首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The mechanism by which origin recognition complexes (ORCs) identify replication origins was investigated using purified Orc proteins from Schizosaccharomyces pombe. Orc4p alone bound tightly and specifically to several sites within S. pombe replication origins that are genetically required for origin activity. These sites consisted of clusters of A or T residues on one strand but were devoid of either alternating A and T residues or GC-rich sequences. Addition of a complex consisting of Orc1, -2, -3, -5, and -6 proteins (ORC-5) altered neither Orc4p binding to origin DNA nor Orc4p protection of specific sequences. ORC-5 alone bound weakly and nonspecifically to DNA; strong binding required the presence of Orc4p. Under these conditions, all six subunits remained bound to chromatin isolated from each phase of the cell division cycle. These results reveal that the S. pombe ORC binds to multiple, specific sites within replication origins and that site selection, at least in vitro, is determined solely by the Orc4p subunit.  相似文献   

2.
Selection of initiation sites for DNA replication in eukaryotes is determined by the interaction between the origin recognition complex (ORC) and genomic DNA. In mammalian cells, this interaction appears to be regulated by Orc1, the only ORC subunit that contains a bromo-adjacent homology (BAH) domain. Since BAH domains mediate protein-protein interactions, the human Orc1 BAH domain was mutated, and the mutant proteins expressed in human cells to determine their affects on ORC function. The BAH domain was not required for nuclear localization of Orc1, association of Orc1 with other ORC subunits, or selective degradation of Orc1 during S-phase. It did, however, facilitate reassociation of Orc1 with chromosomes during the M to G1-phase transition, and it was required for binding Orc1 to the Epstein-Barr virus oriP and stimulating oriP-dependent plasmid DNA replication. Moreover, the BAH domain affected Orc1's ability to promote binding of Orc2 to chromatin as cells exit mitosis. Thus, the BAH domain in human Orc1 facilitates its ability to activate replication origins in vivo by promoting association of ORC with chromatin.  相似文献   

3.
4.
Origin recognition complex (ORC), a candidate initiator of chromosomal DNA replication in eukaryotes, binds specifically to ATP through two of its subunits (Orc1p and Orc5p). In this study, we investigated the kinetics of ATP binding to ORC by a filter binding assay. The Kd values for the ATP of wild-type ORC and ORC-1A (mutant ORC containing Orc1p with a defective Walker A motif) were less than 10 nm, suggesting that the affinity of Orc5p for ATP is very high. On the other hand, the Kd values for the ATP of ORC-5A (mutant ORC containing Orc5p with a defective Walker A motif) was much higher (about 1.5 microm), suggesting that the affinity of Orc1p for ATP is relatively low in the absence of origin DNA. ATP dissociated more rapidly from its complex with ORC-5A than from its complex with ORC-1A, suggesting that the ATP-Orc5p complex is more stable than ATP-Orc1p complex. Origin DNA fragments decreased the Kd value of ORC-5A for ATP and stabilized the complex of ATP with ORC-5A. Wild-type ORC, ORC-1A, and ORC-5A required different concentrations of ATP for specific binding to origin DNA. All of these results imply that ATP binding to Orc5p, ATP binding to Orc1p, and origin DNA binding to ORC are co-operatively regulated, which may be important for the initiation of DNA replication.  相似文献   

5.
Initiation of eukaryotic genome duplication begins when a six-subunit origin recognition complex (ORC) binds to DNA. However, the mechanism by which this occurs in vivo and the roles played by individual subunits appear to differ significantly among organisms. Previous studies identified a soluble human ORC(2-5) complex in the nucleus, an ORC(1-5) complex bound to chromatin, and an Orc6 protein that binds weakly, if at all, to other ORC subunits. Here we show that stable ORC(1-6) complexes also can be purified from human cell extracts and that Orc6 and Orc1 each contain a single nuclear localization signal that is essential for nuclear localization but not for ORC assembly. The Orc6 nuclear localization signal, which is essential for Orc6 function, is facilitated by phosphorylation at its cyclin-dependent kinase consensus site and by association with Kpna6/1, nuclear transport proteins that did not co-purify with other ORC subunits. These and other results support a model in which Orc6, Orc1, and ORC(2-5) are transported independently to the nucleus where they can either assemble into ORC(1-6) or function individually.  相似文献   

