首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Vitrification by using two-step exposures to combined cryoprotective agents (CPAs) has become one of the most common methods for oocyte cryopreservation. By quantitatively examining the status of oocytes during CPA additions and dilutions, we can analyze the degree of the associated osmotic damages. The osmotic responses of mouse MII oocyte in the presence of the combined CPAs (ethylene glycol, EG, and dimethyl sulfoxide, DMSO) were recorded and analyzed. A two-parameter model was used in the curve-fitting calculation to determine the values of hydraulic conductivity (L(p)) and permeability (P(s)) to the combined CPAs at 25°C and 37°C. The effects of exposure durations and the exposure temperatures on the cryopreservation in terms of frozen-thawed cell survival rates and subsequent development were examined in a series of cryopreservation experiments. Mouse MII oocytes were exposed to pretreatment solution (PTS) and vitrification solution (VS) at specific temperatures. The PTS used in our experiment was 10% EG and 10% DMSO dissolved in modified PBS (mPBS), and the VS was EDFS30 (15% EG, 15% DMSO, 3 × 10(-3) M Ficoll, and 0.35 M sucrose in mPBS).The accumulative osmotic damage (AOD) and intracellular CPA concentrations were calculated under the different cryopreservation conditions, and for the first time, the quantitative interactions between survival rates, subsequent development rates, and values of AOD were investigated.  相似文献   

2.
Cumulus cell-enclosed bovine oocytes in germinal vesicle (GV) and in metaphase II (MII) stages were cryopreserved. Different concentrations (1 M; 1.5 M) of various cryoprotectants (glycerol, PROH, DMSO) were tested. After thawing, the oocytes were exposed to various carbohydrates (sucrose, lactose, trehalose) at a concentration of 0.1 M and 0.25 M for cryoprotectant removal. Developmental capacity of the frozen-thawed oocytes was studied by in vitro maturation, fertilization and culture. We found no difference in subsequent development using glycerol or PROH for GV and MII oocytes. The DMSO treatment led to significantly better cleavage and development up to 4-cell stage in MII oocytes. Development beyond the 8-cell stage was obtained only when unmatured oocytes were frozen. No difference in the efficiency of the 3 cryoprotectants was detected in MII oocytes. However, in GV oocytes, glycerol and PROH yielded significantly better cleavage and 4-cell rate compared to DMSO (P<0.001). Influence of the concentration of a cryoprotectant on development was not observed in GV or MII oocytes. Among the 3 cryoprotectants, DMSO was less suitable, at both concentrations, than PROH and glycerol for the development of 6- to 8-cell stage embryos in the GV group. In the MII group, 1.5 M DMSO was as efficient as PROH and as glycerol at a 1.5-M concentration, and it was more efficient than 1 M glycerol. The use of carbohydrates during rehydration did not render a beneficial effect at either of the 2 concentrations, and when no carbohydrates were used in the MII group the oocytes cleaved better than GV oocytes.  相似文献   

3.
This study assessed the impact of various cryoprotectant (CPA) exposures on nuclear and cytoplasmic maturation in the immature cat oocyte as a prerequisite to formulating a successful cryopreservation protocol. In experiment 1, immature oocytes were exposed to 0, 0.75, 1.5, or 3.0 M of 1,2-propanediol (PrOH) or 1,2-ethanediol (EG) at room temperature (25 degrees C) or 0 degrees C for 30 min. After CPA removal and in vitro maturation, percentage of oocytes reaching metaphase II (MII) was reduced after exposure to 3.0 M PrOH at 0 degrees C or 3.0 M EG at both temperatures. All CPA exposures increased MII spindle abnormalities compared to control, except 1.5 M PrOH at 25 degrees C. In experiments 2 and 3, immature oocytes were exposed to CPA conditions yielding optimal nuclear maturation that either had caused spindle damage (0.75 M PrOH, 1.5 M EG, and 3.0 M PrOH at 25 degrees C) or not (1.5 M PrOH at 25 degrees C). After maturation and insemination in vitro, oocytes were cultured for 7 days to assess treatment influence on developmental competence. CPA exposure did not affect fertilization, but the high incidence of MII spindle abnormalities resulted in a low percentage of cleaved embryos. Blastocyst formation and quality were influenced by both CPA types (EG was more detrimental than PrOH) and concentration (3.0 M was more detrimental than 1.5 M). Overall, cat oocytes appear to be highly sensitive to CPA except after exposure to 1.5 M PrOH at 25 degrees C, a treatment that still allowed approximately 60% of the oocytes to reach MII and approximately 20% to form blastocysts.  相似文献   

