首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Hydroxy-2-deoxyadenosine triphosphate (2-OH-dATP), generated by the oxidation of dATP, can be misincorporated by DNA polymerases opposite guanine in template DNA during DNA replication, thus causing spontaneous mutagenesis. We demonstrated that mouse MUTYH (mMUTYH) has a DNA glycosylase activity excising not only adenine opposite 8-oxoguanine (8-oxoG) but also 2-hydroxyadenine (2-OH-A) opposite guanine, using purified recombinant thioredoxin-mMUTYH fusion protein. mMUTYH formed a stable complex with duplex oligonucleotides containing an adenine:8-oxoG pair, but the binding of mMUTYH to oligonucleotides containing a 2-OH-A:guanine pair was barely detectable, thus suggesting that mMUTYH recognizes and interacts with these two substrates in a different manner which may reflect the difference in the base excision repair process for each substrate. Mutant mMUTYH with G365D amino acid substitution, corresponding to a G382D germline mutation of human MUTYH found in familial adenomatous polyposis patients, almost completely retained its DNA glycosylase activity excising adenine opposite 8-oxoG; however, it possessed 1.5% of the wild-type activity excising 2-OH-A opposite guanine. Our results imply that the reduced repair capacity of the mutant hMUTYH(G382D), which inefficiently excises 2-OH-A opposite guanine, results in an increased occurrence of somatic G:C to T:A transversion mutations in the APC gene as well as tumorigenesis in the colon.  相似文献   

2.
MutY homolog (MUTYH) excises adenine opposite 8-oxoguanine (8-oxoG) in DNA, thus preventing occurrence of G:C to T:A transversion. In cell-free extract prepared from the thymocytes of wild type but not MUTYH-null mice, adenine opposite 8-oxoG in DNA was excised by MUTYH, however, the generated apurinic (AP) site opposite 8-oxoG mostly remained unincised. Recombinant mouse MUTYH (mMUTYH) efficiently excised adenine opposite 8-oxoG and prevented mouse AP endonuclease (mAPEX1) from incising the generated AP site. In contrast, an AP site opposite 8-oxoG created by uracil DNA glycosylase or tetrahydrofuran opposite 8-oxoG was efficiently incised by mAPEX1 in the presence of an excess amount of mMUTYH. Mutant mMUTYH with R361A or G365D substitution, excised adenine opposite 8-oxoG as efficiently as did wild-type mMUTYH, but failed to prevent mAPEX1 from incising the generated AP site. Wild-type mMUTYH bound duplex oligonucleotides containing A:8-oxoG pair with a lower apparent Kd than that of the mutants, and prevented OGG1 from excising 8-oxoG opposite adenine or the generated AP site. The G365D mutant failed to prevent OGG1 from excising 8-oxoG opposite the generated AP site, thus indicating that the protection of its own product by mMUTYH is an intrinsic function which depends on the C-terminal domain of mMUTYH.  相似文献   

3.
MUTYH-associated polyposis (MAP) is the only inherited colorectal cancer syndrome that is associated with inherited biallelic mutations in a base excision repair gene. The MUTYH glycosylase plays an important role in preventing mutations associated with 8-oxoguanine (OG) by removing adenine residues that have been misincorporated opposite OG. MAP-associated mutations are present throughout MUTYH, with a large number coding for missense variations. To date the available information on the functional properties of MUTYH variants is conflicting. In this study, a kinetic analysis of the adenine glycosylase activity of MUTYH and several variants was undertaken using a correction for active fraction to control for differences due to overexpression and purification. Using these methods, the rate constants for steps involved in the adenine removal process were determined for the MAP variants Y165C, G382D, P391L and Q324R MUTYH. Under single-turnover conditions, the rate of adenine removal for these four variants was found to be 30–40% of WT MUTYH. In addition, the ability of MUTYH and the variants to suppress mutations and complement for the absence of MutY in Escherichia coli was assessed using rifampicin resistance assays. The presence of WT and Q324R MUTYH resulted in complete suppression of the mutation frequency, while G382D MUTYH showed reduced ability to suppress the mutation frequency. In contrast, the mutation frequency observed upon expression of P391L and Y165C MUTYH were similar to the controls, suggesting no activity toward preventing DNA mutations. Notably, though all variations studied herein resulted in similar reductions in adenine glycosylase activity, the effects in the bacterial complementation are quite different. This suggests that the consequences of a specific amino acid variation on overall repair in a cellular context may be magnified.  相似文献   

