首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
Mating-type silencing in Schizosaccharomyces pombe is brought about by cooperative interactions between cis-acting DNA sequences flanking mat2P and mat3M and the trans-acting factors, namely Swi6, Clr1-Clr4, Clr6, and Rik1. In addition, DNA repair gene rhp6, which plays a role in post-replication DNA repair and ubiquitination of proteins including histones, is also involved in silencing, albeit in a unique way; its effect on silencing and chromatin structure of the donor loci is dependent on their switching competence. Earlier, we hypothesized the existence of a mediator of Rhp6 that plays a role in reestablishment of the chromatin structure coincidentally with DNA replication associated with mating-type switching. Here we report the identification of a 22-kDa protein as an in vivo target and mediator of Rhp6 in mating-type silencing. The level of this protein is greatly elevated in sng1-1/rhp6(-) mutant and rhp6Delta as compared with wild type strain. Both the deletion and overexpression of the gene encoding this protein elicit switching-dependent loss of silencing. Furthermore, the 22-kDa protein undergoes Rhp6-dependent multiubiquitination and associates with mat2 locus during S phase in wild type cells. Interestingly, it contains a histone-fold motif similar to that of histone H2A, and like histone H2A, it interacts strongly with histone H2B in vitro. These results indicate that the 22-kDa protein, renamed as the ubiquitinated histone-like protein Uhp1, is an in vivo target/mediator of Rhp6 in silencing. Thus, regulation of association of Uhp1 with chromatin and ubiquitination followed by degradation may play a role in reestablishment of inactive chromatin structure at the silent mating-type loci.  相似文献   

2.
3.
4.
We identified two predicted proteins in Schizosaccharomyces pombe, Rrp1 (SPAC17A2.12) and Rrp2 (SPBC23E6.02) that share 34% and 36% similarity to Saccharomyces cerevisiae Ris1p, respectively. Ris1p is a DNA-dependent ATP-ase involved in gene silencing and DNA repair. Rrp1 and Rrp2 also share similarity with S. cerevisiae Rad5 and S. pombe Rad8, containing SNF2-N, RING finger and Helicase-C domains. To investigate the function of the Rrp proteins, we studied the DNA damage sensitivities and genetic interactions of null mutants with known DNA repair mutants. Single Δrrp1 and Δrrp2 mutants were not sensitive to CPT, 4NQO, CDPP, MMS, HU, UV or IR. The double mutants Δrrp1 Δrhp51 and Δrrp2 Δrhp51 plus the triple Δrrp1 Δrrp2 Δrhp51 mutant did not display significant additional sensitivity. However, the double mutants Δrrp1 Δrhp57 and Δrrp2 Δrhp57 were significantly more sensitive to MMS, CPT, HU and IR than the Δrhp57 single mutant. The checkpoint response in these strains was functional. In S. pombe, Rhp55/57 acts in parallel with a second mediator complex, Swi5/Sfr1, to facilitate Rhp51-dependent DNA repair. Δrrp1 Δsfr1 and Δrrp2 Δsfr1 double mutants did not show significant additional sensitivity, suggesting a function for Rrp proteins in the Swi5/Sfr1 pathway of DSB repair. Consistent with this, Δrrp1 Δrhp57 and Δrrp2 Δrhp57 mutants, but not Δrrp1 Δsfr1 or Δrrp2 Δsfr1 double mutants, exhibited slow growth and aberrations in cell and nuclear morphology that are typical of Δrhp51.  相似文献   

5.
Repair of DNA double-strand break (DSB) is an evolutionary conserved Rad51-mediated mechanism. In yeasts, Rad51 paralogs, Saccharomyces cerevisiae Rad55-Rad57 and Schizosaccharomyces pombe Rhp55-Rhp57 are mediators of the nucleoprotein Rad51 filament formation. As shown in this work, a novel Rad51Sp-dependent pathway of DSB repair acts in S. pombe parallel to the pathway mediated by Rad51 paralogs. A new gene dds20 + that controls this pathway was identified. The overexpression of dds20 + partially suppresses defects of mutant rhp55Δ in DNA repair. Cells of dds20Δ manifest hypersensitivity to a variety of genotoxins. Epistatic analysis revealed that dds20 + is a gene of the recombinational repair group. The role of Dds20 in repair of spontaneous damages occurring in the process of replication and mating-type switching remains unclear. The results obtained suggest that Dds20 has functions beyond the mitotic S phase. The Dds20 protein physically interacts with Rhp51(Rad51Sp). Dds20 is assumed to operate at early recombinational stages and to play a specific role in the Rad51 protein filament assembly differing from that of Rad51 paralogs.__________Translated from Genetika, Vol. 41, No. 6, 2005, pp. 736–745.Original Russian Text Copyright © 2005 by Salakhova, Savchenko, Khasanov, Chepurnaya, Korolev, Bashkirov.  相似文献   