4.
The present study was conducted to evaluate the effects of three cryoprotectants, dimethyl sulphoxide (DMSO), ethylene glycol (EG) and 1,2-propanediol (PROH), each used at two concentrations (1.0 and 1.5 M) on the morphology, maturation rate and developmental capacity of usable quality immature buffalo oocytes subjected to slow freezing. The addition of the cryoprotectant before freezing and its dilution after thawing were carried out in a two- (for 1.0 M) or three-step manner (for 1.5 M). The incidence of damage was found to be significantly higher (P<0.05) with the lower concentration of 1.0 M, compared to that with 1.5 M for all the three cryoprotectants examined. The proportion of immature oocytes recovered in a morphologically normal state was significantly higher (P<0.05) for DMSO than those for EG or PROH at both 1.0 and 1.5 M concentrations. Among the six combinations evaluated, that of DMSO at 1.5 M concentration was found to be superior to others. Irrespective of the type or concentration of the cryoprotectant, partial or complete loss of the cumulus mass was the most prevalent damage. Following in vitro maturation, the nuclear maturation rate was significantly higher (P<0.05) for DMSO than those for EG or PROH at both 1.0 and 1.5 M concentrations. When the in vitro matured oocytes were subjected to in vitro fertilization after slow freezing, using 1.5 M DMSO as cryoprotectant, 4.5% and 0.6% of them were able to develop to morulae and blastocysts, respectively, on Day 9 post insemination, compared to 19.2% and 10.6%, respectively, for the controls. In conclusion, DMSO was more effective than EG or PROH for the slow freezing of immature buffalo oocytes and blastocysts could be produced from immature buffalo oocytes subjected to slow freezing in 1.5 M DMSO.  相似文献   

5.
Poor survival of cryopreservation by equine expanded blastocysts may involve low penetration of the embryonic capsule by cryoprotective agents (CPAs). This study characterized the permeation and accumulation rates of the CPAs ethylene glycol (EG) and glycerol (GLY) across isolated capsule in vitro, using a dual-chambered Valia-Chien permeation apparatus. Pieces of Days 14 to 18 ±1 capsules separated media in the “donor” chamber containing either 1.5 M EG (n = 6), 0.74 M EG (n = 5), 0.87 M GLY (n = 7), or 0.15 M NaCl (saline, SAL) (n = 6), from the “recipient” chamber. Concentrations of CPA, determined by gas chromatography, allowed calculation of the capsule's apparent permeability (Papp) to those CPAs. Permeation of capsule by 1.5 M EG was significantly more rapid than by 0.87 M GLY, or 0.74 M EG; permeation by both CPAs was significantly slower than by SAL. Accumulation of CPA in the recipient chamber depended more on initial donor chamber concentration, rather than type, of CPA. Accumulation rates for CPAs and SAL were linear only when capsule was present, demonstrating that their permeation through capsule was more complex than simple diffusion. Successful cryopreservation of equine expanded blastocysts has been previously linked to lengths of step-wise exposures to CPAs. Based on the present results, we inferred that alternative CPAs, more capable of permeating the capsule, or alternative methods of ensuring CPA entry into the cells, may also be required.  相似文献   

6.
New rat models are being developed at an exponential rate, making improved methods to cryopreserve rat embryos extremely important. However, cryopreservation of rat embryos has proven to be difficult and expensive. In this study, a series of experiments was performed to characterize the fundamental cryobiology of rat fertilized 1-cell embryos (zygotes) and to investigate the effects of different cryoprotective agents (CPAs) and two different plunging temperatures (T(p)) on post-thaw survival of embryos from three genetic backgrounds. In the initial experiments, information on the fundamental cryobiology of rat zygotes was determined, including 1) the hydraulic conductivity in the presence of CPAs (L(p)), 2) the cryoprotectant permeability (P(CPA)), 3) the reflection coefficient (sigma), and 4) the activation energies for these parameters. P(CPA) values were determined for the CPAs, ethylene glycol (EG), dimethyl sulfoxide (DMSO), and propylene glycol (PG). Using this information, a cryopreservation method was developed and the cryosurvival and fetal development of Sprague-Dawley zygotes cryopreserved in either EG, DMSO, or PG and plunged at either -30 or -80 degrees C, were assessed. The highest fetal developmental rates were obtained using a T(p) of -30 degrees C and EG (61.2% +/- 2.4%), which was not different (P > 0.05) from nonfrozen control zygotes (54.6% +/- 3.0%).  相似文献   

