首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Nitrogen contribution of cowpea green manure and residue to upland rice   总被引:1,自引:0,他引:1  
Cowpea, Vigna unguiculata (L.) Walp., is well adapted to acid upland soil and can be grown for seed, green manure, and fodder production. A 2-yr field experiment was conducted on an Aeric Tropaqualf in the Philippines to determine the effect of cowpea management practice on the response of a subsequent upland rice crop to applied urea. Cowpea was grown to flowering and incorporated as a green manure or grown to maturity with either grain and pods removed or all aboveground vegetation removed before sowing rice. Cowpea green manure accumulated on average 68 kg N ha−1, and aboveground residue after harvest of dry pods contained on average 46 kg N ha−1. Compared with a pre-rice fallow, cowpea green manure and residue increased grain yield of upland rice by 0.7 Mg ha−1 when no urea was applied to rice. Green manure and residue substituted for 66 and 70 kg urea-N ha−1 on upland rice, respectively. In the absence of urea, green manure and residue increased total aboveground N in mature rice by 12 and 14 kg N ha−1, respectively. These increases corresponded to plant recoveries of 13% for applied green manure N and 24% for applied residue N. At 15 d after sowing rice (DAS), 33% of the added green manure N and 16% of the added residue N was recovered as soil (nitrate + ammonium)-N. At 30 DAS, the corresponding recoveries were 20 and 37% for green manure N and residue N, respectively. Cowpea cropping with removal of all aboveground cowpea vegetation slightly increased (p<0.05) soil (nitrate + ammonium)-N at 15 DAS as compared with the pre-rice fallow, but it did not increase rice yield. Cowpea residue remaining after harvest of dry pods can be an effective N source for a subsequent upland rice crop.  相似文献   

2.
Little is known about whether the high N losses from inorganic N fertilizers applied to lowland rice (Oryza sativa L.) are affected by the combined use of either legume green manure or residue with N fertilizers. Field experiments were conducted in 1986 and 1987 on an Andaqueptic Haplaquoll in the Philippines to determine the effect of cowpea [Vigna unguiculata (L.) Walp.] cropping systems before rice on the fate and use efficiency of15N-labeled, urea and neem cake (Azadirachta indica Juss.) coated urea (NCU) applied to the subsequent transplanted lowland rice crop. The pre-rice cropping systems were fallow, cowpea incorporated at the flowering stage as a green manure, and cowpea grown to maturity with subsequent incorporation of residue remaining after grain and pod removal. The incorporated green manure contained 70 and 67 kg N ha−1 in 1986 and 1987, respectively. The incorporated residue contained 54 and 49 kg N ha−1 in 1986 and 1987, respectively. The unrecovered15N in the15N balances for 58 kg N ha−1 applied as urea or NCU ranged from 23 to 34% but was not affected by pre-rice cropping system. The partial pressure of ammoniapNH3, and floodwater (nitrate + nitrite)-N following application of 29 kg N ha−1 as urea or NCU to 0.05-m-deep floodwater at 14 days after transplanting was not affected by pre-rice cropping system. In plots not fertilized with urea or NCU, green manure contributed an extra 12 and 26 kg N ha−1, to mature rice plants in 1986 and 1987, respectively. The corresponding contributions from residue were 19 and 23 kg N ha−1, respectively. Coating urea with 0.2g neem cake per g urea had no effect on loss of urea-N in either year; however, it significantly increased grain yield (0.4 Mg ha−1) and total plant N (11 kg ha−1) in 1987 but not in 1986.  相似文献   