4.
The MUTYH DNA glycosylase specifically removes adenine misincorporated by replicative polymerases opposite the oxidized purine 8-oxo-7,8-dihydroguanine (8-oxoG). A defective protein activity results in the accumulation of G > T transversions because of unrepaired 8-oxoG:A mismatches. In humans, MUTYH germline mutations are associated with a recessive form of familial adenomatous polyposis and colorectal cancer predisposition (MUTYH-associated polyposis, MAP). Here we studied the repair capacity of the MUTYH variants R171W, E466del, 137insIW, Y165C and G382D, identified in MAP patients. Following expression and purification of human proteins from a bacterial system, we investigated MUTYH incision capacity on an 8-oxoG:A substrate by standard glycosylase assays. For the first time, we employed the surface plasmon resonance (SPR) technology for real-time recording of the association/dissociation of wild-type and MUTYH variants from an 8-oxoG:A DNA substrate. When compared to the wild-type protein, R171W, E466del and Y165C variants showed a severe reduction in the binding affinity towards the substrate, while 137insIW and G382D mutants manifested only a slight decrease mainly due to a slower rate of association. This reduced binding was always associated with impairment of glycosylase activity, with adenine removal being totally abrogated in R171W, E466del and Y165C and only partially reduced in 137insIW and G382D. Our findings demonstrate that SPR analysis is suitable to identify defective enzymatic behaviour even when mutant proteins display minor alterations in substrate recognition.  相似文献   

5.
The modified base 7,8-dihydro-8-oxo-guanine (8-oxoG) is one of the most stable deleterious products of oxidative DNA damage because it mispairs with adenine during DNA replication. In the fission yeast Schizosaccharomyces pombe, the MutY homolog (SpMYH) is responsible for removing misincorporated adenines from A/8-oxoG or A/G mismatches and thus preventing G:C to T:A mutations. In order to study the functional role of SpMYH, an SpMYH knockout strain was constructed. The SpMYH knockout strain, which does not express SpMYH and has no A/8-oxoG glycosylase activity, displays a 36-fold higher frequency of spontaneous mutations than the wild type strain. Disruption of SpMYH causes increased sensitivity to H2O2 but not to UV-irradiation. Expression of SpMYH in the mutant cells restores the adenine glycosylase activity, reduces the mutation frequency, and elevates the resistance to H2O2. Asp172 of SpMYH is conserved in a helix-hairpin-helix superfamily of glycosylases. The SpMYHA strain expressing D172N SpMYH retained the mutator phenotype. Moreover, when D172N mutant SpMYH was expressed in the wild-type cells, the mutation frequency observed was even higher than that of the parental strains. Thus, a mutant SpMYH that retains substrate-binding activity but is defective in glycosylase activity exhibits a dominant negative effect. This is the first demonstration that a MutY homolog plays an important role in protecting cells against oxidative DNA damage in eukaryotes.  相似文献   

6.
There are three types of mouse Mutyh mRNAs (type a, b and c) generated by alternative splicing, and type b mRNA is a major form among the three in most of the tissues examined. The level of type c mRNA is relatively high in brain. Type a and b mRNAs were expected to encode 57.7 kDa protein (MUTYHalpha), while type c mRNA had a partly different open reading frame encoding a 50.2 kDa protein (MUTYHbeta). An in vitro translation of type b and c mRNAs produced a 50 kDa MUTYHalpha and 47 kDa MUTYHbeta, respectively. MUTYHalpha and MUTYHbeta were detected in wild-type embryonic stem (ES) cells or thymocytes prepared from wild-type mice, but neither MUTYH-null ES cells nor thymocytes prepared from MUTYH-null mice. Both MUTYHalpha and MUTYHbeta were mainly localized in the nuclei and some in mitochondria in wild-type ES cells. Recombinant MUTYHalpha and beta were expressed as fusion proteins with thioredoxin in Escherichia coli, but only MUTYHalpha was partly soluble and thus could be purified. Recombinant MUTYHalpha possessed DNA glycosylase activities to excise adenine opposite 8-oxoguanine and guanine but not AP lyase activity.  相似文献   