7.
Cryopreservation of oocytes collected from slaughtered animals of high genetic value, their subsequent utilisation for production of embryos for transfer may provide an opportunity to replenish the valuable germplasm lost. Experiments were conducted to study the effect of cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG), 1,2-propanediol (PROH) and glycerol at different concentrations (3.5, 4, 5, 6 and 7 M each with 0.5M sucrose and 0.4% BSA in DPBS) on morphological survival and in vitro maturation of vitrified-thawed immature buffalo oocytes. The cumulus oocyte complexes were harvested from the ovaries obtained from a local slaughterhouse by aspirating the visible follicles. Less number of oocytes reached metaphase-II stage from the oocytes cryopreserved in any of the concentrations of DMSO, EG, PROH and glycerol compared to fresh oocytes. Among the vitrified groups, highest maturation (40.3, 42.5, 40.4 and 23.5%) was obtained in 7 M DMSO, EG, PROH and glycerol, respectively. Oocytes reaching to M-II stage from the oocytes cryopreserved in 7 M glycerol were significantly lower than that of the oocytes vitrified in 7 M DMSO, EG and PROH. It can be concluded that 7 M solutions of DMSO, EG and PROH can be used for vitrification of immature buffalo oocytes for subsequent utilisation of these oocytes in IVM/IVF and embryo production for transfer.  相似文献   

8.
Experiments were conducted to study the effect of cryoprotectants, dimethyl sulfoxide (DMSO), ethylene glycol (EG), 1,2-propanediol (PROH), and glycerol at different concentrations (3.5, 4, 5, 6, and 7 M each with 0.5 M sucrose and 0.4% BSA in DPBS) on survival, in vitro maturation, in vitro fertilization, and post-fertilization development of vitrified-thawed immature buffalo oocytes. The COCs were harvested from the ovaries by aspirating the visible follicles. The recovery of post-thaw morphologically normal oocytes was lower in 3.5 and 4 M DMSO, EG, and PROH compared to 5, 6, and 7 M. In all the concentrations of glycerol, an overall lower numbers of oocytes recovered were normal compared to other cryoprotectants. Less number of oocytes reached metaphase-II (M-II) stage from the oocytes cryopreserved in any of the concentrations of DMSO, EG, PROH, and glycerol compared to fresh oocytes. Among the vitrified groups, highest maturation was obtained in 7 M solutions of all the cryoprotectants. The cleavage rates of oocytes vitrified in different concentrations of DMSO, EG, PROH, and glycerol were lower than that of the fresh oocytes. The cleavage rates were higher in oocytes cryopreserved in 6 and 7 M DMSO, EG, PROH, and glycerol compared with oocytes cryopreserved in other concentrations. However, the percentage of morula and blastocyst formation from the cleaved embryos did not vary in fresh oocytes and vitrified oocytes. In conclusion, this report describes the first successful production of buffalo blastocysts from immature oocytes cryopreserved by vitrification.  相似文献   

9.
Membranes are the primary site of freezing injury during cryopreservation or vitrification of cells. Addition of cryoprotective agents (CPAs) can reduce freezing damage, but can also disturb membrane integrity causing leakage of intracellular constituents. The aim of this study was to investigate lipid-CPA interactions in a liposome model system to obtain insights in mechanisms of cellular protection and toxicity during cryopreservation or vitrification processing. Various CPAs were studied including dimethyl sulfoxide (DMSO), glycerol (GLY), ethylene glycol (EG), dimethyl formamide (DMF), and propylene glycol (PG). Protection against leakage of phosphatidylcholine liposomes encapsulated with carboxyfluorescein (CF) was studied upon CPA addition as well as after freezing-and-thawing. Molecular interactions between CPAs and phospholipid acyl chains and headgroups as well as membrane phase behavior were studied using Fourier transform infrared spectroscopy. A clear difference was observed between the effects of DMSO on PC-liposomes compared to the other CPAs tested, both for measurements on CF-retention and membrane phase behavior. All CPAs were found to inhibit membrane leakiness during freezing. However, exposure to high CPA concentrations already caused leakage before freezing, increasing in the order DMSO, EG, DMF/PG, and GLY. With DMSO, liposomes were able to withstand up to 6 M concentrations compared to only 1 M for GLY. Cholesterol addition to PC-liposomes increased membrane stability towards leakiness. DMSO was found to dehydrate the phospholipid headgroups while raising the membrane phase transition temperature, whereas the other CPAs caused an increase in the hydration level of the lipid headgroups while decreasing the membrane phase transition temperature.  相似文献   