3.
Current inputs of organic materials to cropped lands on sandy Alfisols and Entisols in Sahelian West Africa are insufficient to arrest soil organic matter (SOM) decline. Crop residues and green manures require proper management in order to maximize their contribution to nutrient supply and SOM maintenance. The objectives of this study were to quantify the rates of C and N mineralization from cowpea (Vigna unguiculata (L.) Walp.) green manure, cowpea residue, and millet (Pennisetum glaucum (L.) R.Br.) residue under field conditions in Niger and to determine the effect of these organic amendments on pearl millet yield. Millet was grown (1) as sole crop, (2) as intercrop with cowpea, (3) as intercrop with cowpea that was incorporated as green manure during the second half of the growing season, (4) with incorporated cowpea residue (2000 kg ha–1), (5) with millet residue mulch (3000 kg ha–1), and (6) with N fertilizer. Carbon loss as CO2 from soil with and without organic amendment was measured three times per week during the growing season. Nitrogen fertilizer increased millet yield only in a year with a favorable rainfall distribution. Cowpea grown in intercrop with millet during the first part of the growing season and subsequently incorporated as green manure between millet rows increased millet grain yield in a year with sufficient early rainfall, which could be attributed to the rapid rate of decomposition and nutrient release during the first 3 weeks after incorporation. In a year with limited early rainfall, however, densely planted green manure cowpeas competed for water and nutrients with the growing millet crop. Incorporated cowpea residue and millet residue mulch increased millet yield. Surface applied millet residue had high rates of decomposition only during the first 3 days after a rainfall event, with 34% of the millet residue C lost as CO2 in one rainy season. Recovery of undecomposed millet residue at the end of the rainy season was related to presence or absence of termites, but not to seasonal C loss. Millet residue mulch increased soil organic C content of this sandy Alfisol in Niger. Cowpea and millet residues had a greater effect on SOM and millet yield than cowpea green manure due to their greater rate of application and slower rate of decomposition.  相似文献   

4.
Intercropping cotton (Gossypium hirsutum L.) and cowpea (Vigna unguiculata (L.) Walp) is one of the ways to improve food security and soil fertility whilst generating cash income of the rural poor. A study was carried out to find out the effect of cotton–cowpea intercropping on cowpea N2-fixation capacity, nitrogen balance and yield of a subsequent maize crop. Results showed that cowpea suppressed cotton yields but the reduction in yield was compensated for by cowpea grain yield. Cowpea grain yield was significantly different across treatments and the yields were as follows: sole cowpea (1.6 Mg ha−1), 1:1 intercrop (1.1 Mg ha−1), and 2:1 intercrop (0.7 Mg ha−1). Cotton lint yield was also significantly different across treatments and was sole cotton (2.5 Mg ha−1), 1:1 intercrop (0.9 Mg ha−1) and 2:1 intercrop (1.5 Mg ha−1). Intercropping cotton and cowpea increased the productivity with land equivalence ratios (LER) of 1.4 and 1.3 for 1:1 and 2:1 intercrop treatments, respectively. There was an increase in percentage of N fixation (%Ndfa) by cowpea in intercrops as compared to sole crops though the absolute amount fixed (Ndfa) was lower due to reduced plant population. Sole cowpea had %Ndfa of 73%, 1:1 intercrop had 85% and 2:1 intercrop had 77% while Ndfa was 138 kg ha−1 for sole cowpea, 128 kg ha−1 for 1:1 intercrop and 68 kg ha−1 for 2:1 intercrop and these were significantly different. Sole cowpea and the intercrops all showed positive N balances of 92 kg ha−1 for sole cowpea and 1:1 intercrop, and 48 kg ha−1 for 2:1 intercrop. Cowpea fixed N transferred to the companion cotton crop was very low with 1:1 intercrop recording 3.5 kg N ha−1 and 2:1 intercrop recording 0.5 kg N ha−1. Crop residues from intercrops and sole cowpea increased maize yields more than residues from sole cotton. Maize grain yield was, after sole cotton (1.4 Mg ha−1), sole cowpea (4.6 Mg ha−1), 1:1 intercrops (4.4 Mg ha−1) and 2:1 intercrops (3.9 Mg ha−1) and these were significantly different from each other. The LER, crop yields, %N fixation and, N balance and residual fertility showed that cotton–cowpea intercropping could be a potentially productive system that can easily fit into the current smallholder farming systems under rain-fed conditions. The fertilizer equivalency values show that substantial benefits do accrue and effort should be directed at maximizing the dry matter yield of the legume in the intercrop system while maintaining or improving the economic yield of the companion cash crop.  相似文献   