7.
To counteract oxidative damage in nucleic acids, mammalian cells are equipped with several defense mechanisms. We herein review that MTH1, MUTYH and OGG1 play important roles in mammalian cells avoiding an accumulation of oxidative DNA damage, both in the nuclear and mitochondrial genomes, thereby suppressing carcinogenesis and cell death. MTH1 efficiently hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-dGTP, 8-oxo-dATP and 2-hydroxy (OH)-dATP, to the monophosphates, thus avoiding the incorporation of such oxidized nucleotides into the nuclear and mitochondrial genomes. OGG1 excises 8-oxoG in DNA as a DNA glycosylase and thus minimizes the accumulation of 8-oxoG in the cellular genomes. MUTYH excises adenine opposite 8-oxoG, and thus suppresses 8-oxoG-induced mutagenesis. MUTYH also possesses a 2-OH-A DNA glycosylase activity for excising 2-OH-A incorporated into the cellular genomes. Increased susceptibilities to spontaneous carcinogenesis of the liver, lung or intestine were observed in MTH1-, OGG1- and MUTYH-null mice, respectively. The increased occurrence of lung tumors in OGG1-null mice was abolished by the concomitant disruption of the Mth1 gene, indicating that an increased accumulation of 8-oxoG and/or 2-OH-A might cause cell death. Furthermore, these defense mechanisms also likely play an important role in neuroprotection.  相似文献   

8.
Mutagenesis and carcinogenesis caused by the oxidation of nucleic acids   总被引:5,自引:0,他引:5  
Genomes and their precursor nucleotides are highly exposed to reactive oxygen species, which are generated both as byproducts of oxygen respiration or molecular executors in the host defense, and by environmental exposure to ionizing radiation and chemicals. To counteract such oxidative damage in nucleic acids, mammalian cells are equipped with three distinct enzymes. MTH1 protein hydrolyzes oxidized purine nucleoside triphosphates, such as 8-oxo-2'-deoxyguanosine triphosphate and 2-hydroxy-2'-deoxyadenosine triphosphate (2-OH-dATP), to the corresponding monophosphates. We observed increased susceptibility to spontaneous carcinogenesis in MTH1-null mice, which exhibit an increased occurrence of A:T-->C:G and G:C-->T:A transversion mutations. 8-Oxoguanine (8-oxoG) DNA glycosylase, encoded by the OGG1 gene, and adenine DNA glycosylase, encoded by the MUTYH gene, are responsible for the suppression of G:C to T:A transversions caused by the accumulation of 8-oxoG in the genome. Deficiency of these enzymes leads to increased tumorigenesis in the lung and intestinal tract in mice, respectively. MUTYH deficiency may also increase G:C to T:A transversions through the misincorporation of 2-OH-dATP, especially in the intestinal tract, since MUTYH can excise 2-hydroxyadenine opposite guanine in genomic DNA and the repair activity is selectively impaired by a mutation found in patients with autosomal recessive colorectal adenomatous polyposis.  相似文献   

9.
The Escherichia coli Fpg protein is involved in the repair of oxidized residues. We examined, by targeted mutagenesis, the effect of the conserved lysine residue at position 57 upon the various catalytic activities of the Fpg protein. Mutant Fpg protein with Lys-57-->Gly (K57G) had dramatically reduced DNA glycosylase activity for the excision of 7,8-dihydro-8-oxo-guanine (8-oxoG). While wild type Fpg protein cleaved 8-oxoG/C DNA with a specificity constant ( k cat/ K M) of 0.11/(nM@min), K57G cleaved the same DNA 55-fold less efficiently. FpgK57G was poorly effective in the formation of Schiff base complex with 8-oxoG/C DNA. The efficiency in the binding of 8-oxoG/C DNA duplex for K57G mutant was decreased 16-fold. The substitution of Lys-57 for another basic amino acid Arg (K57R) had a slight effect on the 8-oxoG-DNA glycosylase activity and Schiff base formation. The DNA glycosylase activities of FpgK57G and FpgK57R using 2,6-diamino-4-hydroxy-5N-methylformamidopyrimidine residues as substrate were comparable to that of wild type Fpg. In vivo, the mutant K57G, in contrast to the mutant K57R and wild type Fpg, only partially restored the ability to prevent spontaneously induced transitions G/C-->T/A in E.coli BH990 ( fpg mutY ) cells. These results suggest an important role for Lys-57 in the 8-oxoG-DNA glycosylase activity of the Fpg protein in vitro and in vivo.  相似文献   