6.
The six-subunit origin recognition complex (ORC) was originally identified in the yeast Saccharomyces cerevisiae. Yeast ORC binds specifically to origins of replication and serves as a platform for the assembly of additional initiation factors, such as Cdc6 and the Mcm proteins. Human homologues of all six ORC subunits have been identified by sequence similarity to their yeast counterparts, but little is known about the biochemical characteristics of human ORC (HsORC). We have extracted HsORC from HeLa cell chromatin and probed its subunit composition using specific antibodies. The endogenous HsORC, identified in these experiments, contained homologues of Orc1-Orc5 but lacked a putative homologue of Orc6. By expressing HsORC subunits in insect cells using the baculovirus system, we were able to identify a complex containing all six subunits. To explore the subunit-subunit interactions that are required for the assembly of HsORC, we carried out extensive co-immunoprecipitation experiments with recombinant ORC subunits expressed in different combinations. These studies revealed the following binary interactions: HsOrc2-HsOrc3, HsOrc2-HsOrc4, HsOrc3-HsOrc4, HsOrc2-HsOrc6, and HsOrc3-HsOrc6. HsOrc5 did not form stable binary complexes with any other HsORC subunit but interacted with sub-complexes containing any two of subunits HsOrc2, HsOrc3, or HsOrc4. Complex formation by HsOrc1 required the presence of HsOrc2, HsOrc3, HsOrc4, and HsOrc5 subunits. These results suggest that the subunits HsOrc2, HsOrc3, and HsOrc4 form a core upon which the ordered assembly of HsOrc5 and HsOrc1 takes place. The characterization of HsORC should facilitate the identification of human origins of DNA replication.  相似文献   

7.
ATP-dependent assembly of the human origin recognition complex   总被引:2,自引:0,他引:2  
The origin recognition complex (ORC) was initially discovered in budding yeast extracts as a protein complex that binds with high affinity to autonomously replicating sequences in an ATP-dependent manner. We have cloned and expressed the human homologs of the ORC subunits as recombinant proteins. In contrast to other eukaryotic initiators examined thus far, assembly of human ORC in vitro is dependent on ATP binding. Mutations in the ATP-binding sites of Orc4 or Orc5 impair complex assembly, whereas Orc1 ATP binding is not required. Immunofluorescence staining of human cells with anti-Orc3 antibodies demonstrate cell cycle-dependent association with a nuclear structure. Immunoprecipitation experiments show that ORC disassembles as cells progress through S phase. The Orc6 protein binds directly to the Orc3 subunit and interacts as part of ORC in vivo. These data suggest that the assembly and disassembly of ORC in human cells is uniquely regulated and may contribute to restricting DNA replication to once in every cell division cycle.  相似文献   

8.
N(alpha) acetylation is one of the most abundant protein modifications in eukaryotes and is catalyzed by N-terminal acetyltransferases (NATs). NatA, the major NAT in Saccharomyces cerevisiae, consists of the subunits Nat1p, Ard1p, and Nat5p and is necessary for the assembly of repressive chromatin structures. Here, we found that Orc1p, the large subunit of the origin recognition complex (ORC), required NatA acetylation for its role in telomeric silencing. NatA functioned genetically through the ORC binding site of the HMR-E silencer. Furthermore, tethering Orc1p directly to the silencer circumvented the requirement for NatA in silencing. Orc1p was N(alpha) acetylated in vivo by NatA. Mutations that abrogated its ability to be acetylated caused strong telomeric derepression. Thus, N(alpha) acetylation of Orc1p represents a protein modification that modulates chromatin function in S. cerevisiae. Genetic evidence further supported a functional link between NatA and ORC: (i) nat1Delta was synthetically lethal with orc2-1 and (ii) the synthetic lethality between nat1Delta and SUM1-1 required the Orc1 N terminus. We also found Sir3p to be acetylated by NatA. In summary, we propose a model by which N(alpha) acetylation is required for the binding of silencing factors to the N terminus of Orc1p and Sir3p to recruit heterochromatic factors and establish repression.  相似文献   