10.
Knowledge of bovine oocyte plasma membrane permeability characteristics at different developmental stages in the presence of cryoprotective agents (CPAs) is limited. The objective of this study was to determine the oolema hydraulic conductivity (Lp), cryoprotectant permeability (PCPA), and reflection coefficient (σ) for immature (germinal vesicle stage, GV) and in vitro–matured (metaphase II, MII) bovine oocytes. Two commonly used cryoprotective agents, dimethyl sulfoxide (DMSO) and ethylene glycol (EG), were studied. Osmometric studies were performed using a micromanipulator connected to an inverted microscope at 22 ± 2°C. Each oocyte was immobilized via a holding pipette, and osmotically induced volume changes over time (dv/dt) were recorded. The Lp values for GV and MII oocytes in DMSO (LpDMSO) were 0.70 ± 0.06 and 1.14 ± 0.07 μm/min/atm (mean ± SEM) and in EG (LpEG) were 0.50 ± 0.06 and 0.83 ± 0.07 μm/min/atm, respectively. Estimates of PDMSO for GV and MII oocytes were 0.36 ± 0.03 and 0.48 ± 0.03 μm/sec, and PEG values for GV and MII oocytes were 0.22 ± 0.03, 0.37 ± 0.03 μm/sec, respectively. The σ values for GV and MII oocytes in DMSO (σDMSO) were 0.86 ± 0.03 and 0.90 ± 0.04 and in EG (σEG) were 0.94 ± 0.03 and 0.76 ± 0.04, respectively. These data demonstrate that bovine oolema permeability coefficients to water and cryoprotectants change after in vitro maturation. Furthermore, the bovine oocyte PDMSO is higher than the PEG. These results may provide a biophysical basis for developing criteria for choosing optimal CPAs and for minimizing damage during addition and removal of the CPAs. Additionally, these data support the hypothesis that different procedures may be required for optimal cryopreservation of different oocyte developmental stages. Mol. Reprod. Dev. 49:408–415, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
The aim of this study was to evaluate the association of equilibration manners with warming procedures, and the different permeating cryoprotectants (pCPAs) effects under two temperatures, in terms of survival, maturation and subsequent parthenogenetic development of porcine immature oocytes after Cryotop vitrification. In Experiment 1, oocytes were equilibrated by exposure to 5% (v/v) ethylene glycol (EG) for 10 min (EM1) or stepwise to 7.5% (v/v) and 15% (v/v) EG for 2.5 min respectively (EM2). Warming procedures were performed in 1.0 M sucrose for 1 min, then in 0.5 and 0.25 M sucrose for 2.5 min respectively (WP1), or in 0.5, 0.25 and 0.125 M sucrose each step for 2 min (WP2), or in 0.25, 0.125 and 0.063 M sucrose each step for 2 min (WP3). After 2 h of warming, the survival rate of oocytes treated by EM1 and WP1 was significantly higher (P < 0.05) than that of the other groups. Moreover, a similar proportion of survival and nuclear maturation in all vitrified groups was obtained after completion of the IVM. No significant difference in blastocyst development was observed among vitrified groups except the group treated by EM2 and WP3. In Experiment 2, oocytes were vitrified by using EG alone, EG combined with dimethyl sulphoxide (EG + DMSO) or propylene glycol (EG + PROH) as pCPAs under 25 °C and 39 °C. The percentages of cryosurvival and nuclear maturation were similar in all vitrified groups. Under 25 °C, the embryo development and total cell numbers of blastocysts were not significantly different among EG, EG + DMSO and EG + PROH groups. However, the application of EG + PROH at 39 °C resulted in significantly decreased both cleavage and blastocyst formation rates. In conclusion, our data showed that equilibration manner and warming procedure affect the cryosurvival of porcine immature oocytes, and the combination of pCPAs cannot give a better cryopreservation outcome whether 25 °C or 39 °C. Notably, the Cryotop vitrification accompanied by our modified strategy for porcine immature oocytes could achieve high survival and respectable blastocyst production.  相似文献   

