isolated on the basis of its ability to grow on pyrene, was assayed for its degradative and biosurfactant production potentials when growing on crude, diesel and engine oils. The isolate exhibited specific growth rate and doubling time of 0.304 days−1 and 2.28 days, respectively on crude oil (Escravos Light). The corresponding values on diesel were 0.233 days−1 and 2.97 days, while on engine oil, were 0.122 days−1 and 5.71 days. The organism did not show significant biosurfactant production towards crude oil and diesel, but readily produced biosurfactant on engine oil. The highest Emulsification index (E24) value for the biosurfactant produced by LP1 on engine oil was 80.33 ± 1.20, on day 8 of incubation. Biosurfactant production was growth-associated. The surface-active compound which exhibited zero saline tolerance had its optimal activity at 50°C and pH 2.0.  相似文献   

3.
Summary A rapid method, ’drop-collapse’, was used for screening biosurfactant production by Pseudomonas aeruginosa, Bacillus subtilis, Candida albicans and Phanerochaete chrysosporium liquid cultures. Before measuring the total biosurfactant, the drop-collapse method was used in order to detect rhamnolipid presence in the culture broths. The method was performed in a microwell plate; the polystyrene platform with small wells. If the culture broth contained biosurfactant, the droplets of the broth in the oil-coated wells collapsed. If not, there was no change in the shape of the droplets. Pseudomonas aeruginosa and Bacillus subtilis culture supernatants showed spreading movement, meaning that they produced biosurfactants. However, Candida albicans and Phanerochaete chrysosporium supernatants remained beaded, meaning they did not produce any type of microbial surfactant.  相似文献   

4.
In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26–30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.  相似文献   

5.
Biosurfactant production may be an economic approach to improving oil recovery. To obtain candidates most suitable for oil recovery, 207 strains, mostly belonging to the genus Bacillus, were tested for growth and biosurfactant production in medium with 5% NaCl under aerobic and anaerobic conditions. All strains grew aerobically with 5% NaCl, and 147 strains produced a biosurfactant. Thirty-five strains grew anaerobically with 5% NaCl, and two produced a biosurfactant. In order to relate structural differences to activity, eight lipopeptide biosurfactants with different specific activities produced by various Bacillus species were purified by a new protocol. The amino acid compositions of the eight lipopeptides were the same (Glu/Gln:Asp/Asn:Val:Leu, 1:1:1:4), but the fatty acid compositions differed. Multiple regression analysis showed that the specific biosurfactant activity depended on the ratios of both iso to normal even-numbered fatty acids and anteiso to iso odd-numbered fatty acids. A multiple regression model accurately predicted the specific biosurfactant activities of four newly purified biosurfactants (r2 = 0.91). The fatty acid composition of the biosurfactant produced by Bacillus subtilis subsp. subtilis strain T89-42 was altered by the addition of branched-chain amino acids to the growth medium. The specific activities of biosurfactants produced in cultures with different amino acid additions were accurately predicted by the multiple regression model derived from the fatty acid compositions (r2 = 0.95). Our work shows that many strains of Bacillus mojavensis and Bacillus subtilis produce biosurfactants and that the fatty acid composition is important for biosurfactant activity.  相似文献   

6.
A hydrocarbon degrading and biosurfactant producing, strain DHT2, was isolated from oil-contaminated soil. The organism grew and produced biosurfactant when cultured in variety of substrates at salinities up to 6 g l−1 and temperatures up to 45°C. It was capable of utilizing crude oil, fuels, alkanes and PAHs as carbon source across the wide range of temperature (30–45°C) and salinity (0–6%). Over the range evaluated, the salinity and temperature did not influence the degradation of hydrocarbon and biosurfactant productions. Isolate DHT2 was identified as Pseudomonas aeruginosa by analysis of 16S rRNA sequences (100% homology) and biochemical analysis. PCR and DNA hybridization studies revealed that enzymes involved in PAH metabolism were related to the naphthalene dioxygenase pathway. Observation of both tensio-active and emulsifying activities indicated that biosurfactants were produced by DHT2 during growth on both, water miscible and immiscible substrates, including PAH. The biosurfactants lowered the surface tension of medium from 54.9 to 30.2 dN/cm and formed a stable emulsion. The biosurfactant produced by the organism emulsified a range of hydrocarbons with hexadecane as best substrate and toluene was the poorest. These findings further indicate that the isolate could be useful for bioremediation and bio-refining application in petroleum industry.  相似文献   