9.
The eukaryotic origin recognition complex (ORC) selects the genomic sites where prereplication complexes are assembled and DNA replication begins. In proliferating mammalian cells, ORC activity appears to be regulated by reducing the affinity of the Orc1 subunit for chromatin during S phase and then preventing reformation of a stable ORC-chromatin complex until mitosis is completed and a nuclear membrane is assembled. Here we show that part of the mechanism by which this is accomplished is the selective association of Orc1 with Cdk1 (Cdc2)/cyclin A during the G(2)/M phase of cell division. This association accounted for the appearance in M-phase cells of hyperphosphorylated Orc1 that was subsequently dephosphorylated during the M-to-G(1) transition. Moreover, inhibition of Cdk activity in metaphase cells resulted in rapid binding of Orc1 to chromatin. However, chromatin binding was not mediated through increased affinity of Orc1 for Orc2, suggesting that additional events are involved in the assembly of functional ORC-chromatin sites. These results reveal that the same cyclin-dependent protein kinase that initiates mitosis in mammalian cells also concomitantly inhibits assembly of functional ORC-chromatin sites.  相似文献   

10.
11.
The origin recognition complex (ORC), a possible initiator of chromosomal DNA replication in eukaryotes, binds to ATP through its subunits Orc1p and Orc5p. Orc1p possesses ATPase activity. As for DnaA, the Escherichia coli initiator, the ATP-DnaA complex is active but the ADP-DnaA complex is inactive for DNA replication and, therefore, the ATPase activity of DnaA inactivates the ATP-DnaA complex to suppress the re-initiation of chromosomal DNA replication. We investigated ADP-binding to ORC by a filter-binding assay. The K(d) values for ADP-binding to wild-type ORC and to ORC-1A (ORC containing Orc1p with a defective Walker A motif) were less than 10nM, showing that Orc5p can bind to ADP with a high affinity, similar to ATP. ORC-5A (ORC containing Orc5p with a defective Walker A motif) did not bind to ADP, suggesting that the ADP-Orc1p complex is too unstable to be detected by the filter-binding assay. ADP dissociated more rapidly than ATP from wild-type ORC and ORC-1A. Origin DNA fragments did not stimulate ADP-binding to any type of ORC. In the presence of ADP, ORC could not bind to origin DNA in a sequence-specific manner. Thus, in eukaryotes, the ADP-ORC complex may be unable to initiate chromosomal DNA replication, and in this it resembles the ADP-DnaA complex in prokaryotes. However, overall control may be different. In eukaryotes, the ADP-ORC complex is unstable, suggesting that the ADP-ORC complex might rapidly become an ATP-ORC complex; whereas in prokaryotes, ADP remains bound to DnaA, keeping DnaA inactive, and preventing re-initiation for some periods.  相似文献   

12.
In eukaryotes, ORC (origin recognition complex), a six-protein complex, is the most likely initiator of chromosomal DNA replication. ORC belongs to the AAA(+) (ATPases associated with a variety of cellular activities) family of proteins and has intrinsic ATPase activity derived from Orc1p, one of its subunits. To reveal the role of this ATPase activity in Saccharomyces cerevisiae (baker's yeast) ORC, we mutated the Orc1p sensor 1 and sensor 2 regions, which are important for ATPase activity in AAA(+) proteins. Plasmid-shuffling analysis revealed that Asn(600), Arg(694) and Arg(704) are essential for the function of Orc1p. In yeast cells, overexpression of Orc1R694Ep inhibited growth, caused inefficient loading of MCM (mini-chromosome maintenance complex of proteins) and slowed the progression of S phase. In vitro, purified ORC-1R [ORC with Orc1R694Ep (Orc1p Arg(694)-->Glu mutant)] has decreased ATPase activity in the presence or absence of origin DNA. However, other activities (ATP binding and origin DNA binding) were indistinguishable from those of wild-type ORC. The present study showed that Arg(694) of the Orc1p subunit is important for the ATPase activity of ORC and suggests that this ATPase activity is required for efficient MCM loading on to origin DNA and for progression of S phase.  相似文献   

