首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
The cloning of cattle by somatic cell nuclear transfer (NT) is associated with a high incidence of abnormal placentation, excessive fluid accumulation in the fetal sacs (hydrops syndrome), and fetal overgrowth. Fetal and placental development was investigated at Day 50, during placentome formation; at Day 100, when placentation was completed; and at Day 150, when the hydrops syndrome frequently develops. The NT fetuses were compared with contemporary half-siblings generated from in vitro-produced embryos or by artificial insemination (AI). Fetal cotyledon formation and vascularization of the chorioallantoic membranes was initiated normally in NT conceptuses, but fewer cotyledons successfully formed placentomes. By Day 100, the mean number of placentomes was significantly lower in surviving NT fetuses. Only those with normal placentome numbers were represented in surviving NT pregnancies at Day 150. The mean total caruncle tissue weight of the placentomes was significantly higher in the surviving NT groups at Days 100 and 150, irrespective of the placentome numbers, indicating that increased NT placental weight was caused by excessive uterine tissue growth. By Day 100, NT fetuses exhibited growth deregulation, and those that survived to Day 150 were 17% heavier than contemporary AI controls. Placentome, liver, and kidney overgrowth accompanied the hydrops syndrome at Day 150. The NT fetal overgrowth was not a consequence of in vitro embryo culture and showed no correlation with placental overgrowth. However, in vitro culture and incomplete reprogramming of the donor genome are epigenetic effects that may override genetic traits and contribute to the greater variability in placental and fetal development in the NT group compared with AI half-siblings.  相似文献   

3.
Somatic nuclear transfer (NT) in cattle is often complicated by fetal oversize (i.e., large offspring syndrome), hydrallantois, and placentomegaly in late gestation. The aims of this work were to obtain data on the placentome structure in NT-recipient cows with hydrallantois (NTH) and to relate these with fetal and placental weights to better understand the abnormalities observed in NTH pregnancies during the third trimester. Pregnant cows were slaughtered between Gestation Days 180 and 280. The fetuses were weighed, and the placentomes were numbered and weighed. Placentomes were examined by histologic and stereological techniques. Macroscopic data showed that placental overgrowth preceded fetal overgrowth, and the ratio of the fetal to the total placentome weight in the NTH group was lower than that in controls after Gestation Day 220. This suggests that placental overgrowth is due to placental default rather than due to fetal overgrowth, as shown also by stereological analysis showing primary deregulation of the growth of cotyledonary tissues. Observed alterations, such as thinning of the maternal epithelium within placentomes and increased trophoblastic surface, could be secondary adaptations. Thus, placental growth deregulations would be due to modifications of the expression of placental factors. Various examples of placental deficiency were observed, suggesting that some fetal abnormalities observed in NTH calves, such as enlarged heart, enlarged umbilical cord, and abdominal ascites, are consequences of placental dysfunction. Therefore, the condition described by the term "large offspring syndrome" might better be described by "large placenta syndrome," because this syndrome affects an average of 50% of late-gestation NT pregnancies. No conclusion can be drawn from this work on apparently normal pregnancies.  相似文献   

4.
Although healthy animals are born after nuclear transfer with somatic cells nuclei, the success of this procedure is generally poor (2%-10%) with high perinatal losses. Apparently normal surviving animals may have undiagnosed pathologies that could develop later in life. The gross pathology of 16 abnormal bovine fetuses produced by nuclear transfer (NT) and the clinical, endocrinologic (insulin-like growth factors I and II [IGF-I and IGF-II], IGF binding proteins, post-ACTH stimulation cortisol, leptin, glucose, and insulin levels), and biochemical characteristics of a group of 21 apparently normal cloned calves were compared with those of in vitro-produced (IVP) controls and controls resulting from artificial insemination. Oocytes used for NT or IVP were matured in vitro. NT to enucleated oocytes was performed using cultured adult or fetal skin cells. After culture, Day 7, grade 1-2 embryos were transferred (one per recipient). All placentas and fetuses from clones undergoing an abnormal pregnancy showed some degree of edema due to hydrops. Mean placentome number was lower and mean placentome weight was higher in clones than in controls (69.9 +/- 9.2 placentomes with a mean weight of 144.3 +/- 21.4 g in clones vs. 99 and 137 placentomes with a mean individual weight of 34.8 and 32.4 g in two IVP controls). Erythrocyte mean cell volume was higher at birth (P < 0.01), and body temperature and plasma leptin concentrations were higher and T4 levels were lower during the first 50 days and the first week (P < 0.05), respectively, in clones. Plasma IGF-II concentrations were higher at birth and lower at Day 15 in clones (P < 0.05). Therefore, apparently healthy cloned calves cannot be considered as physiologically normal animals until at least 50 days of age.  相似文献   