7.
The effects of biosurfactants on the biodegradation of petroleum compounds were investigated. Candida antarctica T-34 could produce extracellular biosurfactant mannosylerythritol lipids (MELs) when it was cultured in vegetable oil. In addition, in our previous study, it was found that this strain could also produce a new type of biosurfactant while it grew on n-undecane (C11H24), and the biosurfactant was named as BS-UC. In flask culture of Candida antarctica, the addition of BS-UC could improve the biodegradation rate of some n-alkanes (e.g. 90.2% for n-decane, 90.2% for n-undecane, 89.0% for dodecane), a mixture of n-alkanes (82.3%) and kerosene (72.5%). By comparing the effects of the biosurfactants BS-UC and MEL and chemical surfactants on the biodegradation of crude oil, it was found that biosurfactants could be used to enhance the degradation of petroleum compounds instead of chemical surfactants. In a laboratory scale immobilized bioreactor, the addition of biosurfactant improved not only the emulsification of kerosene in simulated wastewater but also its biodegradation rate. The highest degradation rate of kerosene by addition of MEL and BS-UC reached 87 and 90% at 15 h, respectively. The results showed that the biosurfactant BS-UC was highly promising for work on biodegradation of hydrophobic contaminants.  相似文献   

8.
Aims: The aim of this study was to determine the antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20 against several micro‐organisms, including Gram‐positive and Gram‐negative bacteria, yeasts and filamentous fungi. Methods and Results: Antimicrobial and antiadhesive activities were determined using the microdilution method in 96‐well culture plates. The biosurfactant showed antimicrobial activity against all the micro‐organisms assayed, and for twelve of the eighteen micro‐organisms (including the pathogenic Candida albicans, Escherichia coli, Staphylococcus aureus, Staphylococcus epidermidis and Streptococcus agalactiae), the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were achieved for biosurfactant concentrations between 25 and 50 mg ml?1. Furthermore, the biosurfactant showed antiadhesive activity against most of the micro‐organisms evaluated. Conclusions: As far as we know, this is the first compilation of data on antimicrobial and antiadhesive activities of biosurfactants obtained from lactobacilli against such a broad group of micro‐organisms. Although the antiadhesive activity of biosurfactants isolated from lactic acid bacteria has been widely reported, their antimicrobial activity is quite unusual and has been described only in a few strains. Significance and Impact of the Study: The results obtained in this study regarding the antimicrobial and antiadhesive properties of this biosurfactant opens future prospects for its use against micro‐organisms responsible for diseases and infections in the urinary, vaginal and gastrointestinal tracts, as well as in the skin, making it a suitable alternative to conventional antibiotics.  相似文献   

9.
The fermentative production of biosurfactants by five Bacillus strains in a bench-scale bioreactor and evaluation of biosurfactant-based enhanced oil recovery using sand pack columns were investigated. Adjusting the initial dissolved oxygen to 100% saturation, without any further control and with collection of foam and recycling of biomass, gave higher biosurfactant production. The microorganisms were able to produce biosurfactants, thus reducing the surface tension and interfacial tension to 28 mN/m and 5.8–0.5 mN/m, respectively, in less than 10 hours. The crude surfactant concentration of 0.08–1.1 g/L, and critical micelle concentration (CMC) values of 19.4–39 mg/L, corresponding to the biosurfactants produced by the different Bacillus strains, were observed. The efficiency of crude biosurfactant preparation obtained from Bacillus strains for enhanced oil recovery, by sand pack column studies, revealed it to vary from 30.22–34.19% of the water flood residual oil saturation. The results are indicative of the potential of the strains for the development of ex-situ, microbial-enhanced, oil recovery processes.  相似文献   

10.