12.
Cryopreservation of ovarian tissue is a new and promising technique for germ-line storage. The objective of this study was to evaluate the effect of four cryoprotectants (at two concentrations each) on the preservation of zebu bovine preantral follicles after ovarian cryostorage. Strips of ovarian cortex were cryopreserved using glycerol (GLY; 10 or 20%), ethylene glycol (EG), propanediol (PROH) or dimethylsulphoxide (DMSO; 1.5 or 3M). In addition, a toxicity test was performed for each cryoprotectant by exposing the ovarian tissue to them without freezing. Tissues were analyzed by histology and transmission electron microscopy. Ovarian tissue frozen in either concentration of DMSO or PROH or in 10% GLY retained a higher percentage of morphologically normal follicles (73-88%) than tissue frozen in 20% GLY or in either concentration of EG (16-52%). In the toxicity test, exposure of tissues to DMSO, PROH or GLY resulted in higher percentages of normal follicles (80-97%) than exposure to EG (49%). Electron microscopy revealed damage to the ultrastructure of follicles frozen in 10% GLY, while follicles cryopreserved in DMSO and PROH at either concentration exhibited normal ultrastructure. In conclusion, DMSO and PROH were the most effective cryoprotectants for zebu ovarian tissue, preserving the structural integrity of somatic and reproductive cells within the ovary.  相似文献   

13.
Cumulus-intact and -denuded unfertilized oocytes from two mouse strains were exposed to 1.5 m ethanol (EtOH) or two cryoproteclant solutions, 1.5 M propanediol (PROH) or 1.5 M dimethylsulfoxide (DMSO), for 4.5 min at 27°C, and the proportion of activating or degenerating oocytes studied. Exposure to DMSO did not significantly increase activation above that of oocytes not exposed to DMSO. Treatment of oocytes in PROH resulted in the activation of up to 87% of viable oocytes. This was significantly higher (P <01) than in control oocytes and comparable to the rate of activation after treatment with EtOH (59–96% activation). In solutions at 1°C, 47% of control oocytes were activated, which was not significantly different from the rate of activation in EtOH (36%) or PROH (50%) at 1°C. Following treatment with PROH, up to 87% of oocytes degenerated within a period of 6 h in vitro. The age of the oocytes (h post hCG) and the time of cumulus removal with the enzyme hyaluronidase, relative to the time of exposure to the chemicals, influenced the level of degeneration in most groups. Significantly fewer oocytes degenerated when cumulus cells were removed before treatment (0–31%) than when the cumulus was left intact throughout the treatment and 6 h culture period (10–87%). Exposure to PROH at 1°C reduced oocyte degeneration to 5%. We conclude that PROH causes significantly greater losses of oocytes as a result of parthenogenetic activation and degeneration than of exposure to DMSO.  相似文献   

14.
Successful cryopreservation of articular cartilage (AC) could improve clinical results of osteochondral allografting and provide a useful treatment alternative for large cartilage defects. However, successful cartilage cryopreservation is limited by the time required for cryoprotective agent (CPA) permeation into the matrix and high CPA toxicity. This study describes a novel, practical method to examine the time-dependent permeation of CPAs [dimethyl sulfoxide (DMSO) and propylene glycol (PG)] into intact porcine AC. Dowels of porcine AC (10 mm diameter) were immersed in solutions containing high concentrations of each CPA for different times (0, 15, 30, 60 min, 3, 6, and 24 h) at three temperatures (4, 22, and 37 degrees C), with and without cartilage attachment to bone. The cartilage was isolated and the amount of cryoprotective agent within the matrix was determined. The results demonstrated a sharp rise in the CPA concentration within 15-30 min exposure to DMSO and PG. The concentration plateaued between 3 and 6 h of exposure at a concentration approximately 88-99% of the external concentration (6.8 M). This observation was temperature-dependent with slower permeation at lower temperatures. This study demonstrated the effectiveness of a novel technique to measure CPA permeation into intact AC, and describes permeation kinetics of two common CPAs into intact porcine AC.  相似文献   