5.
Bovine placentome collagen was quantified (P<0.01) at four gestational stages (90, 150, 210 and 270 d, n = 8 d ), at 2 h post partum without (n = 4) and at 2 and 12 h post partum with (n = 8) experimentally-induced placental retention. Placentome sections were fixed and stained for collagen. Fetal cotyledonary (FC) collagen volume fraction (V(V)) increased over days of gestation studied (V(V)=0.03+/-0.01, 0.06+/-0.01, 0.13+/-0.01 and 0.19+/-0.01). Fetal cotyledonary hydroxyproline (3.15+/-0.41, 4.55+/-0.41 and 7.04+/-0.41 mg/g) and FC protein (432.0+/-17.1, 479.9+/-17.1, 585.4+/-17.1 mg/g) increased over Days 90, 150 and 210 and were similar on Days 210 and 270. Fetal cotyledonary collagen V(V) and hydroxyproline did not differ between Day 270, retained and nonretained cotyledons. Protein concentration was higher in 2 h (578.1+/-18.5 mg/g) and 12 h (526.0+/-18.5 mg/g) retained versus nonretained (400.4+/-36.2 mg/g) cotyledons. Maternal caruncular (MC) collagen V(V) and protein concentration were higher on Days 90 and 150 than on Days 210 and 270. Maternal caruncular hydroxyproline was similar from Day 90 to 210 and increased from Day 210 to 270. Maternal caruncular collagen V(V), hydroxyproline and protein concentrations were similar on Day 270 and in 2 h and 12 h retained membrane caruncles. Gestational increases in placentome collagen occurred from FC sources. No difference in FC or MC collagen V(V) existed between Day 270, retained and nonretained placentomes.  相似文献   

6.
The corpus luteum is the main source of progesterone (P(4)) responsible for maintenance of gestation in cattle. So far it has not been possible to assign any biological role to placental P(4), which contributes only marginally and temporarily to peripheral maternal blood levels. In order to identify possible P(4) target cells within the placenta, placentomes from 150-, 220-, 240-, and 270-day-pregnant cows and from parturient cows (3 animals per group) were screened immunohistochemically for expression of the progesterone receptor (PR). During gestation, PR-positive staining was found exclusively in the nuclei of caruncular stromal cells (CSC; maternal part of the placentome) and of caruncular vascular pericytes. In placentomes from parturient cows, occasional positive nuclear staining was also observed in the walls of small caruncular arteries. The percentage of PR-positive CSC increased slightly from 51.8 +/- 2.6% on Day 150 to 56.2 +/- 5.6% at Day 270 (p < 0.05) and was 58.9 +/- 1.8% at parturition. These results suggest that in pregnant cattle, CSC are under the control of P(4) of placental rather than luteal origin. Thus, whereas luteal P(4) may regulate "coarse" systemic progestational functions in the maternal compartment in the classical hormonal manner, placental P(4) may act as a paracrine factor involved in the local regulation of caruncular growth, differentiation, and functions.  相似文献   