5.
The present study was conducted to investigate the effects of nitrogen derived from dried or carbonized chicken manure on growth, nodulation, yield and N content of soybean. 15N labeled chicken manure used in this study was obtained from the droppings of chicken fed on hulled rice grown under field conditions and fertilized with 15N-labeled stable isotope ammonium sulphate and potassium nitrate fertilizers. Carbonized chicken manure was made by heat treatment in a muffle furnace in our laboratory. This study was conducted in pots filled with clay loam soil. Results from the study show that the application of carbonized chicken manure increased soybean seed yield by 23% and 43% for the 50 and 100 kg N ha−1 rates respectively. Dried chicken manure application increased soybean seed yield by 7% and 30% for the 50 and 100 kg N ha−1 rates respectively. There was no difference in the N manure yield of both manures when applied at the same rate. The percentage 15N recovery was 17.6% and 8.9% for carbonized chicken manure, 19.2% and 10.5% for dried chicken manure at 50 and 100 kg N ha−1 rates respectively at peak flowering stage of soybean growth. We found high total nitrogen yields of soybean at the rate of 100 kg N ha−1 for both manures. There was a positive relationship between number of nodules and seed yield of soybean. Total N content also showed positive relationship with number of nodules and seed yield of soybean. We supposed that the higher P content of carbonized chicken manure is responsible for the higher seed yield and nodule growth compared to dried chicken manure.  相似文献   

6.
In a long-lasting field experiment at the Research Station Hanninghof at Dülmen (Westphalia), laid out in 1971, the inoculum potential (IP) of vesicular-arbuscular mycorrhizal (VAM) fungi of soil from winter wheat in a continuous monoculture (CM) and in a four-years cereal crop rotation (CR, winter wheat, winter barley, winter rye, oats) was investigated from 1980 to 1982. The influence of green manure and two levels of introgen fertilization (100 and 200 kg ha−1) on VAM-IP was also assessed. It turned out that VAM is frequent also in intensively cultivated soils, but varies this with the crop rotation system and form and intensity of fertilization. Compared to CR the VAM-IP was significantly reduced in CM. A cumulation of this effect, with a particularly strong decrease of VAM occurred when other factors unfavourable for the symbiosis coincided in CM. Among these factors were the use of non-mycorrhizalRaphanus sativus andBrassica napus for green manure together with a N-fertilization of 200 kg ha−1. On the other hand green manure and the higher N-fertilization resulted in less disturbance of the VAM-IP in the CR. A correlation between VAM-IP in the soil and of wheat yields could neither be observed in the CR nor in the CM.  相似文献   

7.
Gill  J. S.  Sivasithamparam  K.  Smettem  K. R. J. 《Plant and Soil》2000,221(2):113-120
The effect of different soil textures, sandy (97.5% sand, 1.6% silt, 0.9% clay), loamy sand (77% sand, 11% silt, 12% clay) and a sandy clay loam (69% sand, 7% silt, 24% clay), on root rot of wheat caused by Rhizoctonia solani Kühn Anastomosis Group (AG) 8 was studied under glasshouse conditions. The reduction in root and shoot biomass following inoculation with AG-8 was greater in sand than in loamy sand or sandy clay loam. Dry root weight of wheat in the sand, loamy sand and sandy clay loam soils infested with AG-8 was 91%, 55% and 28% less than in control uninfested soils. There was greater moisture retention in the loamy sand and sandy clay loam soils as compared to the sand in the upper 10–20 cm. Root penetration resistance was greater in loamy sand and sandy clay loam than in sand. Root growth in the uninfested soil column was faster in the sand than in the loamy sand and sandy clay loam soils, the roots in the sandy soil being thinner than in the other two soils. Radial spread of the pathogen in these soils in seedling trays was twice as fast in the sand in comparison to the loamy sand which in turn was more than twice that in the sandy clay loam soil. There was no evidence that differences among soils in pathogenicity or soil spread of the pathogen was related to their nutrient status. This behaviour may be related to the severity of the disease in fields with sandy soils as compared to those with loam or clay soils. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
Summary Pole sized stands ofPopulus tremuloides Michx.,Picea glauca (Moench.) Voss,Pinus resinosa Ait., andPinus banksiana Lamb., were sampled on both a very fine sandy loam and a loamy sand. Relative species ranking in above-ground tree biomass (Pinus resinosa>Populus>Picea>Pinus banksiana) and above-ground tree nutrient (N, P, K, Ca, Mg) weights (Populus>Picea>Pinus resinosa>Pinus banksiana) were similar on both soils. Particularly large proportions of biomass and nutrients were found in aspen bark and spruce foliage and branches on both soils. Harvesting entire above-ground trees would remove up to three times more nutrients than would harvesting only the bole.Herbs and shrubs had less than 3% of the total vegetation organic matter but contributed as much as one-half of the total annual litterfall nutrients. Litterfall weights and nutrient concentrations, and especially forest floor nutrients, were all less on the loamy sand. Nutrients in the rooting zone of the loamy sand were 12 to 29% less than in the very fine sandy loam except for P which averaged 24% higher. On both soils, exchangeable Ca in the surface soil was much lower under Populus and Picea than under the pines, owing to species differences in uptake and apparently slow release of Ca by weathering.Ca in the above-ground Populus amounted to 18% (very fine sandy loam) to 25% (loamy sand) of the exchangeable Ca in the total complex. Intensive utilization of this species in particular could stress the Ca economy of these sites.This article was written and prepared by U.S. Government employees on official time; it is therefore in the public domain.Principal Silviculturist and Research Soil Scientist, resp.  相似文献   