15.
We have studied the effect of 1,2-propanediol (PROH) on cumulus-oocyte complexes from the mouse. We determined the morphological survival rate, the pattern of parthenogenetic activation, and the microtubular and chromosomal organization. Cumulus-oocyte complexes were collected at 16 h post hCG from superovulated female hybrid mice. These cumulus-intact oocytes were exposed to 1.5 or 3 M PROH for 6, 12, or 18 min at 0, 22, or 37 degrees C. The cryoprotectant was diluted out in a 1 M sucrose solution at 22 degrees C. After 5-6 h at 37 degrees C, oocytes were denuded and examined under Nomarski optics. The results show that PROH can induce degeneration and parthenogenetic activation in the mouse oocyte in a concentration, temperature, and time-dependent way. As the activation stimulus was strengthened, an increasing proportion of oocytes shifted from parthenogenetic activation with polar body extrusion to parthenogenetic activation with polar body retention and even to immediate cleavage. Nontoxic and nonactivating conditions involved mainly exposure to 1.5 M PROH at 0 degrees C. Spindle integrity and chromosomal organization were analyzed for exposure to 1.5 and 3 M PROH for 12 min at 0 degrees C. The separate effect of cooling and exposure to 1 M sucrose were also evaluated. Microtubules were visualized by monoclonal anti-alpha-tubulin labeling followed by immunogold-silver staining. Cooling and exposure to 1 M sucrose or to 1.5 M PROH did not induce major abnormalities in the microtubular or chromosomal organization. On the other hand, a significant percentage of deformities such as spindle size reduction and loss of bipolarity were observed after exposure to 3 M PROH. The results of the present study demonstrate that the use of PROH as a single cryoprotectant for the freezing of mature unfertilized oocytes cannot be recommended in procedures involving ambient temperature or concentrations exceeding 1.5 M PROH. On the other hand, the potential beneficial effect of low temperatures may outweigh the effect of concentration at subzero temperatures and could be explored further in the tailoring of conditions for slow controlled freezing.  相似文献   

16.
Kleinhans FW  Mazur P 《Cryobiology》2007,54(2):212-222
Phase diagrams are of great utility in cryobiology, especially, those consisting of a cryoprotective agent (CPA) dissolved in a physiological salt solution. These ternary phase diagrams consist of plots of the freezing points of increasing concentrations of solutions of cryoprotective agents (CPA) plus NaCl. Because they are time-consuming to generate, ternary diagrams are only available for a small number of CPAs. We wanted to determine whether accurate ternary phase diagrams could be synthesized by adding together the freezing point depressions of binary solutions of CPA/water and NaCl/water which match the corresponding solute molality concentrations in the ternary solution. We begin with a low concentration of a solution of CPA+salt of given R (CPA/salt) weight ratio. Ice formation in that solution is mimicked by withdrawing water from it which increases the concentrations of both the CPA and the NaCl. We compute the individual solute concentrations, determine their freezing points from published binary phase diagrams, and sum the freezing points. These yield the synthesized ternary phase diagram for a solution of given R. They were compared with published experimental ternary phase diagrams for glycerol, dimethyl sulfoxide (DMSO), sucrose, and ethylene glycol (EG) plus NaCl in water. For the first three, the synthesized and experimental phase diagrams agreed closely, with some divergence occurring as wt% concentrations exceeded 30% for DMSO and 55% for glycerol, and sucrose. However, in the case of EG there were substantial differences over nearly the entire range of concentrations which we attribute to systematic errors in the experimental EG data. New experimental EG work will be required to resolve this issue.  相似文献   

17.
The caprine ovary is a rich source of potentially viable immature oocytes enclosed in preantral follicles (PF). Previous experiments showed that these oocytes can be successfully cryopreserved in ovarian tissue of several species. However, until now, no information about the caprine PF cryopreservation is available in the literature. The aim of the present research was to evaluate the structural and ultrastructural characteristics of caprine PF after treatment and cryopreservation of ovarian tissue with 1.5 and 3 M dimethylsulphoxide (DMSO) and propanediol (PROH). One fragment of ovarian tissue was immediately fixed for histological examination and ultrastructural analysis, after slaughter (control). Four fragments were equilibrated at 20 degrees C/20 min in 1.8 ml of minimum essential medium (MEM) containing 1.5 or 3 M DMSO or PROH for the toxicity test, and the other four fragments were slowly frozen in each cryoprotectant at the concentrations previously described. After toxicity test and freezing/thawing procedures, the ovarian fragments were fixed for histological examination. The results showed that after toxicity test and cryopreservation of ovarian tissue using both cryoprotectants, the percentage of normal PF was less (P < 0.05) as compared with the control group. The present study revealed that the percentage of normal PF after toxicity test and cryopreservation in 1.5 M DSMO was significantly greater (P < 0.05) as compared with results obtained with 3 M DMSO or 1.5 and 3 M PROH. This result was confirmed by transmission electron microscopy, which showed that the PF were preserved in a higher quality state with 1.5 M DMSO. In conclusion, the present study demonstrated that caprine PF can be cryopreserved in ovarian tissue using 1.5 M DMSO.  相似文献   