10.
Pope MA  Chmiel NH  David SS 《DNA Repair》2005,4(3):315-325
Escherichia coli MutY and its eukaryotic homologues play an important role in preventing mutations by removing adenine from 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A mismatches. It has recently been demonstrated that inherited biallelic mutations in the genes encoding the human homologue of MutY (hMYH) are correlated with a genetic predisposition for multiple colorectal adenomas and carcinomas. The two most common hMYH variants found in patients with colorectal cancer are Y165C and G382D. In this study, we examined the equivalent variants in the murine MutY homologue (mMYH), Y150C and G365D. The Y150C mMYH enzyme showed a large decrease in the rate of adenine removal from both OG:A- and G:A-containing substrates, while G365D mMYH showed a decrease in the ability to catalyze adenine removal only with a G:A-containing substrate. Both mMYH variants exhibit a significantly decreased affinity for duplexes containing noncleavable 2'-deoxyadenosine analogues. In addition, the human apurinic/apyrimidinic endonuclease (Ape1) stimulated product formation by wild-type and G365D mMYH with an OG:A substrate under conditions of multiple-turnover ([E]<[S]). In contrast, the presence of Ape1 nearly completely inhibited adenine removal by Y150C mMYH from the OG:A mismatch substrate. The more deleterious effect of Ape1 on the glycosylase activity of Y150C relative to G365D mMYH correlated with the more compromised binding affinity of Y150C to substrate analogue duplexes. These results suggest that the equivalent hMYH variants may be significantly compromised in substrate targeting in vivo due to a decrease in binding to substrate DNA; moreover, competition with other DNA binding proteins may further reduce the effective adenine glycosylase activity in vivo.  相似文献   

11.
K S Ellison  W Peng    G McFadden 《Journal of virology》1996,70(11):7965-7973
The D4R gene of vaccinia virus encodes a functional uracil-DNA glycosylase that is essential for viral viability (D. T. Stuart, C. Upton, M. A. Higman, E. G. Niles, and G. McFadden, J. Virol. 67:2503-2513, 1993), and a D4R mutant, ts4149, confers a conditional lethal defect in viral DNA replication (A. K. Millns, M. S. Carpenter, and A. M. DeLange, Virology 198:504-513, 1994). The mutant ts4149 protein was expressed in vitro and assayed for uracil-DNA glycosylase activity. Less than 6% of wild-type activity was observed at permissive temperatures, but the ts4149 protein was completely inactive at the nonpermissive temperature. Mutagenesis of the ts4149 gene back to wild type (Arg-179-->Gly) restored full activity. The ts4149 protein was considerably reduced in lysates of cells infected at the permissive temperature, and its activity was undetectable, even in the presence of the uracil glycosylase inhibitor protein, which inhibits the host uracil-DNA glycosylases but not that of vaccinia virus. Thus the ts4149 protein is thermolabile, correlating uracil removal with vaccinia virus DNA replication. Three active-site amino acids of the vaccinia virus uracil-DNA glycosylase were mutated (Asp-68-->Asn, Asn-120-->Val, and His-181-->Leu), producing proteins that were completely defective in uracil excision but still retained the ability to bind DNA. Each mutated D4R gene was transfected into vaccinia virus ts4149-infected cells in order to assess the recombination events that allowed virus survival at 40 degrees C. Genetic analysis and sequencing studies revealed that the only viruses to survive were those in which recombination eliminated the mutant locus. We conclude that the uracil cleavage activity of the D4R protein is essential for its function in vaccinia virus DNA replication, suggesting that the removal of uracil residues plays an obligatory role.  相似文献   