13.
Phosphorylation of Thr116 and Thr226 on Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2-5) from human chromatin and replication origins. The phosphorylated Orc2 becomes dephosphorylated in the late M phase of the cell cycle. Here we show that protein phosphatase 1 (PP1) dephosphorylates Orc2. Dephosphorylation of Orc2 was accompanied by associating the dissociated Orc subunits with chromatin. Inhibitors of PP1 preferentially inhibited the dephosphorylation of Orc2. The overexpression of the α, β and γ PP1 isoforms decreased the amount of phosphorylated Orc2, and the depletion of these isoforms by RNA interference increased the amount of phosphorylated Orc2. These results suggest that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin.  相似文献   

14.
Phosphorylation of Orc2, one of the six subunits of the origin recognition complex (ORC), by cyclin A/CDK2 during S phase leads to the dissociation of Orc2, Orc3, Orc4, and Orc5 subunits (Orc2–5) from human chromatin and replication origins. Dephosphorylation of the phosphorylated Orc2 by protein phosphatase 1 (PP1) is accompanied by the binding of the dissociated subunits to chromatin. Here we show that PP1 physically interacts with Orc2. The binding of PP1 to Orc2 and the dephosphorylation of Orc2 by PP1 occurred in a cell cycle-dependent manner through an interaction with 119-KSVSF-123, which is the consensus motif for the binding of PP1, of Orc2. The dephosphorylation of Orc2 by PP1 is required for the binding of Orc2 to chromatin. These results support that PP1 dephosphorylates Orc2 to promote the binding of ORC to chromatin and replication origins for the subsequent round of the cell cycle.  相似文献   

15.
The heterohexameric origin recognition complex (ORC) acts as a scaffold for the G(1) phase assembly of pre-replicative complexes (pre-RC). Only the Orc1-5 subunits appear to be required for origin binding in budding yeast, yet Orc6 is an essential protein for cell proliferation. Imaging of Orc6-YFP in live cells revealed a punctate pattern consistent with the organization of replication origins into subnuclear foci. Orc6 was not detected at the site of division between mother and daughter cells, in contrast to observations for metazoans, and is not required for mitosis or cytokinesis. An essential role for Orc6 in DNA replication was identified by depleting it at specific cell cycle stages. Interestingly, Orc6 was required for entry into S phase after pre-RC formation, in contrast to previous models suggesting ORC is dispensable at this point in the cell cycle. When Orc6 was depleted in late G(1), Mcm2 and Mcm10 were displaced from chromatin, cells failed to progress through S phase, and DNA combing analysis following bromodeoxyuridine incorporation revealed that the efficiency of replication origin firing was severely compromised.  相似文献   

16.
The origin recognition complex (ORC) of eukaryotes associates with the replication origins and initiates the pre-replication complex assembly. In the literature, there are several reports of interaction of ORC with different RNAs. Here, we demonstrate for the first time a direct interaction of ORC with the THSC/TREX-2 mRNA nuclear export complex. The THSC/TREX-2 was purified from the Drosophila embryonic extract and found to bind with a fraction of the ORC. This interaction occurred via several subunits and was essential for Drosophila viability. Also, ORC was associated with mRNP, which was facilitated by TREX-2. ORC subunits interacted with the Nxf1 receptor mediating the bulk mRNA export. The knockdown of Orc5 led to a drop in the Nxf1 association with mRNP, while Orc3 knockdown increased the level of mRNP-bound Nxf1. The knockdown of Orc5, Orc3 and several other ORC subunits led to an accumulation of mRNA in the nucleus, suggesting that ORC participates in the regulation of the mRNP export.  相似文献   

