首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Membrane glycoprotein biosynthesis of ascites hepatoma cells is followed by [14C]glucosamine and [3H]leucine incorporation into cells in culture. The rate of incorporation is strongly increased by the addition of Robinia lectin in culture medium. Labeled glycoproteins are released from lectin stimulated and non-stimulated ceils by trypsin digestion. Studies of labeled trypsinates on sodium dodecyl sulfate gel electrophoresis and Sephadex G-200 filtration exhibit two fractions both labeled with [14C]glucosamine and [3H]leucine and having different molecular weights, one over 200 000 and the other about 2000. Identical results are obtained when external membrane glycoproteins are solubilized by sodium deoxycholate. Comparison of surface glycoproteins isolated by trypsinization from control cells labeled with [3H]glucosamine and from lectin stimulated cells labeled with [14C]glucosamine displays no significant qualitative differences between glycoprotein fractions released from both cell groups.  相似文献   

2.
PC12 pheochromocytoma cells and cultures of early postnatal rat cerebellum were labeled with [3H]glucosamine, [3H]fucose, [3H]leucine, [3H]ethanolamine, or sodium [35S]sulfate and treated with a phosphatidylinositol-specific phospholipase C. Enzyme treatment of [3H]glucosamine- or [3H]fucose-labeled PC12 cells led to a 15-fold increase in released glycoproteins. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis, most of the released material migrated as a broad band with an apparent molecular size of 32,000 daltons (Da), which was specifically immunoprecipitated by a monoclonal antibody to the Thy-1 glycoprotein. A second glycoprotein, with an apparent molecular size of 158,000 Da, was also released. After treatment with endo-beta-galactosidase, 40-45% of the [3H]glucosamine or [3H]fucose radioactivity in the phospholipase-released glycoproteins was converted to products of disaccharide size, and the molecular size of the 158-kDa glycoprotein decreased to 145 kDa, demonstrating that it contains fucosylated poly-(N-acetyllactosaminyl) oligosaccharides. The phospholipase also released labeled Thy-1 and the 158-kDa glycoprotein from PC12 cells cultured in the presence of [3H]ethanolamine, which specifically labels this component of the phosphatidylinositol membrane-anchoring sequence, while in the lipid-free protein residue of cells not treated with phospholipase, Thy-1 and a doublet at 46/48 kDa were the only labeled proteins. At least eight early postnatal rat brain glycoproteins also appear to be anchored to the membrane by phosphatidylinositol. Sulfated glycoproteins of 155, 132/134, 61, and 21 kDa are the predominant species released by phospholipase, which does not affect a major 44-kDa protein seen in [3H]ethanolamine-labeled brain cultures. The 44-48- and 155/158-kDa proteins may be common to both PC12 cells and brain.  相似文献   

3.
Human endometrium from the secretory phase of the menstrual cycle was incubated with 3H- and 14C-labelled glucosamine and [3H]leucine. Incorporation into secreted extracellular glycoprotein and accumulation of the label into the microsomal fraction were measured. When oestradiol or progesterone were added to the medium, medroxyprogesterone acetate (MPA), ethynodiol diacetate and chlormadinone acetate reduced incorporation of glucosamine and MPA reduced incorporation of leucine into glycoprotein. MPA reduced the amount of glucosamine in the microsomal fraction and also had an effect on amino acid transport within the endometrial cells, as indicated by intracellular alpha-aminoisobutyric acid space measurements. These results and the ratios of 3H and 14C in the microsomal fraction and secreted protein suggest that MPA has a primary effect in decreasing amino sugar incorporation and a secondary effect in reducing amino acid incorporation into glycoprotein.  相似文献   

4.
beta-All-trans retinoic acid (RA) treatment of murine S91-C2 melanoma cells decreases in vitro growth and modulates the glycosylation of specific cellular and cell-surface glycoproteins. The effect of RA treatment on [3H]fucose, [3H]galactose, and [3H]glucosamine incorporation was investigated by metabolic labeling followed by analysis of labeled cellular glycoproteins using polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate (SDS-PAGE) and fluorography. RA treatment dramatically increased the incorporation of the labeled monosaccharides into one glycoprotein of Mr 160,000 (gp160), which has been previously implicated in the growth-inhibitory effect of RA on these cells. Following RA treatment, cell-surface sialic acid residues on gp160 were also more intensely labeled by NaIO4 oxidation and subsequent NaB[3H]4 reduction than were those on gp160 of untreated cells. The activities of fucosyl- and galactosyltransferase increased about 1.5 to 1.9 times after RA treatment. These results suggest that the increased activities of the two glycosyltransferases is responsible for the increased incorporation of fucose and galactose into gp160.  相似文献   