9.
The weed Sesbania exaltata (Raf.) Rydb. ex A.W. Hill (hemp sesbania) was effectively controlled in soybean [Glycine max (L.) Merr.] field test plots over a 2-year testing period (1995–1996) with microsclerotia of the bioherbicidal fungus, Colletotrichum truncatum, formulated in wheat gluten-kaolin granules called ‘Pesta’. Weed control averaged 84% and 88%, respectively, in plots treated pre-plant incorporated (PPI) at ‘Pesta’ rates of 168 or 336 kg ha−1, and 71% and 78%, respectively, in plots treated pre-emergence (PE) at ‘Pesta’ rates of 168 or 336 kg ha−1 over the testing period. Post-emergence (POE) control averaged 30% and 50%, respectively, for the 168 and 336 kg ha−1 treatments, and was significantly less effective than either PE or PPI treatments. Although pathogenesis and mortality occurred in hemp sesbania tissues, satisfactory weed control was not achieved in plots treated at rates of 17 or 84 kg ha−1 with any of the application methods. Soybean yields were significantly greater in test plots treated PPI or PE, as compared to yields from test plots treated either POE, with inert ‘Pesta’ granules, or from untreated controls. Microsclerotia formulated in ‘Pesta’ granules exhibited excellent shelf-life, retaining high viability after storage for 10 years at 4 °C. These results suggest that microsclerotia of C. truncatum formulated in ‘Pesta’ granules offers an effective method for controlling this important weed and preserving the activity of this bioherbicide.  相似文献   

10.
Yields of above ground biomass and total N were determined in summer-grown maize and cowpea as sole crops or intercrops, with or without supplementary N fertilizer (25 kg N ha−1, urea) at an irrigated site in Waroona, Western Australia over the period 1982–1985. Good agreement was obtained between estimates of N2 fixation of sole or intercrop cowpea (1984/85 season) based on the15N natural abundance and15N fertilizer dilution techniques, both in the field and in a glasshouse pot study. Field-grown cowpea was estimated to have received 53–69% of its N supply from N2-fixation, with N2-fixation onlyslightly affected by intercropping or N fertilizer application. Proportional reliance on N2-fixation of cowpea in glasshouse culture was lower (36–66%) than in the field study and more affected by applied N. Budgets for N were drawn up for the field intercrops, based on above-ground seed yields, return of crop residues, inputs of fixed N and fertilizer N. No account was taken of possible losses of N through volatilization, denitrification and leaching or gains of N in the soil from root biomass. N2-fixation was estimated tobe 59 kg N ha−1 in the plots receiving no fertilizer N, and 73 kg N ha−1 in plots receiving 25 kg N ha−1 as urea. Comparable fixation by sole cowpea was higher (87 and 82 kg N ha−1 respectively) but this advantage was outweighed by greater land use efficiency by the intercrop than sole crops.  相似文献   