6.
Genes transcribed by RNA polymerase II are silenced when introduced near the mat2 or mat3 mating-type loci of the fission yeast Schizosaccharomyces pombe. Silencing is mediated by a number of gene products and cis-acting elements. We report here the finding of novel trans-acting factors identified in a screen for high-copy-number disruptors of silencing. Expression of cDNAs encoding the putative E2 ubiquitin-conjugating enzymes UbcP3, Ubc15 (ubiquitin-conjugating enzyme), or Rhp6 (Rad homolog pombe) from the strong nmt1 promoter derepressed the silent mating-type loci mat2 and mat3 and reporter genes inserted nearby. Deletion of rhp6 slightly derepressed an ade6 reporter gene placed in the mating-type region, whereas disruption of ubcP3 or ubc15 had no obvious effect on silencing. Rhp18 is the S. pombe homolog of Saccharomyces cerevisiae Rad18p, a DNA-binding protein that physically interacts with Rad6p. Rhp18 was not required for the derepression observed when UbcP3, Ubc15, or Rhp6 was overproduced. Overexpressing Rhp6 active-site mutants showed that the ubiquitin-conjugating activity of Rhp6 is essential for disruption of silencing. However, high dosage of UbcP3, Ubc15, or Rhp6 was not suppressed by a mutation in the 26S proteasome, suggesting that loss of silencing is not due to an increased degradation of silencing factors but rather to the posttranslational modification of proteins by ubiquitination. We discuss the implications of these results for the possible modes of action of UbcP3, Ubc15, and Rhp6.  相似文献   

7.
Although DNA replication has been thought to play an important role in the silencing of mating type loci in Saccharomyces cerevisiae, recent studies indicate that silencing can be decoupled from replication. In Schizosaccharomyces pombe, mating type silencing is brought about by the trans-acting proteins, namely Swi6, Clr1-Clr4, and Rhp6, in cooperation with the cis-acting silencers. The latter contain an autonomous replication sequence, suggesting that DNA replication may be critical for silencing in S. pombe. To investigate the connection between DNA replication and silencing in S. pombe, we analyzed several temperature-sensitive mutants of DNA polymerase alpha. We find that one such mutant, swi7H4, exhibits silencing defects at mat, centromere, and telomere loci. This effect is independent of the checkpoint and replication defects of the mutant. Interestingly, the extent of the silencing defect in the swi7H4 mutant at the silent mat2 locus is further enhanced in absence of the cis-acting, centromere-proximal silencer. The chromodomain protein Swi6, which is required for silencing and is localized to mat and other heterochromatin loci, interacts with DNA polymerase alpha in vivo and in vitro in wild type cells. However, it does not interact with the mutant pol alpha and is delocalized away from the silent mat loci in the mutant. Our results demonstrate a role of DNA polymerase alpha in the establishment of silencing. We propose a recruitment model for the coupling of DNA replication with the establishment of silencing by the chromodomain protein Swi6, which may be applicable to higher eukaryotes.  相似文献   

8.
9.
The composition of posttranslational modifications on newly synthesized histones must be altered upon their incorporation into chromatin. These changes are necessary to maintain the same gene expression state at individual chromosomal loci before and after DNA replication. We have examined how one modification that occurs on newly synthesized histone H3, acetylation of K56, influences gene expression at epigenetically regulated loci in Saccharomyces cerevisiae. H3 K56 is acetylated by Rtt109p before its incorporation into chromatin during S phase, and this modification is then removed by the NAD+-dependent deacetylases Hst3p and Hst4p during G2/M phase. We found silenced loci maintain H3 K56 in a hypoacetylated state, and the absence of this modification in rtt109 mutants was compatible with HM and telomeric silencing. In contrast, loss of HST3 and HST4 resulted in hyperacetylation of H3 K56 within silent loci and telomeric silencing defects, despite the continued presence of Sir2p throughout these loci. These silencing defects in hst3Δ hst4Δ mutants could be suppressed by deletion of RTT109. In contrast, overexpression of Sir2p could not restore silencing in hst3Δ hst4Δ mutants. Together, our findings argue that HST3 HST4 play critical roles in maintaining the hypoacetylated state of K56 on histone H3 within silent chromatin.  相似文献   