5.
The effects of phenobarbital on protein and glycoprotein synthesis and secretion were studied in rat liver slices. Phenobarbital (2 mM) decreased [14C]-glucosamine and [14C]leucine incorporation into liver proteins and markedly inhibited their incorporation into medium (secretory) proteins. This inhibitory effect of phenobarbital was dose dependent and not reversible under the conditions of this study. In the presence of cycloheximide, an inhibitor of peptide synthesis, phenobarbital still inhibited the release of glycoproteins into the medium; however, the specific activity of liver glycoproteins was increased. The effects of phenobarbital on hepatic macromolecular secretion, independent of its effects on synthesis, were determined by prelabeling proteins in a liver slice system with either [14C]leucine of [14C]glucosamine. When phenobarbital was present, the secretion of these prelabeled proteins into the medium was impaired. 12 h after intraperitoneal injections of phenobarbital, glycoprotein secretion was inhibited from liver slices prepared from the pretreated rats. This inhibition of secretion occurred even though protein synthesis was stimulated and intracellular glycosylations unaffected. The results of this study indicate that phenobarbital impairs the secretion of glycoproteins by the liver.  相似文献   

6.
Incorporation of [14C]glucosamine into synaptosomes in vitro   总被引:1,自引:0,他引:1  
Abstract— Synaptosomes isolated from rat cerebral cortex by zonal centrifugation in-corporated radioactive glucosamine into macromolecules in vitro as glucosamine, galactosamine, N-acetylneuraminic acid, and glucuronic acid. The largest percentage of incorporated radioactivity was recovered in the particulate fraction in which radioactive carbohydrates were bound in covalent linkage requiring acid hydrolysis or enzymatic digestion for release. Less than 20 per cent of the particulate radioactivity represented incorporation into gangliosides. Some 20 per cent of the radioactivity was incorporated into proteins as glucosamine, identified in hydrolysates by paper chromatography and by the amino acid analyser. After incubation, radioactivity was demonstrable in the proteins as sialic acid by paper chromatography and specific enzymic digestion; and as glucuronic acid by chromatography, electrophoresis, and digestion with hyaluronidase. Incorporation of carbohydrate was stimulated by sodium and potassium at concentrations demonstrated to enhance incorporation of amino acids, and involved the macro-molecules of all subsynaptosomal fractions. Significant incorporation of radioactivity was found in the synaptic plasma membrane. The synthesis of glycoproteins was suggested by simultaneous incorporation of [14C]glucosamine and [3H]leucine into glycopeptides subsequently hydrolysed and subjected to polyacrylamide gel electrophoresis and two-dimensional paper chromatography and electrophoresis. Such studies demonstrated that amino acids and carbohydrates may be incorporated into glycoproteins of the synaptic membrane and suggest the possibility of local synthesis as well as modification of material brought to the nerve ending by axoplasmic flow.  相似文献   