11.
Summary Tillage has been shown to affect the uptake of phosphorus (P) and yield of soybeans, [Glycine max (L.) Merr.], but there is little information concerning the effects of P fertilization on nitrogen (N2) fixation in soybeans under no-tillage. Two field experiments were conducted in 1980 and 1981 to determine the effects of soil P on N2 fixation under no-tillage and to study the interaction of P fertilization and tillage of N2 fixation, nutrient uptake, and yield of soybeans. In Exp. I, P was applied in 1977 at five rates up to 384 kg P ha−1 and the effects of residual soil P were evaluated in 1980 and 1981 under no-tillage management. Nitrogen fixation rates, as measured by acetylene reduction assay, were significantly affected by soil P in Exp. I, but the assay proved to be a poor technique for estimating total plant N in these tests. Acetylene reduction rates and plant P increased rapidly as soil P increased from 2 to 20 mg kg−1, with little additional increase above 20 mg P kg−1. In Exp. II, rates (0, 32, 64, and 128 kg P ha−1) and time (fall, spring and fall plus spring) of P application were compared under conventional tillage and no tillage. However, plant P increased with increasing levels of applied P. Applied P had no affect on acetylene reduction rates but rates were greater for no-tillage than conventional tillage at the V9 and R5 stages of growth in 1981. Plant uptake of P was more efficient under no-tillage than under conventional tillage in 1980 and 1981. Application of 64 kg P ha−1 under no-tillage resulted in equivalent plant P levels as the 128 kg P ha−1 applied under conventional tillage.  相似文献   

12.
There is a growing need for all productive sectors to develop greenhouse gas (GHG) mitigation techniques to reduce the enhanced greenhouse effect. However, the challenge to the agricultural sector is reducing net emissions while increasing production to meet growing demands for food, fiber, and biofuel. This study focuses on the changes in the GHG balance when sugarcane areas are converted from burned harvest (BH) to green harvest (GH, mechanized harvest), including the changes caused by the adoption of conservationist practices such as reduced tillage and a 4‐month crop rotation with Crotalaria juncea L. during sugarcane replanting. Based on the Intergovernmental Panel on Climate Change (IPCC) (2006) methodologies, the annual emission balance includes both agricultural and mobile sources of GHG, according to the mean annual consumption of supplies per hectare. The potential soil carbon accumulation was also considered in the GH plot. The total amounts of GHG were 2651.9 and 2316.4 kg CO2eq ha?1 yr?1 for BH and GH, respectively. Factoring in a mean annual soil carbon accumulation rate of 888.1 kg CO2 ha?1 yr?1 due to the input from long‐term crop residues associated with the conversion from BH to GH, the emission balance in GH decreased to 1428.3 kg CO2eq ha?1 yr?1. A second decrease occurs when a reduced tillage strategy is adopted instead of conventional tillage during the replanting season in the GH plot, which helps reduce the total emission balance to 1180.3 kg CO2eq ha?1 yr?1. Moreover, the conversion of sugarcane from BH to GH, with the adoption of a crop rotation with Crotalaria juncea L. as well as reduced tillage during sugarcane replanting, would result in a smaller GHG balance of 1064.6 kg CO2eq ha?1 yr?1, providing an effect strategy for GHG mitigation while still providing cleaner sugar and ethanol production in southern Brazil.  相似文献   