The present study focused on developing a wild-type actinomycete isolate as a model for a non-pathogenic filamentous producer of biosurfactants. A total of 33 actinomycetes isolates were screened and their extracellular biosurfactants production was evaluated using olive oil as the main substrate. Out of 33 isolates, 32 showed positive results in the oil spreading technique (OST). All isolates showed good emulsification activity (E24) ranging from 84.1 to 95.8%. Based on OST and E24 values, isolate R1 was selected for further investigation in biosurfactant production in an agitated submerged fermentation. Phenotypic and genotypic analyses tentatively identified isolate R1 as a member of the Streptomyces genus. A submerged cultivation of Streptomyces sp. R1 was carried out in a 3-L stirred-tank bioreactor. The influence of impeller tip speed on volumetric oxygen transfer coefficient (k L a), growth, cell morphology and biosurfactant production was observed. It was found that the maximum biosurfactant production, indicated by the lowest surface tension measurement (40.5 ± 0.05 dynes/cm) was obtained at highest k L a value (50.94 h−1) regardless of agitation speed. The partially purified biosurfactant was obtained at a concentration of 7.19 g L−1, characterized as a lipopeptide biosurfactant and was found to be stable over a wide range of temperature (20–121 °C), pH (2–12) and salinity [5–20% (w/v) of NaCl].

  相似文献   

11.
Six biosurfactant-producing bacteria were isolated from hydrocarbon contaminated soils in Sfax, Tunisia. Isolates were screened for biosurfactant production by different conventional methods including hemolytic activity, surface tension reduction, drop-collapsing and oil displacement tests. All these screening tests show that all the isolates behave differently. Among the isolated bacteria, DCS1 strain was selected for further studies based on its highest activities and it was identified as Bacillus methylotrophicus DCS1. This strain was found to be a potent producer of biosurfactant when cultivated in mineral-salts medium supplemented with diesel oil (2 %, v/v) as a sole carbon source. Physicochemical properties and stability of biosurfactants synthesized by B. methylotrophicus DCS1 were investigated. The produced biosurfactants DCS1, from Landy medium, possess high surface activity that could lower the surface tension of water to a value of 31 from 72 mN m?1 and have a critical micelle concentration (CMC) of 100 mg L?1. Compared with SDS and Tween 80, biosurfactants showed excellent emulsification activities against different hydrocarbon substrates and high solubilization efficiency towards diesel oil. Biosurfactants DCS1 showed good stability in a wide range of temperature, pH and salinity. These results suggested that biosurfactants produced by B. methylotrophicus DCS1 could be an alternative to chemically synthesized surfactants for use in bioremediation processes to enhance the solubility of hydrophobic compounds.  相似文献   

12.
This study reports the production of biosurfactant by a psychrophilic strain ofArthrobacter protophormiae during growth on an immiscible carbon source, w-hexadecane. The biosurfactant reduces the surface tension of the medium from 68.0 mN/m to 30.60 mN/m and exhibits good emulsification activity. The strain could grow and produce biosurfactant in the presence of high NaCl concentrations (10.0 to 100.0 g/1). Although the biosurfactant was isolated by growing the organism under psychrophilic conditions (10‡C) it exhibited stable activity over a wide range of temperature (30‡C to 100‡C). It retained its surface-active properties at pH2 to 12. The biosurfactant was effective in recovering up to 90% of residual oil from an oil saturated sandpack column, indicating its potential value in enhanced oil recovery.  相似文献   

13.
Summary Several Torulopsis yeasts were screened for production of extracellular surface-active compounds. One strain, Torulopsis apicola IMET 43747, was studied in greater detail. Both on nalkanes and on carbohydrates it produced a mixture of water-soluble biosurfactants with remarkable interfacial activities and surface-tension values around 30 mN m-1 and interfacial tension below 1 mN m-1. Most of the biosurfactants are produced in the late exponential and in the early stationary growth phase. Production was increased by using hydrophobic compounds as the carbon source. The yields on n-alkanes were influenced by the concentrations of both the carbon source and the yeast extract. The effects of one purified biosurfactant on microbial growth on nalkanes and its antibacterial and antiphagal activities reveal new physiological aspects of biosurfactant generation by T. apicola.  相似文献   