10.
Homologous recombination is important for the repair of double-strand breaks and daughter strand gaps, and also helps restart stalled and collapsed replication forks. However, sometimes recombination is inappropriate and can have deleterious consequences. To temper recombination, cells have employed DNA helicases that unwind joint DNA molecules and/or dissociate recombinases from DNA. Budding yeast Srs2 is one such helicase. It can act by dissociating Rad51 nucleoprotein filaments, and is required for channelling DNA lesions to the post-replication repair (PRR) pathway. Here we have investigated the role of Srs2 in controlling recombination in fission yeast. Similar to budding yeast, deletion of fission yeast srs2 results in hypersensitivity to a range of DNA damaging agents, rhp51-dependent hyper-recombination and synthetic sickness when combined with rqh1 that is suppressed by deleting rhp51, rhp55 or rhp57. Epistasis analysis indicates that Srs2 and the structure-specific endonuclease Mus81–Eme1 function in a sub-pathway of PRR for the tolerance/repair of UV-induced damage. However, unlike in Saccharomyces cerevisiae, Srs2 is not required for channelling lesions to the PRR pathway in Schizosaccharomyces pombe. In addition to acting as an antirecombinase, we also show that Srs2 can aid the recombinational repair of camptothecin-induced collapsed replication forks, independently of PRR.  相似文献   

11.
Arcangioli B 《EMBO reports》2000,1(2):145-150
The mating-type switching of the fission yeast, Schizosaccharomyces pombe, is highly regulated. Two consecutive asymmetric divisions are required to produce one mating-type switched cell among the four progeny. Using DNA density-gradient centrifugation we demonstrate that one-fourth of the mat1 DNA is not replicated by the conventional semi-conservative mode, but instead both DNA strands are synthesized de novo. Our data are consistent with a gene conversion event, initiated by a site- and strand-specific DNA break (SSB). We further demonstrate that the virgin switched mat1-containing chromatid no longer contained the nick, while it is reintroduced during the lagging strand synthesis of the mat1 locus on the sister chromatid. This finding establishes at the molecular level a firm experimental link between the phenotype and genotype in the process of asymmetric mating-type switching during mitotic divisions.  相似文献   

12.
TheSchizosaccharomyces pombe rhp51 + gene encodes a recombinational repair protein that shares significant sequence identities with the bacterial RecA and theSaccharomyces cerevisiae RAD51 protein. Levels ofrhp51 + mRNA increase following several types of DNA damage or inhibition of DNA synthesis. Anrhp51::ura4 fusion gene was used to identify the cis-acting promoter elements involved in regulatingrhp51 + expression in response to DNA damage. Two elements, designated DRE1 and DRE2 (fordamage-responsiveelement), match a decamer consensus URS (upstream repressing sequence) found in the promoters of many other DNA repair and metabolism genes fromS. cerevisiae. However, our results show that DRE1 and DRE2 each function as a UAS (upstream activating sequence) rather than a URS and are also required for DNA-damage inducibility of the gene. A 20-bp fragment located downstream of both DRE1 and DRE2 is responsible for URS function. The DRE1 and DRE2 elements cross-competed for binding to two proteins of 45 and 59 kDa. DNase I footprint analysis suggests that DRE1 and DRE2 bind to the same DNA-binding proteins. These results suggest that the DRE-binding proteins may play an important role in the DNA-damage inducibility ofrhp51 + expression.  相似文献   

13.
The DNA polymerase a enzymes from human, and budding (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are homologous proteins involved in initiation and replication of chromosomal DNA. Sequence comparision of human DNA polymerase α with that of S. cerevisiae and S. pombe shows overall levels of amino acid sequence identity of 32% and 34%, respectively. We report here that, despite the sequence conservation among these three enzymes, functionally active human DNA polymerase a fails to rescue several different conditional lethal alleles of the budding yeast POL1 gene at nonpermissive temperature. Furthermore, human DNA polymerase α cannot complement a null allele of budding yeast POL1 either in germinating spores or in vegetatively growing cells. In fission yeast, functionally active human DNA polymerase α is also unable to complement the disrupted polα::ura4 + allele in germinating spores. Thus, in vivo, DNA polymerase α has stringent species specificity for initiation and replication of chromosomal DNA.  相似文献   