13.
Toxic aluminum (Al) ion is a major constraint to plant growth in acid soils. Aluminum tolerance in wheat (Triticum aestivum L.) is strongly related to the Al-triggered efflux of malate from root apices. A role of the secreted malate has been postulated to be in chelating Al and thus excluding it from root apices (malate hypothesis), but the actual process has yet to be fully elucidated. We measured Al content and root growth during and after Al exposure using seedlings of near-isogenic lines [ET8 (Al tolerant) and ES8 (Al sensitive)] differing in the capacity to induce Al-triggered malate efflux. Aluminum doses that caused 50% root growth inhibition during 24-h exposure to Al in calcium (Ca) solution (0.5 mM CaCl2, pH 4.5) were 50 μM in ET8 and 5 μM in ES8. Under such conditions, the amount of Al accumulated in root apices was approximately 2-fold higher in ET8 than ES8. Al-treated seedlings were then transferred to the Al-free Ca solution for 24 h. Compared to control roots (no Al pretreatment), root regrowth of Al-treated roots was about 100% in ET8 and about 25% in ES8. The impaired regrowth in ES8 was observed even after 24-h exposure to 2.5 μM Al which had caused only 20% root growth inhibition. The addition of malate (100 μM) during exposure to 50 μM Al in ES8 enhanced root growth 1.6 times and regrowth in Al-free solution 7 times, resulting in similar root growth and regrowth as in ET8. Short-term Al treatments of ES8 for up to 5 h indicated that the Al-caused inhibition of root regrowth started after 1-h exposure to Al. The stimulating effect of malate on root regrowth was observed when malate was present during Al exposure, but not when roots previously exposed to Al were rinsed with malate, although Al accumulation in root apices was similar under these malate treatments. We conclude that the malate secreted from root apices under Al exposure is essential for the apices to commence regrowth in Al-free medium, the trait that is not related to the exclusion of Al from the apices.  相似文献   

14.
Excessive corn (Zea mays L.) stover removal for biofuel and other uses may adversely impact soil and crop production. We assessed the effects of stover removal at 0, 25, 50, 75, and 100% from continuous corn on water erosion, corn yield, and related soil properties during a 3‐year study under irrigated and no‐tillage management practice on a Ulysses silt loam at Colby, irrigated and strip till management practice on a Hugoton loam at Hugoton, and rainfed and no‐tillage management practice on a Woodson silt loam at Ottawa in Kansas, USA. The slope of each soil was <1%. One year after removal, complete (100%) stover removal resulted in increased losses of sediment by 0.36–0.47 Mg ha?1 at the irrigated sites, but, at the rainfed site, removal at rates as low as 50% resulted in increased sediment loss by 0.30 Mg ha?1 and sediment‐associated carbon (C) by 0.29 kg ha?1. Complete stover removal reduced wet aggregate stability of the soil at the irrigated sites in the first year after removal, but, at the rainfed site, wet aggregate stability was reduced in all years. Stover removal at rates ≥ 50% resulted in reduced soil water content, increased soil temperature in summer by 3.5–6.8 °C, and reduced temperature in winter by about 0.5 °C. Soil C pool tended to decrease and crop yields tended to increase with an increase in stover removal, but 3 years after removal, differences were not significant. Overall, stover removal at rates ≥50% may enhance grain yield but may increase risks of water erosion and negatively affect soil water and temperature regimes in this region.  相似文献   

15.
Sanginga  N. 《Plant and Soil》2003,252(1):25-39
Nitrogen (N) has been gradually depleted from West African soils and now poses serious threats to food production. Many ways of increasing N supply (e.g. judicious use of inorganic fertilizers and nitrogen-fixing plants) have been tried in West African farming systems. Herbaceous and woody legumes commonly contribute 40–70 kg N ha–1 season. This represents about 30% of the total N applied as residues. Nevertheless and despite repeated demonstrations of the usefulness of green manures in enhancing soil fertility, their practices and adoption are still limited. Promiscuous soyabeans are being used to develop sustainable cropping systems in the moist savannah. Reliable estimates of N2 fixed by soyabeans and their residual N benefits to subsequent cereal crops in the savannah zone of southern Guinea have only infrequently been made. The actual amounts measured varied between 38 and 126 kg N ha–1 assuming that only seeds of soyabeans are removed from the plots, the net N accrual of soil nitrogen ranges between minus 8 kg N ha–1 and plus 47 kg N ha–1 depending on the soyabean cultivar. Residual soyabean N values of 10–24 kg N ha–1 (14–36% of the total N in maize) were obtained in a soyabean-maize rotation. Although cereal yields following legume cultivation have been attributed to greater N accumulation, our data show that the relative increase in maize N was smaller than the relative increase in dry-matter yield. Hence, the increased yields of maize following soybeans are not entirely due to the carry-over of N from soyabean residues (as well as to conservation of soil N) but to other rotational effects as well. It is thus clear that the Nbenefit of grain legumes to non-legumes is small compared to the level of N fertilizer use in more intensive cereal production systems but is nevertheless significant in the context of the low amounts of input in subsistence farming.  相似文献   