7.
C-1300 murine neuroblastoma cells release glycoproteins into the culture medium. The process was studied by prelabeling spinner cultures for 12 to 60 hours with [3H]glucosamine. Then, the medium was removed and replaced with fresh medium lacking radioactive isotope. Soluble material released into the medium during the subsequent 2-hour incubation was collected by trichloroacetic acid precipitation. The released proteins were then separated by discontinuous polyacrylamide gel electrophoresis in buffers containing sodium dodecyl sulfate. The electrophoretograms of glycoproteins obtained from cultures labeled for different lengths of time were very similar; three major radioactive regions centered about molecular weights 87,000, 66,000, and 55,000 were present. When spinner cells were transferred to monolayer culture in the presence of N6,O2' dibutyryl adenosine 3':5'-monophosphate (Bt2cAMP), differentiation (extension of neurites twice the diameter of the perikaryon) was observed. Monolayer cultures grown in the presence of Bt2cAMP and [3H]glucosamine for 12 hours released glycoproteins which gave a gel electrophoresis pattern similar to that obtained using spinner cultures. However, after 60 hours in the presence of Bt2cAMP and [3H]glucosamine, the released radioactive material consisted almost exclusively of glycoproteins of the 66,000 molecular weight class. Similar results were obtained if [3H]fucose was substituted for [3H]glucosamine, or if bromodeoxyuridine (which also induced differentiation) was substituted for Bt2cAMP. Similar experiments using radioactive amino acids were conducted with both spinner and monolayer cultures. Much of the released radioactive material was contained in the same three molecular weight classes as the glycoproteins released by spinner cells prelabeled with [3H]glucosamine, and this pattern did not vary with length of labeling period or type of culture. These results may imply that the glycosylation of released proteins is influenced by agents which can induce differentiation. The origin of this released material is discussed. [3H]Glucosamine-labeled glycoproteins of the molecular weight class centered about 55,000 (discussed above) were isolated by preparative gel electrophoresis. They co-migrated with authentic mouse brain microtubular protein as two closely spaced bands on a number of different electrophoretic systems. This protein fraction was also characterized as complexing with a monospecific antitubulin antibody.  相似文献   

8.
Sulfated components of enveloped viruses.   总被引:13,自引:13,他引:0       下载免费PDF全文
The glycoproteins of several enveloped viruses, grown in a variety of cell types, are labeled with 35SO4(-2), whereas the nonglycosylated proteins are not. This was shown for the HN and F glycoproteins of SV5 and Sendai virus, the E1 and E2 glycoproteins of Sindbis virus, and for the major glycoprotein, gp69, as well as for a minor glycoprotein, gp52, of Rauscher leukemia virus. The minor glycoprotein of Rauscher leukemia virus is more highly sulfated, with a ratio of 35SO4- [3H]glucosamine about threefold greater than that of gp69. The G protein of vesicular stomatitis virus was labeled when virions were grown in the MDBK line of bovine kidney cells, although no significant incorporation of 35SO4(-2) into this protein was observed in virions grown in BHK21-F line of baby hamster kidney cells. In addition to the viral glycoproteins, sulfate was also incorporated into a heterogenous component with an electrophoretic mobility lower than that of any labeled with 35SO4(-2) and [3H]leucine, this component had a much greater 35S-3H ratio than any of the viral polypeptides and thus could not represent aggregated viral proteins. This material is believed to be a cell-derived mucopolysaccharide and can be removed from virions by treatment with hyaluronidase without affecting the amount of sulfate present on the glycoproteins.  相似文献   

9.
Two inhibitors of glycosylation, glucosamine and tunicamycin, were utilized to examine the effect of glycosylation inhibition in mouse neuroblastoma N18 cells on the degradation of membrane glycoproteins synthesized before addition of the inhibitor. Treatment with 10 mM-glucosamine resulted in inhibition of glycosylation after 2h, as measured by [3H]fucose incorporation into acid-insoluble macromolecules, and in a decreased rate of glycoprotein degradation. However, these results were difficult to interpret since glucosamine also significantly inhibited protein synthesis, which in itself could cause the alteration in glycoprotein degradation [Hudson & Johnson (1977) Biochim. Biophys. Acta 497, 567-577]. N18 cells treated with 5 microgram of tunicamycin/ml, a more specific inhibitor of glycosylation, showed a small decrease in protein synthesis relative to its effect on glycosylation, which was inhibited by 85%. Tunicamycin-treated cells also showed a marked decrease in glycoprotein degradation in experiments with intact cells. The inhibition of glycoprotein degradation by tunicamycin was shown to be independent of alterations in cyclic AMP concentration. Polyacrylamide-gel electrophoresis of isolated membranes from N18 cells, double-labelled with [14C]fucose and [3H]fucose, revealed heterogeneous turnover rates for specific plasma-membrane glycoproteins. Comparisons of polyacrylamide gels of isolated plasma membranes from [3H]fucose-labelled control cells and [14C]fucose-labelled tunicamycin-treated cells revealed that both rapidly and slowly metabolized, although not all, membrane glycoproteins became resistant to degradation after glycosylation inhibition.  相似文献   