7.
8.
The high incidence of pregnancy loss and prenatal morbidity and mortality in cloned animals may be due to placental insufficiency, thereby compromising fetal survival. Our objective was to characterize morphological changes in fetal membranes of cloned bovine pregnancies. Two groups of cows with cloned fetuses, produced by two cloning techniques, a commercial group (n=16) and a hand-made group (n=4), and control fetuses derived from traditional embryo transfer (n=6) or AI (n=6), were compared at various stages of gestation (Days 80, 120, 150, 180, 210, and 240; Day 0=estrus). Thickness and shape of the amniotic membrane, placentome shape and length, umbilical cord shape and diameter, and fetal fluid echodensities were assessed by ultrasonography, and the placenta was evaluated histologically. Only eight (40%) of cloned pregnancies reached term and seven calves (35%) were alive at birth. Both placentome length and umbilical cord diameter were larger (P<0.05) in clones than in normal fetuses at all stages of gestation. Amniotic membrane abnormalities (Day 120) including focal edema and the presence of a series of nodules were detected in 38% of the clones and were always accompanied by hyper-echodense spikes or irregularities (detected ultrasonographically) around the umbilical cord. Histopathology revealed degenerate inflammatory cells, edematous chorioallantoic membranes, and decreased epithelial thickness. We inferred that these morphological anomalies of placentomes compromised fetal development, and we concluded that ultrasonographic monitoring of pregnancies enabled characterization of changes in the placentae and may be useful to assess fetal well-being.  相似文献   

9.
The gross morphological appearance of ovine placentomes is known to alter in response to adverse intrauterine conditions that increase fetal cortisol exposure. The direct effects of fetal cortisol on the placentome morphology, however, remain unknown, nor is the functional significance of the different placentome types clear. The present study investigated the gross morphology of ovine placentomes in relation to placental nutrient delivery to sheep fetuses during late gestation and after experimental manipulation of the fetal cortisol concentration. As fetal cortisol levels rose naturally toward term, a significant decrease was observed in the proportion of the D-type placentomes that had the hemophagous zone everted over the bulk of the placentomal tissue. When the prepartum cortisol surge was prevented by fetal adrenalectomy, there were proportionately more everted C- and D-type placentomes and fewer A-type placentomes with the hemophagous zone inverted into the placentome compared with those of intact fetuses at term. Raising cortisol concentrations by infusion before term reduced the incidence of D-type placentomes and lowered the proportion of individually tagged placentomes that became more everted during the 10- to 15-day period between tagging and delivery. Cortisol, therefore, appears to prevent hemophagous zone eversion in ovine placentomes during late gestation. The distribution of placentome types appeared to have no effect on the net rates of placental delivery of glucose and oxygen to the fetus under normal conditions. When fetal cortisol levels were raised by exogenous infusion, however, placental delivery of glucose, but not oxygen, to the fetus, measured as umbilical uptake, was reduced to a greater extent in fetuses with a higher proportion of C- and D-type placentomes. The gross morphology of the ovine placentomes is, therefore, determined, at least in part, by the fetal cortisol concentration and may influence placental nutrient transfer when fetal cortisol concentrations are high during late gestation. These findings have important implications for the placental control of fetal growth and development, particularly during adverse intrauterine conditions.  相似文献   

10.
Successful somatic cloned animal production has been reported in various domesticated species, including cattle; however, it is associated with a high rate of pregnancy failure. The low cloning yield could possibly arise from either an abnormal and/or poorly developed placenta. In comparison to control cows, fewer placentomes were found in somatic cell nuclear recipient (NT) cows at day 60 of gestation, suggesting a retardation of fetal/placental growth in these animals. NT cows not only had fewer numbers of chorionic villi but also had poorly developed caruncles. Macroscopic examination revealed atypical development of the placentome in terms of shape and size. Histological disruption of chorionic villi and caruncular septum was found in NT cows. Of particular interest was that the expression of genes, as well as proteins in the placentome, was disparate between NT and artificially inseminated cows, especially placental lactogen (PL) and pregnancy-associated glycoprotein (PAG). In contrast, prolactin-related protein-1 (PRP-1) signals were comparable across cows, including NT cows carrying immotile fetuses. The expression of extracellular matrix degrading molecule, heparanase (HPA), in NT cows was divergent from that of control cows. Microarray data suggest that gene expression was disorientated in early stages of implantation in NT cows, but this was eliminated with progression of gestation. These findings strongly support a delay in trophoblast development during early stages of placentation in NT cows, and suggest that placental specific proteins, including PLs, PAGs, and HPA, are key indicators for the aberration of gestation and placental function in cows.  相似文献   