16.
In pot tests, MEMC, quintozene, captafol, carboxin, thiabendazole, carbendazim, benomyl and thiophanate-methyl used as seed treatments gave much better control of cowpea seedling rot in light-textured sandy and loamy sand soils than in heavy-textured loam and silt loam soils inoculated with Rhizoctonia solani. Disease control by chloroneb was not altered by soil texture. Amendment of sandy soil with montmorillonite reduced disease control with all fungicides, except chloroneb and carboxin; similar amendments with kaolinite decreased efficacy of MEMC and captafol. Green manuring with cluster bean reduced disease control by MEMC, captafol, benomyl and thiophanate-methyl; sunnhemp reduced efficacy of MEMC. Most fungicides gave poor disease control when farm yard manure or biogas sludge was added to soil, the sludge having the more marked effect. All the fungicides tested, except carboxin, were inactivated to different extents by humic acid extracted from farm yard manure.  相似文献   

17.

Aims

Effects of different soil amendments were investigated on methane (CH4) emission, soil quality parameters and rice productivity in irrigated paddy field of Bangladesh.

Methods

The experiment was laid out in a randomized complete block design with five treatments and three replications. The experimental treatments were urea (220 kg ha?1) + rice straw compost (2 t ha?1) as a control, urea (170 kg ha?1) + rice straw compost (2 t ha?1) + silicate fertilizer, urea (170 kg ha?1) + sesbania biomass (2 t ha?1 ) + silicate fertilizer, urea (170 kg ha?1) + azolla biomass (2 t ha?1) + cyanobacterial mixture 15 kg ha?1 silicate fertilizer, urea (170 kg ha?1) + cattle manure compost (2 t ha?1) + silicate fertilizer.

Results

The average of two growing seasons CH4 flux 132 kg ha?1 was recorded from the conventional urea (220 kg ha?1) with rice straw compost incorporated field plot followed by 126.7 (4 % reduction), 130.7 (1.5 % reduction), 116 (12 % reduction) and 126 (5 % reduction) kg CH4 flux ha?1 respectively, with rice straw compost, sesbania biomass, azolla anabaena and cattle manure compost in combination urea and silicate fertilizer applied plots. Rice grain yield was increased by 15 % and 10 % over the control (4.95 Mg ha?1) with silicate plus composted cattle manure and silicate plus azolla anabaena, respectively. Soil quality parameters such as soil organic carbon, total nitrogen, microbial biomass carbon, soil redox status and cations exchange capacity were improved with the added organic materials and azolla biofertilizer amendments with silicate slag and optimum urea application (170 kg ha?1) in paddy field.

Conclusion

Integrated application of silicate fertilizer, well composted organic manures and azolla biofertilizer could be an effective strategy to minimize the use of conventional urea fertilizer, reducing CH4 emissions, improving soil quality parameters and increasing rice productivity in subtropical countries like Bangladesh.  相似文献   

18.
Huang  Y.  Wong  P.T.W. 《Plant and Soil》1998,203(1):103-108
A rifampicin-resistant isolate of Burkholderia (Pseudomonas) cepacia (A3R) reduced crown rot (Fusarium graminearum Group 1) symptoms significantly (P 0.05) in wheat in glasshouse and field experiments and increased grain yield significantly (P 0.05) in one of two field experiments. In glasshouse experiments, applying the bacteria as a soil drench (2.5 × 109 cfu/g soil) was more effective than coating the bacteria on wheat seed (3.4 × 107cfu/seed). In field experiments, the bacteria were applied as a soil drench at the rate of 1.8 x 1010 cfu/m row. In both the glasshouse and the field, disease severity in the bacteria-inoculated treatments was significantly less in a silt loam than in a sandy loam. The silt loam had a large proportion of fine clay and silt particles (51.7%), which may have favoured the biocontrol activity and survival of the introduced B. cepacia. In a glasshouse experiment, control by B. cepacia was significantly greater in the silt loam than in the sandy loam, which in turn was greater than in a loamy sand. The loamy sand appeared to favour crown rot development but not the activity or survival of the bacterial antagonist. The latter was reflected by the relative populations of the rifampicin-resistant bacteria re-isolated from the various soils during a 5-week period after application of the bacteria (silt loam > sandy loam > loamy sand). This study further confirms that soil type can influence the populations and the level of biocontrol activity of some bacterial antagonists.  相似文献   