18.
Development of optimal cryopreservation protocols requires delivery and removal of cryoprotective agents (CPAs) in such a way that negative osmotic and cytotoxic effects on cells are minimized. This is especially true for vitrification, where high CPA concentrations are employed. In this study, we report on the determination of cell membrane permeability parameters for water (L(p)) and solute (P(s)), and on the design and experimental verification of CPA addition and removal protocols at vitrification-relevant concentrations for a murine insulinoma cell line, betaTC-tet cells. Using membrane permeability values and osmotic tolerance limits, mathematical modeling and computer simulations were used to design CPA addition and removal protocols at high concentrations. The cytotoxic effects of CPAs were also evaluated. Cells were able to tolerate the addition and removal of 2.5M dimethyl sulfoxide (DMSO) and 2.5M 1,2 propanediol (PD) in single steps, but required multi-step addition and removal with 3.0M DMSO, 3.0M PD, and a vitrification-relevant concentration of 3.0M DMSO+3.0M PD. Cytotoxicity studies revealed that betaTC-tet cells were able to tolerate the presence of single component 6.0M DMSO and 6.0M PD and to a lesser extent 3.0M DMSO+3.0M PD. These results determine the time and concentration domain of CPA exposure that cells can tolerate and are essential for designing cryopreservation protocols for free cells as well as cells in engineered tissues.  相似文献   

19.
This study aimed to evaluate different vitrification methods using distinct cryoprotectants (CPAs) for the preservation of collared peccary ovarian preantral follicles (PFs). Ovarian pairs from six females were fragmented and three fragments (fresh control group) were immediately evaluated for morphology, viability, cell proliferation capacity (assessed by quantifying the number of argyrophilic nucleolus organizer regions – NORs), and apoptosis (by the identification of activated caspase-3 expression). The remaining 18 fragments were vitrified using the solid surface vitrification (SSV) method or the ovarian tissue cryosystem (OTC) with 3 M ethylene glycol (EG), 3 M dimethylsulfoxide (DMSO), or a combination of the two (1.5 M EG/1.5 M DMSO). After two weeks, samples were rewarmed and evaluated as described previously. The OTC with any of the CPAs provided a similar conservation of morphologically normal PFs as the fresh control group (75.6 ± 8.6%); however, the SSV was only efficient with DMSO alone (63.9 ± 7.6%). Regarding the viability or cell proliferation, all tested groups provided post rewarming values similar to those observed for the fresh control group, 84.0 ± 2.9% viable cells with 2.0 ± 0.2 NORs. Related to apoptosis analysis, only the OTC with EG (46.7%) and the SSV method with EG (43.4%) or the combination of EG and DMSO (33.4%) provided similar values to those found for the fresh control group (36.7%). Our findings indicate the utilization of a closed system, the OTC, with 3 M EG as the CPA for the vitrification of collared peccary ovarian tissue.  相似文献   

20.
The necessary first step in successful organ cryopreservation will be the maintenance of endothelial cell integrity during perfusion of high concentrations of cryoprotective agents (CPAs). In this report we compare the effects of incubation on cultured porcine endothelial cells at 10 degrees C for 1 h with the CPAs glycerol, dimethyl sulfoxide (Me2SO), ethanediol (EG), and propane-1,2-diol (PG) in the vehicle solutions RPS-2 (high potassium, high glucose) and HP-5NP (low potassium, high sodium), both with and without added colloids. Tritiated adenine uptake and acid phosphatase estimation of cell number were used as indicators of cell viability. HP-5NP was superior to RPS-2 except with Me2SO when the differences in viability were not significant. Adding Haemaccel to HP-5NP improved the results, but adding albumin to RPS-2 was of no significant benefit. Osmotic stress appeared to be the major problem with glycerols use. Beyond 3.0 M the toxicity of Me2SO increased dramatically but it could not be determined if this was osmotic or chemical toxicity. PG was remarkably well tolerated to 3.0 M but a sharp decrease in cell viability beyond this concentration suggests that PG may be most useful with mixtures of other CPAs. Overall, EG appeared to be the least toxic CPA and in the context of vascular preservation warrants further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号