14.
Abstract

In this study, a diesel oil-degrading bacterium was isolated from an oilfield water injection (water-bearing formations, 1,205?m depth) in Algeria. The bacterial strain, designated NL1, was cultivated on diesel oil as sole carbon and energy sources. Molecular analyses of the 16S rRNA gene sequence (KY397882) placed NL1 strain closely related to distinct cultivated species of the Delftia genus. Optimal diesel oil biodegradation by Delftia sp NL1 strain occurred at pH 11, 40?°C, 2?M NaCl and initial hydrocarbon concentration of 5% (v/v) as sole carbon source. GC-MS analyses evidenced that strain Delftia sp NL1 was able to degrade more than 66.76% of diesel oil within only 7?days. On the other hand, and in the same conditions, biosurfactant production by Delftia sp NL1 was also evaluated evidencing high emulsifying capacity (E24 = 81%), ability to lower the surface tension of growing media (with the value of 25.7?mN m?1), and production of glycolipids (8.7?g L?1) as biosurfactants. This research presents indigenous strain Delftia sp NL1 for diesel degradation and synthesis of biosurfactant in extreme conditions. In this sense, strain NL1 is a good candidate for possible in situ oil recovery and in wastewater treatment in refineries and oil terminals in petroleum industry.  相似文献   

15.
Two strains of biosurfactant-producing bacteria, identified asPseudomonas aeruginosa, were isolated from injection water and crude oil-associated water in Venezuelan oil fields. Both biosurfactants resembled rhamnolipids and produced stable emulsions of heavy and extra-heavy crude oils, reducing the surface tension of water from 72 to 28 dynes/cm. Tenso-active properties of the biosurfactants were not affected by pH, temperature, salinity or Ca2+ or Mg2+ at concentrations in excess of those found in many oil reservoirs in Venezuela.  相似文献   

16.
Biosurfactants have been suggested as a method to control harmful algal blooms (HABs), but warrant further and more in-depth investigation. Here we have investigated the algicidal effect of a biosurfactant produced by the bacterium Pseudomonas aeruginosa on five diverse marine and freshwater HAB species that have not been tested previously. These include Alexandrium minutum (Dinophycaee), Karenia brevis (Dinophyceae), Pseudonitzschia sp. (Bacillariophyceae), in marine ecosystems, and Gonyostomum semen (Raphidophyceae) and Microcystis aeruginosa (Cyanophyecae) in freshwater. We examined not only lethal but also sub-lethal effects of the biosurfactant. In addition, the effect of the biosurfactant on Daphnia was tested. Our conclusions were that very low biosurfactant concentrations (5 μg mL−1) decreased both the photosynthesis efficiency and the cell viability and that higher concentrations (50 μg mL−1) had lethal effects in four of the five HAB species tested. The low concentrations employed in this study and the diversity of HAB genera tested suggest that biosurfactants may be used to either control initial algal blooms without causing negative side effect to the ecosystem, or to provoke lethal effects when necessary.  相似文献   

17.
Biosurfactant production may be an economic approach to improving oil recovery. To obtain candidates most suitable for oil recovery, 207 strains, mostly belonging to the genus Bacillus, were tested for growth and biosurfactant production in medium with 5% NaCl under aerobic and anaerobic conditions. All strains grew aerobically with 5% NaCl, and 147 strains produced a biosurfactant. Thirty-five strains grew anaerobically with 5% NaCl, and two produced a biosurfactant. In order to relate structural differences to activity, eight lipopeptide biosurfactants with different specific activities produced by various Bacillus species were purified by a new protocol. The amino acid compositions of the eight lipopeptides were the same (Glu/Gln:Asp/Asn:Val:Leu, 1:1:1:4), but the fatty acid compositions differed. Multiple regression analysis showed that the specific biosurfactant activity depended on the ratios of both iso to normal even-numbered fatty acids and anteiso to iso odd-numbered fatty acids. A multiple regression model accurately predicted the specific biosurfactant activities of four newly purified biosurfactants (r2= 0.91). The fatty acid composition of the biosurfactant produced by Bacillus subtilis subsp. subtilis strain T89-42 was altered by the addition of branched-chain amino acids to the growth medium. The specific activities of biosurfactants produced in cultures with different amino acid additions were accurately predicted by the multiple regression model derived from the fatty acid compositions (r2= 0.95). Our work shows that many strains of Bacillus mojavensis and Bacillus subtilis produce biosurfactants and that the fatty acid composition is important for biosurfactant activity.  相似文献   