11.
Amniotic and allantoic fluid volumes and composition change dynamically throughout gestation. Cattle that are pregnant with somatic cell nuclear transfer (NT) fetuses show a high incidence of abnormal fluid accumulation (particularly hydrallantois) and fetal mortality from approximately midgestation. To investigate fetal fluid homeostasis in these pregnancies, Na, K, Cl, urea, creatinine, Ca, Mg, total PO(4), glucose, fructose, lactate, total protein, and osmolalities were measured in amniotic and allantoic fluids collected at Days 50, 100, and 150 of gestation from NT pregnancies and those generated by the transfer of in vitro-produced embryos or by artificial insemination. Deviations in fetal fluid composition between NT and control pregnancies were apparent after placental and fetal organ development, even when no gross morphological abnormalities were observed. Individual NT fetuses were affected to varying degrees. Elevated allantoic Na was associated with lower K and increased allantoic fluid volume or edema of the fetal membranes. Total PO(4) levels in NT allantoic and amniotic fluid were elevated at Days 100 and 150. This was not accompanied by hypophosphatemia at Day 150, suggesting that PO(4) acquisition by NT fetuses was adequate but that its readsorption by the kidneys may be impaired. Excessive NT placental weight was associated with low allantoic glucose and fructose as well as high lactate levels. However, the fructogenic ability of the NT placenta appeared to be normal. The osmolality of the fetal fluids was maintained within a narrow range, suggesting that the regulation of fluid composition, but not osmolality, was impaired in NT pregnancies.  相似文献   

12.
Somatic nuclear transfer (NT) in cattle is often accompanied by severe placental anomalies, hypertrophy, and hydrallantois, which induce a high rate of pregnancy losses throughout gestation. These placental deficits are associated with an abnormal increase of the maternal plasma levels of pregnancy-associated glycoprotein (PAG), produced by the trophoblastic binucleate cells (BNC) of the placenta. The objective of this study was to analyze the origin of the abnormally elevated PAG concentrations in the peripheral circulation of NT recipients during pathological pregnancies. Concentrations of PAG were measured both in maternal blood, in chorionic and cotyledonary tissular extracts from control recipients (after artificial insemination, AI, or in vitro fertilization, IVF) and clone recipients on Day 32, Day 62, and during the third trimester of gestation. Three different radioimmunoassay (RIA) systems were used. One homologous RIA for PSP60, similar to bovine PAG-1 (PAG67kDa), and two heterologous RIA with PAG67kDa as standard and tracer, and antisera anti-caprine PAG (AS#706 and AS#708). Circulating and tissular concentrations of bovine placental lactogen (bPL), a glycoprotein also produced by BNC, were determined by RIA at the same stages. The number of BNC in the placental tissues was determined by cell counting after immunostaining with anti PSP60 antibody on tissue sections from control and NT pregnancies. Maternal plasma PAG concentrations were not different among groups on Day 32, but they were significantly higher in NT than in control pregnancies on Day 62 with all three RIA and during the third trimester with two RIA (RIA-PSP60 and RIA with AS#708). Circulating bPL concentrations were undetectable on Days 32 and 62 and were not different in the third trimester between NT and control pregnancies. Tissular amounts of PAG on total proteins were not different between the two groups at all stages studied. No difference was determined in the percentage of PSP60-positive BNC in placental tissues between controls and NT on Day 62 and during the third trimester of pregnancy. Western blots of tissular extracts from placenta showed no major molecular weight changes of PAG in NT pregnancies compared to controls. No differences in maternal circulation concentrations or tissular content of bPL were observed between control and NT pregnancies. In conclusion, the specific increase of PAG in maternal plasma concentrations during abnormal NT pregnancies do not result from a higher proportion of BNC, or an increased protein expression of PAG and could be due to changes in the composition of terminal glycosylation which result into a clearance decrease of PAG from the circulation.  相似文献   