12.
MUTYH glycosylase recognizes the 8-oxoG:A mismatch and is able to excise the adenine base using proofreading mechanisms. Some papers have reported a strong association between cancer development or aggressiveness and MUTYH gene mutations. The aim of this study was to find a possible association between the most frequent MUTYH mutations and melanoma in the context of a case-control pilot study. One hundred ninety-five melanoma patients and 195 healthy controls were matched for sex and age. Clinical and laboratory data were collected in a specific database and all individuals were analyzed for MUTYH mutations by high-resolution melting and direct sequencing techniques. Men and women had significantly different distributions of tumor sites and phototypes. No significant associations were observed between the Y165C, G382D and V479F MUTYH mutations and risk of melanoma development or aggressiveness. Our preliminary findings therefore do not confirm a role for MUTYH gene mutations in the melanoma risk. Further studies are necessary for the assessment of MUTYH not only in melanoma but also other cancer types with the same embryonic origin, in the context of larger arrays studies of genes involved in DNA stability or integrity.  相似文献   

13.
MUTYH is a base excision repair (BER) enzyme that prevents mutations in DNA associated with 8-oxoguanine (OG) by catalyzing the removal of adenine from inappropriately formed OG:A base-pairs. Germline mutations in the MUTYH gene are linked to colorectal polyposis and a high risk of colorectal cancer, a syndrome referred to as MUTYH-associated polyposis (MAP). There are over 300 different MUTYH mutations associated with MAP and a large fraction of these gene changes code for missense MUTYH variants. Herein, the adenine glycosylase activity, mismatch recognition properties, and interaction with relevant protein partners of human MUTYH and five MAP variants (R295C, P281L, Q324H, P502L, and R520Q) were examined. P281L MUTYH was found to be severely compromised both in DNA binding and base excision activity, consistent with the location of this variation in the iron-sulfur cluster (FCL) DNA binding motif of MUTYH. Both R295C and R520Q MUTYH were found to have low fractions of active enzyme, compromised affinity for damaged DNA, and reduced rates for adenine excision. In contrast, both Q324H and P502L MUTYH function relatively similarly to WT MUTYH in both binding and glycosylase assays. However, P502L and R520Q exhibited reduced affinity for PCNA (proliferation cell nuclear antigen), consistent with their location in the PCNA-binding motif of MUTYH. Whereas, only Q324H, and not R295C, was found to have reduced affinity for Hus1 of the Rad9–Hus1–Rad1 complex, despite both being localized to the same region implicated for interaction with Hus1. These results underscore the diversity of functional consequences due to MUTYH variants that may impact the progression of MAP.  相似文献   

14.
MUTYH is a base-excision repair glycosylase that removes adenine opposite 8-oxoguanine (OG). Variants of MUTYH defective in functional activity lead to MUTYH-associated polyposis (MAP), which progresses to cancer with very high penetrance. Whole genome and whole exome sequencing studies have found MUTYH deficiencies in an increasing number of cancer types. While the canonical OG:A repair activity of MUTYH is well characterized and similar to bacterial MutY, here we review more recent evidence that MUTYH has activities independent of OG:A repair and appear centered on the interdomain connector (IDC) region of MUTYH. We summarize evidence that MUTYH is involved in rapid DNA damage response (DDR) signaling, including PARP activation, 9-1-1 and ATR signaling, and SIRT6 activity. MUTYH alters survival and DDR to a wide variety of DNA damaging agents in a time course that is not consistent with the formation of OG:A mispairs. Studies that suggest MUTYH inhibits the repair of alkyl-DNA damage and cyclopyrimidine dimers (CPDs) is reviewed, and evidence of a synthetic lethal interaction with mismatch repair (MMR) is summarized. Based on these studies we suggest that MUTYH has evolved from an OG:A mispair glycosylase to a multifunctional scaffold for DNA damage response signaling.  相似文献   

15.
Escherichia coli MutY is an adenine DNA glycosylase active on DNA substrates containing A/G, A/C, or A/8-oxoG mismatches. Although MutY can form a covalent intermediate with its DNA substrates, its possession of 3' apurinic lyase activity is controversial. To study the reaction mechanism of MutY, the conserved Asp-138 was mutated to Asn and the reactivity of this mutant MutY protein determined. The glycosylase activity was completely abolished in the D138N MutY mutant. The D138N mutant and wild-type MutY protein also possessed different DNA binding activities with various mismatches. Several lysine residues were identified in the proximity of the active site by analyzing the imino-covalent MutY-DNA intermediate. Mutation of Lys-157 and Lys-158 both individually and combined, had no effect on MutY activities but the K142A mutant protein was unable to form Schiff base intermediates with DNA substrates. However, the MutY K142A mutant could still bind DNA substrates and had adenine glycosylase activity. Surprisingly, the K142A mutant MutY, but not the wild-type enzyme, could promote a beta/delta-elimination on apurinic DNA. Our results suggest that Asp-138 acts as a general base to deprotonate either the epsilon-amine group of Lys-142 or to activate a water molecule and the resulting apurinic DNA then reacts with Lys-142 to form the Schiff base intermediate with DNA. With the K142A mutant, Asp-138 activates a water molecule to attack the C1' of the adenosine; the resulting apurinic DNA is cleaved through beta/delta-elimination without Schiff base formation.  相似文献   