10.
The glycoproteins synthesized by human keratinocytes cultured on 3T3 feeder layers were studied by metabolic labelling. Keratinocytes freed of feeder cells synthesized a complex pattern of cellular and extracellular glycoproteins that was distinct from that of 3T3 cells, dermal fibroblasts and epidermal melanocytes. The effect of low concentrations of all-trans-retinoic acid and arotinoid ethyl ester on glycoprotein synthesis was examined in keratinocyte cultures depleted of vitamin A. Treatment with either retinoid resulted in a 2-3-fold increase in the amount of D-[3H]glucosamine-labelled material in the culture medium. Gel electrophoresis revealed increased incorporation of D-[3H]glucosamine into extracellular glycoproteins of Mr 245,000, 170,000, 140,000, 130,000, 120,000 and 105,000 as well as into glycosaminoglycans in retinoid-treated cultures. The labelling of extracellular glycoproteins with L-[3H]leucine and L-[35S]methionine was also increased by retinoids suggesting increased synthesis of these components rather than an effect on their glycosylation. The Mr 245 000 glycoprotein was identified as keratinocyte-derived fibronectin by immunoblotting, immunoprecipitation and specific binding to gelatin. The results show that retinoids increase the synthesis of glycoprotein as well as glycosaminoglycan components of the extracellular matrix in human keratinocyte cultures. It is suggested that retinoids select for a population of cells that synthesize relatively large amounts of glycosaminoglycan, fibronectin and other as yet unidentified extracellular glycoproteins.  相似文献   

11.
The effect of thyroxine on biosynthesis of microvillus membrane glycoproteins has been investigated in organ culture of 18-day-old chick embryonic duodenum. Explants incorporate [3H]leucine and [3H]glucosamine continuously, and overall incorporation is enhanced by 10 nM thyroxine during 48 h of labeling; this increase in radioactivity is associated with vesicles released from the microvilli. Light microscope autoradiography, pulse labeling of brush border fragments, and pulse chase experiments reveal that [3H]glucosamine is incorporated into brush border at an increasing rate during culture, and that newly synthesized glycoproteins are discharged into the medium along with brush border enzymes (alkaline phosphatase and maltase). These results suggest that thyroxine stimulates biosynthesis of microvillus membrane glycoproteins, in addition to stimulating vesiculation of the membrane. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 3H-labeled vesicles and brush border fragments show that [3H]leucine and [3H]glucosamine are incorporated into proteins of high molecular weight. Two protein bands are identified as alkaline phosphatase and maltase. Thyroxine stimulates glycosylation of these enzymes, but does not change protein patterns. Radioactivity assay of alkaline phosphatase- and maltase-active gel slices suggests that thyroxine stimulation of these enzyme activities during culture is not correlated with de novo synthesis of these proteins.  相似文献   

12.
Semliki Forest virus was grown in BHK cells and labeled in vivo with radioactive monosaccharides. Pronase digests of the virus chromatographed on Bio-Gel P6 revealed glycopeptides of A-type and B-type. (For the nomenclature see Johnson, J. and Clamp, J.R. (1971) Biochem. J. 123, 739-745.) The former was labeled with [3H]fucose, [3H]galactose, [3H]mannose and [14C]glucosamine, the latter only with [3H]mannose and [14C]glucosamine. The three envelope glycoproteins E1, E2 and E3 were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subjected to pronase digestion. The glycoproteins E1 and E3 revealed glycopeptides of A-type. E2 revealed glycopeptides of B-type. E2 yielded additionally a glycopeptide (Mr3100) which was heavily labeled from [3H]galactose, but only marginally from [14C]glucosamine, [3H]fucose and [3H]mannose. Whether this glycopeptide belongs to the A-type or not remains uncertain. The apparent molecular weights of the A-type units measured by gel filtration were 3400 in E1 and 4000 in E3; the B-type unit of E2 had an apparent molecular weight of 2000. Combined with the findings of our earlier chemical analysis these data suggest that E1 and E3 contain on the average one A-type unit; E2 probably contains one 3100 dalton unit plus one or two B-type units.  相似文献   