13.
Nuclear transfer from somatic cells still has limited efficiency in terms of live calves born due to high fetal loss after transfer. In this study, we addressed the type of donor cells used for cloning in in vivo development. We used a combination of repeated ultrasonography and maternal pregnancy serum protein (PSP60) assays to monitor the evolution of pregnancy after somatic cloning in order to detect the occurrence of late-gestation losses and their frequency, compared with embryo cloning or in vitro fertilization (IVF). Incidence of loss between Day 90 of gestation and calving was 43.7% for adult somatic clones and 33.3% for fetal somatic clones, compared with 4.3% after embryo cloning and 0% in the control IVF group. Using PSP60 levels in maternal blood as a criterion for placental function, we observed that after somatic cloning, recipients that lost their pregnancy before Day 100 showed significantly higher PSP60 levels by Day 50 than those that maintained pregnancy (7.77 +/- 3.3 ng/ml vs. 2.45 +/- 0.27 ng/ml for normal pregnancies, P < 0.05). At later stages of gestation, between 4 mo and calving, mean PSP60 concentrations were significantly increased in pathologic pregnancy after somatic cloning compared with other groups (P < 0.05 by Day 150, P < 0.001 by Day 180, and P < 0.01 by Day 210). In those situations, and confirmed by ultrasonographic measurements, recipients developed severe hydroallantois together with larger placentome size. Our findings suggest that assessing placental development with PSP60 and ultrasonography will lead to better care of recipient animals in bovine somatic cloning.  相似文献   

14.
Samples of maternal and fetal placental tissues were obtained from cows on Days 100 (N = 4), 150 (N = 5), 200 (N = 6) and 250 (N = 6) of gestation and incubated for 24 h. Conditioned media from caruncular explants were mitogenic for bovine aortic endothelial cells (BAEC) on all days of gestation. Media from intercaruncular endometrium were stimulatory for proliferation of BAEC on Day 100 but inhibitory on Days 150, 200 and 250. Media from cotyledonary and intercotyledonary tissues inhibited proliferation of BAEC on all days. Caruncular-conditioned media stimulated migration of BAEC on Days 150, 200 and 250. Cotyledonary-conditioned media inhibited migration of BAEC on all days. Effects of media from intercaruncular and intercotyledonary tissues on migration of BAEC varied with stage of gestation. Angiogenic activity of media from caruncular (all stages) and intercaruncular (Day 100) tissues appeared to have an Mr greater than 100,000. In cows, therefore, the maternal placentome (caruncle) appears to be the primary source of placental angiogenic activity throughout gestation. The fetal placentome (cotyledon) secretes activity which inhibits two major components of angiogenesis (proliferation and migration of endothelial cells) throughout gestation. Intercaruncular and intercotyledonary tissues may modulate placental angiogenesis throughout gestation. Placental vascular development in the cow is therefore probably controlled by an interaction between stimulatory and inhibitory factors produced by the placenta itself.  相似文献   

15.
Three experiments were conducted to determine gestational age in the ewe and doe by measuring placentomes with a B-mode ultrasonograph and a 5 MHz transducer. Transrectal measurements were obtained by placing the female over a bale of hay. In Experiment 1, ewes (n = 12) and does (n = 15) were examined by transrectal ultrasonography every week from breeding to parturition to determine the growth pattern of placentomes during pregnancy. In Experiment 2, placentomes from 132 ewes and 169 does were measured between 30 and 90 d of gestation. A linear regression relationship between fetal age in days and placentome size in mm was calculated and adjusted for does (gestational age = 28.74 + 1.80PL + e, r(2) = 70.34) and for ewes (age = 47.98 + 0.62PL + e, r(2) = 15.59). In Experiment 3, the placentomes of 63 does were measured to validate this relationship by using linear regression. Gestational age was determined correctly in 66% of the does, with a range of +/- 7 d and in 96% with a margin of +/- 14 d. In conclusion, transrectal ultrasonography allowed for the measurement of placentome size, which increased rapidly during the first 70 to 90 d of gestation in ewes and does. In ewes, however, there was a poor correlation of placentome size with gestational age, while in goats, measurement of placentomes could be used along with pregnancy diagnosis by transrectal ultrasonography as an indication of gestation age.  相似文献   