16.
MUTYH-associated polyposis (MAP) is a colorectal cancer predisposition syndrome that is caused by inherited biallelic mutations in the base excision repair (BER) gene, MUTYH. MUTYH is a DNA glycosylase that removes adenine (A) misinserted opposite 8-oxo-7,8-dihydro-2′-deoxyguanosine (OG). In this work, wild type (WT) MUTYH overexpressed using a baculovirus-driven insect cell expression system (BEVS) provided significantly higher levels of enzyme compared to bacterial overexpression. The isolated MUTYH enzyme was analyzed for potential post-translational modifications using mass spectrometry. An in vivo phosphorylation site was validated at Serine 524, which is located in the C-terminal OG recognition domain within the proliferating cell nuclear antigen (PCNA) binding region. Characterization of the phosphomimetic (S524D) and phosphoablating (S524A) mutants together with the observation that Ser 524 can be phosphorylated suggest that this residue may play an important regulatory role in vivo by altering stability and OG:A mismatch affinity.  相似文献   

17.
The oxidation product of 2'-deoxyguanosine, 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG), produces G:C to T:A transversion mutations. The Escherichia coli base excision repair glycosylase MutY plays an important role in preventing OG-associated mutations by removing adenines misincorporated opposite OG lesions during DNA replication. Recently, biallelic mutations in the human MutY homologue (hMYH) have been correlated with the development of colorectal cancer. The two most common mutations correspond to two single amino acid substitutions in the hMYH protein: Y165C and G382D [Al-Tassan, N., et al. (2002) Nat. Genet. 30, 227-232]. Previously, our laboratory analyzed the adenine glycosylase activity of the homologous variant E. coli MutY enzymes, Y82C and G253D [Chmiel, N. H., et al. (2003) J. Mol. Biol. 327, 431-443]. This work demonstrated that both variants have a reduced adenine glycosylase activity and affinity for substrate analogues compared to wild-type MutY. Recent structural work on Bacillus stearothermophilus MutY bound to an OG:A mismatch-containing duplex indicates that both residues aid in recognition of OG [Fromme, J. C., et al. (2004) Nature 427, 652-656]. To determine the extent with which Tyr 82 and Gly 253 contribute to catalysis of adenine removal by E. coli MutY, we made a series of additional modifications in these residues, namely, Y82F, Y82L, and G253A. When the substrate analogue 2'-deoxy-2'-fluoroadenosine (FA) in duplex paired with G or OG is used, both Y82F and G253A showed reduced binding affinity, and G253A was unable to discriminate between OG and G when paired with FA. Additionally, compromised glycosylase activity of Y82F, Y82C, and G253A MutY was observed using the nonoptimal G:A substrate, or at low reaction temperatures. Interestingly, adenine removal from an OG:A-containing DNA substrate by Y82C MutY was also shown to be extremely sensitive to the NaCl concentration. The most surprising result was the remarkably similar activity of Y82L MutY to the WT enzyme under all conditions examined, indicating that a leucine residue may effectively replace tyrosine for intercalation at the OG:A mismatch. The results contained herein provide further insight regarding the intricate roles of Tyr 82 and Gly 253 in the OG recognition and adenine excision functions of MutY.  相似文献   