13.
Incubating white matter membranes with UDP-N-acetyl-[14C]glucosamine in the presence of Mg2+ and AMP resulted in the labeling of two major glycolipids, a minor glycolipid and several membrane-associated glycoproteins. The addition of AMP protected the labeled sugar nucleotide from degradation by a membrane-bound sugar nucleotide pyrophosphatase activity. While no labeled oligosaccharide lipid was recovered in a CHCl3CH3OHH2O (10:10:3) extract after incubating with only UDP-N-acetyl-[14C] glucosamine, Mg2+, and AMP, the inclusion of unlabeled GDP-mannose led to the formation of an N-acetyl-[14C]glucosamine-labeled oligosaccharide lipid that was soluble in CHCl3CH3OHH2O (10:10:3). The [GlcNAc-14C]oligosaccharide unit was released by treatment with 0.1 N HCl in 80% tetrahydrofuran at 50 °C for 30 min and appears to have the same molecular size as the lipid-linked [mannose-14C] oligosaccharide, formed enzymatically by white matter membranes as judged by their elution behavior on Bio-Gel P-6. The incorporation of N-acetyl-[14C]glucosamine into glycolipid was stimulated by exogenous dolichol monophosphate, but inhibited by UMP or tunicamycin, a glucosamine-containing antibiotic. Although UMP and tunicamycin drastically inhibited the labeling of glycolipid, these compounds had very little effect on the labeling of glycoproteins. The major glycolipids have the chemical and Chromatographic characteristics of N-acetylglucosaminylpyrophosphoryldolichol and N,N′-diacetylchitobiosylpyrophosphoryldolichol. When the labeled glycoproteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, four labeled polypeptides were observed, having apparent molecular weights of 145,000, 105,000, 54,000, and 35,000. Virtually all of the N-acetyl-[14C]glucosamine was released when the labeled glycopeptides, produced by pronase digestion, were incubated with an exo-β-N-acetylglucosaminidase, indicating that all of the N-acetyl-[14C]glucosamine incorporated under these conditions is attached to white matter membrane glycoproteins at nonreducing termini.  相似文献   

14.
Summary Organ cultures of human surgical specimens can be used to investigate glycoprotein production in vitro under conditions in which three-dimensional tissue structures and cell-cell interactions resemble those present in vivo. In this report, an organ-culture system is used to investigate the synthesis, transport and release of glycoprotein by normal and benign hyperplastic human mammary epithelium. Autoradiography of explants pulse-labeled with individual glycoprotein precursors ([3H]glucosamine, [3H]fucose, [3H]acetylmanosamine) and maintained in organ culture for intervals up to 72hr revealed that glycoprotein is synthesized and then secreted by mammary epithelium. Incorporation of each isotope took place in the Golgi apparatus. Most of the newly synthesized glycoprotein, labeled with each of the three precursors, then was transported to apical cell surfaces and secreted into gland lumina. Observations were indistinguishable in normal and benign hyperplastic glands. Thus nonlactating human mammary epithelium exhibits a glycoprotein secretory activity. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of [3H]glucosamine-labeled macromolecules released into the medium showed a group of glycoproteins with a molecular weight of 48,000±6,000 daltons plus high-molecular-weight glycosylated components at the top of gels. The nature of gp48 is not known, but similar molecular-weight glycoproteins also are released by surgical specimens of human mammary cancer maintained in organ culture. Z. A. T. received support from NCI Grant No. CA-14089.  相似文献   

15.
L J Schiff  S J Moore 《In vitro》1980,16(10):893-906
A system for maintaining adult rat colonic mucosa in organ culture for up to 28 days is described. Distal colonic mucosa physically separated from the muscle layers was cultured at 37 degrees C on a substrate of human fibrin foam in HEPES- and bicarbonate-buffered Waymouth's MB 752/1 medium supplemented with 10% fetal bovine serum, L-glutamine, bovine albumin, ascorbic acid, hydrocortisone, insulin, and ferrous sulfate; the optimal atmostphere for culture was 95% O2 and 5% CO2. Viability of explants was demonstrated by tissue morphology with light microscopy, incorporation of [3H]thymidine and [3H]leucine into DNA and protein, [14C]glucosamine and [3H]fucose incorporation, and glycoprotein synthesis. Two days after initiation of culture, degeneration of surface and crypt cells was observed. Secreted mucosubstances covered the explants. Explants maintained in 95% O2 retained a variable number of glandular crypts with normal columnar epithelium for 14 to 21 days in culture. At 28 days, explants contained a single layer of cuboidal surface epithelium and a rare cryptlike gland.  相似文献   