19.
Readily available chemical fertilizers have resulted in a decline in the use of organic manure (e.g., green manures), a traditionally sustainable source of nutrients. Based on this, we applied urea at the rate of 270 kg ha−1 with and without green manure in order to assess nitrogen (N) productivity in a double rice cropping system in 2017. In particular, treatment combinations were as follows: winter fallow rice-rice (WF-R-R), milk vetch rice-rice (MV-R-R), oil-seed rape rice-rice (R-R-R) and potato crop rice-rice (P-R-R). Results revealed that green manure significantly (p ≤ 0.05) improved the soil chemical properties and net soil organic carbon content increased by an average 117.47%, total nitrogen (N) by 28.41%, available N by 26.64%, total phosphorus (P) by 37.77%, available P by 20.48% and available potassium (K) by 33.10% than WF-R-R, however pH was reduced by 3.30% across the seasons. Similarly, net dry matter accumulation rate enhanced in green manure applied treatments and ranked in order: P-R-R > R-R-R > MV-R-R > WF-R-R. Furthermore, the total leaf dry matter transport (t ha−1 ) for the P-R-R in both seasons was significantly higher by an average 11.2%, 7.2% and 36 % than MV-R-R, R-R-R, and WF-R-R, respectively. In addition, net total nitrogen accumulation (kg ha−1 ) was found higher in green manure applied plots compared to the control. Yield and yield attributed traits were observed maximum in green manure applied plots, with treatments ranking as follows: P-R-R > R-R-R > MV-R-R > WF-R-R. Thus, results obtained highlight ability of green manure to sustainably improve soil quality and rice yield.  相似文献   

20.
The levels of soil parameters and selected heavy metals around a solid waste dumpsite receiving untreated wastes from all sources and a control site within Port Harcourt, Nigeria have been examined. Top soil (0–15 cm) and sediment samples were collected and analysed for pH value, particle size, total nitrogen, potassium, available phosphorus, organic matter, effective cation exchange capacity, cadmium, nickel and lead using standard methods. The results showed that the waste dump contributed to the high levels of nutrients and heavy metals. The dry season mean concentrations were: organic matter (5.28 ± 1.34% or 132,422.4 kg ha?1), K (1.60 ± 0.52 meq per 100 g), N (0.09 ± 0.06% or 2257.2 kg ha?1), Av.P (15.11 ± 7.57 μg g?1), Cd (1.34 ± 0.72 μg g?1), Ni (4.10 ± 1.63 μg g?1) and Pb (38.85 ± 22.18 μg g?1) while the wet season mean concentrations were organic matter (5.46 ± 1.39% or 136,936.8 kg ha?1), K (2.79 ± 0.81 meq per 100 g), N (0.10 ± 0.05% or 2508 kg ha?1), Av.P (9.22 ± 2.69 μg g?1), Cd (1.72 ± 1.22 μg g?1), Ni (14.95 ± 14.94 μg g?1) and Pb (53.50 ± 40.09 μg g?1). There was efficient mineralization process in the area. The texture of soil on the main dumpsite was loamy sand, which suggests that the ground water in the area is susceptible to contamination by surface pollutants. The texture of soil at the control site is sandy loam while sediment has the textural class of sand. Decomposed organic materials and agricultural activities influenced the texture of soils. The soils from the main dump and sediment were slightly alkaline while the control soil was moderately acidic. In both seasons, a significant variation exists (P < 0.05) between the metal concentrations in soil at the main dump and those in the sediments with a positive correlation (r = 0.572149) in the wet season and (r = 0.956647) in the dry season. The presence of liming materials and activities of microorganisms on the waste dump increased the pH of the soils. The accumulation of nutrients results in the luxuriant growth of plants/crops on the waste dump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号