17.
Orc5p is one of six subunits constituting the ORC (origin recognition complex), a possible initiator of chromosomal DNA replication in eukaryotes. Orc5p contains a Walker A motif. We recently reported that a strain of Saccharomyces cerevisiae having a mutation in Orc5p's Walker A motif (orc5-A), showed cell-cycle arrest at G2/M and degradation of ORC at high temperatures (37 degrees C). Over-production of Orc4p, another subunit of ORC, specifically suppressed these phenotypes [Takahashi, Yamaguchi, Yamairi, Makise, Takenaka, Tsuchiya and Mizushima (2004) J. Biol. Chem. 279, 8469-8477]. In the present study, we examined the mechanisms of ORC degradation and of its suppression by Orc4p over-production. In orc5-A, at high temperatures, ORC is degraded by proteasomes; either addition of a proteasome inhibitor, or introduction of a mutation of either tan1-1 or nob1-4 that inhibits proteasomes, prevented ORC degradation. Introduction of the tan1-1 mutation restored cell cycle progression, suggesting that the defect was due to ORC degradation by proteasomes. Yeast two-hybrid and co-immunoprecipitation analyses suggested that Orc5p interacts preferentially with Orc4p and that the orc5-A mutation diminishes this interaction. We suggest that this interaction is mediated by the C-terminal region of Orc4p, and the N-terminal region of Orc5p. Based on these observations, we consider that ATP binding to Orc5p is required for efficient interaction with Orc4p and that, in orc5-A, loss of this interaction at higher temperatures allows proteasomes to degrade ORC, causing growth defects. This model could also explain why over-production of Orc4p suppresses the orc5-A strain's phenotype.  相似文献   

18.
The origin recognition complex (ORC) in yeast is a complex of six tightly associated subunits essential for the initiation of DNA replication. Human ORC subunits are nuclear in proliferating cells and in proliferative tissues like the testis, consistent with a role of human ORC in DNA replication. Orc2, Orc3, and Orc5 also are detected in non-proliferating cells like cardiac myocytes, adrenal cortical cells, and neurons, suggesting an additional role of these proteins in non-proliferating cells. Although Orc2-5 co-immunoprecipitate with each other under mild extraction conditions, a holo complex of the subunits is difficult to detect. When extracted under more stringent extraction conditions, several of the subunits co-immunoprecipitate with stoichiometric amounts of other unidentified proteins but not with any of the known ORC subunits. The variation in abundance of individual ORC subunits (relative to each other) in several tissues, expression of some subunits in non-proliferating tissues, and the absence of a stoichiometric complex of all the subunits in cell extracts indicate that subunits of human ORC in somatic cells might have activities independent of their role as a six subunit complex involved in replication initiation. Finally, all ORC subunits remain consistently nuclear, and Orc2 is consistently phosphorylated through all stages of the cell cycle, whereas Orc1 is selectively phosphorylated in mitosis.  相似文献   

19.
Orc5p is one of six proteins that make up the origin recognition complex (ORC), a candidate initiator of chromosomal DNA replication in eukaryotes. To investigate the role of ATP binding to Orc5p in cells, we constructed orc5-A, a strain of Saccharomyces cerevisiae having a mutation in the Walker A motif of Orc5p (K43E). The strain showed temperature-sensitive growth. Incubation at a nonpermissive temperature (37 degrees C) caused accumulation of cells with nearly 2C DNA content. Overproduction of Orc4p, another subunit of ORC, suppresses this temperature sensitivity, but overproduction of other subunits did not. Overproduction of Orc4p did not suppress the temperature sensitivity of another orc5 mutant, orc5-1, whose mutation, L331P, is outside the ATP-binding motif. These results suggest that Orc4p is specifically involved in ATP binding to Orc5p itself or its function in DNA replication. Immunoblotting experiments revealed that in the orc5-A strain at a nonpermissive temperature, all ORC subunits gradually disappeared, suggesting that ORC5-A becomes degraded at nonpermissive temperatures. We therefore consider that ATP binding to Orc5p is involved in efficient ORC formation and that Orc4p is involved in this process.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号