18.
Recent work on biosurfactant release by thermophilic dairy streptococci is reviewed. There is a suggestion thatStreptococcus thermophilus isolates may release biosurfactants that stimulate detachment of already-adhering cells and leave an anti-adhesive coating on a substratum. A previously published rapid screening method is described for the identification of biosurfactant-releasing microorganisms, and growth medium supplements to enhance biosurfactant release by thermophilic dairy streptococci are reported. New experimental work described includes the isolation and purification of biosurfactants from dairy isolates by thin layer chromatography. Many compounds isolated were extremely surface-active and reduced the water surface tension to values around 30 mJ m–2 at a concentration of 10 mg ml–1. Most importantly, the thin layer chromatograms of various isolates resembled each other, and an adsorbed purified compound from one isolate retarded the deposition to glass of another isolate by a factor of two. Provided our findings implicate that these biosurfactants could also be adsorbed to heat exchanger plates in pasteurizers and thereby retard colonization by thermophilic streptococci, these compounds may have major economic implications. Further work is required, however.  相似文献   

19.
ABSTRACT

Lead contamination in soil due to anthropogenic activities has amplified and therefore, remediation is of prime significance due to its nonbiodegradability and toxicity effects. This study focuses on lead removal from the soil collected from a rifle range using biosurfactants produced from native microorganisms and edible oils. Native microorganisms in contaminated soil served as a source for biosurfactant production aided by edible vegetable oils such as palm oil and gingelly oil. Preliminary isolation and characterization studies indicated the presence of Pseudomonas aeruginosa that produced biosurfactant and removed lead simultaneously. Batch adsorption experiments showed 96%–99.6% of lead adsorption following Langmuir isotherm model. Lead desorption of 23.6% occurred without biosurfactant. Whereas in the presence of biosurfactants, enhanced desorption of 62.3% was observed. Of both palm oil and gingelly oil derived biosurfactants, the former reached a lead removal efficiency of 93.6% indicating the feasibility and effectiveness of the biosurfactants for contaminated site remediation.  相似文献   

20.
Summary A plasmid vector (denoted pRC2312) was constructed, which replicates autonomously in Escherichia coli, Saccharomyces cerevisiae and Candida albicans. It contains LEU2, URA3 and an autonomously replicating sequence (ARS) from C. albicans for selection and replication in yeasts, and bla (ampicillin resistance) and ori for selection and replication in E. coli. S. cerevisiae AH22 (Leu) was transformed by pRC2312 to Leu at a frequency of 1.41 × 105 colonies per g DNA. Transformation of C. albicans SGY-243 (Ura-) to Ura+ with pRC2312 resulted in smaller transformant colonies at a frequency of 5.42 × 103 per g DNA where the plasmid replicated autonomously in transformed cells, and larger transformant colonies at a frequency of 32 per g DNA, in which plasmid integrated into the genome. Plasmid copy number in yeasts was determined by a DNA hybridization method and was estimated to be 15±3 per haploid genome in S. cerevisiae and 2–3 per genome in C. albicans replicative transformants. Multiple tandem integration occurred in integrative transformants and copy number of the integrated sequence was estimated to be 7–12 per diploid genome. The C. albicans ADE2 gene was ligated into plasmid pRC2312 and the construct transformed Ade strains of both C. albicans and S. cerevisiae to Ade+. The vector pRC2312 was also used to clone a fragment of C. albicans genomic DNA containing an aspartic proteinase gene. C. albicans transformants harboring this plasmid showed a two-fold increase in aspartic proteinase activity. However S. cerevisiae transformants showed no such increase in proteinase activity, suggesting the gene was not expressed in S. cerevisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号