16.
The production of cloned animals is, at present, an inefficient process. This study focused on the fetal losses that occur between Days 30-90 of gestation. Fetal and placental characteristics were studied from Days 30-90 of gestation using transrectal ultrasonography, maternal pregnancy specific protein b (PSPb) levels, and postslaughter collection of fetal tissue. Pregnancy rates at Day 30 were similar for recipient cows carrying nuclear transfer (NT) and control embryos (45% [54/120] vs. 58% [11/19]), although multiple NT embryos were often transferred into recipients. From Days 30-90, 82% of NT fetuses died, whereas all control pregnancies remained viable. Crown-rump (CR) length was less in those fetuses that were destined to die before Day 90, but no significant difference was found between the CR lengths of NT and control fetuses that survived to Day 90. Maternal PSPb levels at Days 30 and 50 of gestation were not predictive of fetal survival to Day 90. The placentas of six cloned and four control (in vivo or in vitro fertilized) bovine pregnancies were compared between Days 35 and 60 of gestation. Two cloned placentas showed rudimentary development, as indicated by flat, cuboidal trophoblastic epithelium and reduced vascularization, whereas two others possessed a reduced number of barely discernable cotyledonary areas. The remaining two cloned placentas were similar to the controls, although one contained hemorrhagic cotyledons. Poor viability of cloned fetuses during Days 35-60 was associated with either rudimentary or marginal chorioallantoic development. Our findings suggest that future research should focus on factors that promote placental and vascular growth and on fetomaternal interactions that promote placental attachment and villous formation.  相似文献   

17.
18.
19.
OBJECTIVE: To investigate the role of the insulin-like growth factors (IGF) system during the differentiation of human pulp-derived fibroblasts (HPF). METHODS: Primary HPF were cultured for 24 days in DMEM medium with IGF-I or IGF-II (50 ng/ml each). Cell growth and morphology, alkaline phosphatase (ALP) activity, the concentration of free deoxypyridinoline (DPD), IGF-I, -II, IGFBP-2 and -3 were studied. The number of (125)I-IGF-I binding sites was estimated by Scatchard analysis. RESULTS: Light-microscopically visible nodules emerged during differentiation. Simultaneously, the ALP activity increased steadily between days 8 and 24, while the DPD concentration decreased by about 50%. The HPF produced high concentrations of IGF-II (2.00-1.30 microg/10(6) cells) but low IGF-I, IGFBP-2. IGFBP-2 was not changed, IGFBP-3 increased by 65% during differentiation. The number of IGF binding sites increased from 8,500 +/- 55 per cell (day 8) up to 22,000 +/- 570 (day 24). CONCLUSION: The increasing number of IGF-binding sites accompanied by alterations in the biochemical bone markers during the differentiation of HPF suggests an autocrine/paracrine role for the IGFs in the formation of dentinal hard tissue.  相似文献   

20.
Nitric oxide (NO), synthesized from l-arginine by NO synthase (NOS), is a key regulator of placental angiogenesis and growth during pregnancy. However, little is known about placental NO synthesis associated with ovine conceptus development. This study was conducted to test the hypothesis that placental NO synthesis is greatest during early gestation. Columbia cross-bred ewes were hysterectomized on Days 30, 40, 60, 80, 100, 120, or 140 of gestation (n = 4 per day) to obtain placentomes, intercotyledonary placenta, and intercaruncular endometrium. Tissues were analyzed for constitutive NOS (cNOS) and inducible NOS (iNOS) activities, NO synthesis, tetrahydrobiopterin (BH4) and NADPH (essential cofactors for NOS), and GTP-cyclohydrolase I (GTP-CH, a rate-controlling enzyme in de novo synthesis of BH4) activity using radiochemical and chromatographic methods. Marked changes in NO synthesis, cNOS and iNOS activities, GTP-CH activity, and concentrations of BH4 and NADPH occurred in all placental and endometrial tissues between Days 30 and 140 of gestation. NO synthesis peaked on Day 60 of gestation in both intercotyledonary placenta and placentomes and on Days 40-60 in intercaruncular endometrium. NO synthesis in placentomes increased 100% between Days 80 and 100 of gestation, when placental and uterine blood flows increase continuously. In all placental and endometrial tissues, NO synthesis was positively correlated with total NOS activity, GTP-CH activity, and concentrations of BH4 and NADPH. Importantly, these results indicate a high degree of metabolic coordination among the several integrated pathways that support high rates of NO synthesis in the conceptus and uterus and establish a new base of information for future studies to define the roles of NO in fetal-placental growth and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号