18.
Eutsey R  Wang G  Maier RJ 《DNA Repair》2007,6(1):19-26
MutY is an adenine glycosylase that has the ability to efficiently remove adenines from adenine/7,8-dihydro-8-oxoguanine (8-oxo-G) or adenine/guanine mismatches, and plays an important role in oxidative DNA damage repair. The human gastric pathogen Helicobacter pylori has a homolog of the MutY enzyme. To investigate the physiological roles of MutY in H. pylori, we constructed and characterized a mutY mutant. H. pylori mutY mutants incubated at 5% O2 have a 325-fold higher spontaneous mutation rate than its parent. The mutation rate is further increased by exposing the mutant to atmospheric levels of oxygen, an effect that is not seen in an E. coli mutY mutant. Most of the mutations that occurred in H. pylori mutY mutants, as examined by rpoB sequence changes that confer rifampicin resistance, are GC to TA transversions. The H. pylori enzyme has the ability to complement an E. coli mutY mutant, restoring its mutation frequency to the wild-type level. Pure H. pylori MutY has the ability to remove adenines from A/8-oxo-G mismatches, but strikingly no ability to cleave A/G mismatches. This is surprising because E. coli MutY can more rapidly turnover A/G than A/8-oxo-G. Thus, H. pylori MutY is an adenine glycosylase involved in the repair of oxidative DNA damage with a specificity for detecting 8-oxo-G. In addition, H. pylori mutY mutants are only 30% as efficient as wild-type in colonizing the stomach of mice, indicating that H. pylori MutY plays a significant role in oxidative DNA damage repair in vivo.  相似文献   

19.
Adenine paired with 8-hydroxyguanine (oh8G), a major component of oxidative DNA damage, is excised by MYH base excision repair protein in human cells. Since repair activity of MYH protein on an A:G mismatch has also been reported, we compared the repair activity of His6-tagged MYH proteins, expressed in Spodoptera frugiperda Sf21 cells, on A:oh8G and A:G mismatches by DNA cleavage assay and gel mobility shift assay. We also compared the repair ability of type 1 mitochondrial protein with type 2 nuclear protein, as well as of polymorphic type 1-Q324 and 2-Q310 proteins with type 1-H324 and 2-H310 proteins by DNA cleavage assay and complementation assay of an Escherichia coli mutM mutY strain. In a reaction buffer with a low salt (0–50 mM) concentration, adenine DNA glycosylase activity of type 2 protein was detected on both A:oh8G and A:G substrates. However, in a reaction buffer with a 150 mM salt concentration, similar to physiological conditions, the glycosylase activity on A:G, but not on A:oh8G, was extremely reduced and the binding activity of type 2 protein for A:G, but not for A:oh8G, was proportionally reduced. The glycosylase activity on A:oh8G and the ability to suppress spontaneous mutagenesis were greater for type 2 than type 1 enzyme. There was apparently no difference in the repair activities between the two types of polymorphic MYH proteins. These results indicate that human MYH protein specifically catalyzes the glycosylase reaction on A:oh8G under physiological salt concentrations.  相似文献   

20.
Endonuclease V (deoxyinosine 3'-endonuclease) of Escherichia coli K-12 is a putative DNA repair enzyme that cleaves DNA's containing hypoxanthine, uracil, or mismatched bases. An endonuclease V (nfi) mutation was tested for specific mutator effects on a battery of trp and lac mutant alleles. No marked differences were seen in frequencies of spontaneous reversion. However, when nfi mutants were treated with nitrous acid at a level that was not noticeably mutagenic for nfi(+) strains, they displayed a high frequency of A:T-->G:C, and G:C-->A:T transition mutations. Nitrous acid can deaminate guanine in DNA to xanthine, cytosine to uracil, and adenine to hypoxanthine. The nitrous acid-induced A:T-->G:C transitions were consistent with a role for endonuclease V in the repair of deaminated adenine residues. A confirmatory finding was that the mutagenesis was depressed at a locus containing N(6)-methyladenine, which is known to be relatively resistant to nitrosative deamination. An alkA mutation did not significantly enhance the frequency of A:T-->G:C mutations in an nfi mutant, even though AlkA (3-methyladenine-DNA glycosylase II) has hypoxanthine-DNA glycosylase activity. The nfi mutants also displayed high frequencies of nitrous acid-induced G:C-->A:T transitions. These mutations could not be explained by cytosine deamination because an ung (uracil-DNA N-glycosylase) mutant was not similarly affected. However, these findings are consistent with a role for endonuclease V in the removal of deaminated guanine, i.e., xanthine, from DNA. The results suggest that endonuclease V helps to protect the cell against the mutagenic effects of nitrosative deamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号