14.
Summary The products of 11 switching (swi) genes are required for efficient mating-type (MT) switching in homothallic (h 90) strains of Schizosaccharomyces pombe. The MT region of h 90 comprises three cassette genes: the expression site mat1: 1 and two silent loci, mat2: 2 and mat3: 3. Besides reducing MT switching, the swi6 mutation leads to deletions in the MT region caused by intrachromosomal cross-overs between two paired cassettes. These deletions only arise if DNA double-strand breaks are present at mat1: 1, which initiate MT switching. Furthermore, swi6 allows meiotic recombination in the K region, a region of 16 kb between mat2: 2 and mat3: 3; in wild-type strains no recombination occurs in K. swi6 also allows the simultaneous expression of two different cassettes in the same haploid cell. Thus swi6 may have an influence on the general chromatin structure in the MT region.  相似文献   

15.
16.
This article discusses the advances made in epigenetic research using the model organism fission yeast Schizosaccharomyces pombe. S. pombe has been used for epigenetic research since the discovery of position effect variegation (PEV). This is a phenomenon in which a transgene inserted within heterochromatin is variably expressed, but can be stably inherited in subsequent cell generations. PEV occurs at centromeres, telomeres, ribosomal DNA (rDNA) loci, and mating-type regions of S. pombe chromosomes. Heterochromatin assembly in these regions requires enzymes that modify histones and the RNA interference (RNAi) machinery. One of the key histone-modifying enzymes is the lysine methyltransferase Clr4, which methylates histone H3 on lysine 9 (H3K9), a classic hallmark of heterochromatin. The kinetochore is assembled on specialized chromatin in which histone H3 is replaced by the variant CENP-A. Studies in fission yeast have contributed to our understanding of the establishment and maintenance of CENP-A chromatin and the epigenetic activation and inactivation of centromeres.  相似文献   

17.
18.
A functional homolog (rhp23) of human HHR23A and Saccharomyces cerevisiae RAD23 was cloned from the fission yeast Schizosaccharomyces pombe and characterized. Consistent with the role of Rad23 homologs in nucleotide excision repair, rhp23 mutant cells are moderately sensitive to UV light but demonstrate wild-type resistance to γ-rays and hydroxyurea. Expression of the rhp23, RAD23 or HHR23A cDNA restores UV resistance to the mutant, indicating that rhp23 is a functional homolog of the human and S.cerevisiae genes. The rhp23::ura4 mutation also causes a delay in the G2 phase of the cell cycle which is corrected when rhp23, RAD23 or HHR23A cDNA is expressed. Rhp23 is present throughout the cell but is located predominantly in the nucleus, and the nuclear levels of Rhp23 decrease around the time of S phase in the cell cycle. Rhp23 is ubiquitinated at low levels, but overexpression of the rhp23 cDNA induces a large increase in ubiquitination of other proteins. Consistent with a role in protein ubiquitination, Rhp23 binds ubiquitin, as determined by two-hybrid analysis. Thus, the rhp23 gene plays a role not only in nucleotide excision repair but also in cell cycle regulation and the ubiquitination pathways.  相似文献   

19.
Heterochromatin in S. pombe is associated with gene silencing at telomeres, the mating locus and centromeres. The compact heterochromatin structure raises the question how it unpacks and reforms during DNA replication. We show that the essential DNA replication factor Cdc18 (CDC6) associates with heterochromatin protein 1 (Swi6) in vivo and in vitro. Biochemical mapping and mutational analysis of the association domains show that the N-terminus of Cdc18 interacts with the chromoshadow domain of Swi6. Mutations in Swi6 that disrupt this interaction disrupt silencing and delay replication in the centromere. A mutation cdc18-I43A that reduces Cdc18 association with Swi6 has no silencing defect at the centromere, but changes Swi6 distribution and accelerates the timing of centromere replication. We suggest that fine tuning of Swi6 association at replication origins is important for negative as well as positive control of replication initiation.  相似文献   

20.
Replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein involved in DNA replication, recombination and repair. In Saccharomyces cerevisiae, several mutants in the RFA1 gene encoding the large subunit of RPA have been isolated and one of the mutants with a missense allele, rfa1-D228Y, shows a synergistic reduction in telomere length when combined with a yku70 mutation. So far, only one mutant allele of the rad11+ gene encoding the large subunit of RPA has been reported in Schizosaccharomyces pombe. To study the role of S.pombe RPA in DNA repair and possibly in telomere maintenance, we constructed a rad11-D223Y mutant, which corresponds to the S.cerevisiae rfa1-D228Y mutant. rad11-D223Y cells were methylmethane sulfonate, hydroxyurea, UV and γ-ray sensitive, suggesting that rad11-D223Y cells have a defect in DNA repair activity. Unlike the S.cerevisiae rfa1-D228Y mutation, the rad11-D223Y mutation itself caused telomere shortening. Moreover, Rad11-Myc bound to telomere in a ChIP assay. These results strongly suggest that RPA is directly involved in telomere maintenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号