16.
Many reports show that N-glycans of glycoproteins play important roles in vectorial transport in MDCK cells. To assess whether structural differences in N-glycans exist between secretory glycoproteins and membrane glycoproteins, we studied the N-glycan structures of the glycoproteins isolated from MDCK cells. Polarized MDCK cells were metabolically labeled with [3H]glucosamine, and (3)H-labeled N-glycans of four glycoprotein fractions, secretory glycoproteins in apical and basolateral media, and apical and basolateral membrane glycoproteins, were released by glycopeptidase F. The structures of the free N-glycans were comparatively analyzed using various lectin column chromatographies and sequential glycosidase digestion. The four samples commonly contained high-mannose-type glycans and bi- and tri-antennary glycans with a bisected or non-bisected trimannosyl core. However, secretory glycoproteins in both media predominantly contained (sialyl)LacdiNAc sequences, +/-Sia alpha 2-->6GalNAc beta 1-->4GlcNAc beta 1-->R, which linked only to a non-bisected trimannosyl core. beta1-->4N-acetylgalactosaminyltransferase (beta 4GalNAc-T) activity in MDCK cells preferred non-bisected glycans to bisected ones in accordance with the proposed N-glycan structures. This secretory glycoprotein-predominant LacdiNAc sequence was also found in the case of human embryonic kidney 293 cells. These results suggest that the secretory glycoprotein-specific (sialyl)LacdiNAc sequence and the corresponding beta 4GalNAc-T are involved in transport of secretory glycoproteins.  相似文献   

17.
P Orlean  G Seebacher  W Tanner 《FEBS letters》1983,158(2):247-251
alpha-Factor inhibits incorporation of [14C]glucosamine into water-soluble and into SDS-extractable glycoproteins to about 90%. The incorporation into chitin is not affected and the same is true for [14C]phenylalanine incorporation into protein. The inhibition of glycoprotein synthesis is specific for a cells.  相似文献   

18.
1. Electron microscope autoradiography indicated that L-[3H]fucose and D-[3H]glucosamine were both incorporated into cell-surface-associated glycoconjugates in the epidermis of cultured pig skin slices. 2. Acid hydrolysis and paper chromatography of skin homogenates confirmed that there was little metabolic conversion of the labeled precursors to other sugars. 3. Epidermis was separated from dermis using CaCl2, and was extracted with 8 M-urea/5% (w/v) sodium dodecyl sulphate and was then analysed by gel electrophoresis. The major component labelled with D-[3H]glucosamine had an apparent molecular weight in excess of 200 000. This material was not labelled with L-[3H]fucose. Lower molecular-weight components were labelled to a similar extent with both L-[3H]fucose and D-[3H]glucosamine. 4. The high molecular-weight material labelled with D-[3H]glucosamine was released into the medium when the epidermal cells were dispersed with trypsin, indicating that it was either surface-associated or was extracellular. It was also labelled with D-[14C]glucuronic acid, 35SO4(2-) and to a small extent with 14C-labelled amino acids indicating that it contained glycosaminoglycans derived from epidermal proteoglycans. This was confirmed by the fact that it was degraded by testicular hyaluronoglucosidase. It was not present in isolated membranes but was recovered in the soluble fraction from epidermal homogenates. It is therefore only very loosely bound at the cell surface or is present in the extracellular spaces. 5. Membrane-bound [3H]glycoproteins were identified after differential centrifugation of epidermal homogenates. The radioactivity profiles of membrane glycoproteins were similar whether L-[3H]fucose or D-[3H]glucosamine were used and both consisted of a major heterogeneous peak in the apparent mol.wt. range 70 000--150 000. [3H]Glycoproteins in this molecular-weight range were also major components of a plasma-membrane-enriched fraction. These glycoproteins were probably bound to the membrane by hydrophobic interactions, since they were only solubilized by treatment with detergent or organic solvent. They contained terminal sialic acid residues, since they were degraded by neuraminidase.  相似文献   

19.
Membrane-associated decay accelerating factor (DAF) of human erythrocytes (Ehu) was analyzed for a C-terminal glycolipid anchoring structure. Automated amino acid analysis of DAF following reductive radiomethylation revealed ethanolamine and glucosamine residues in proportions identical with those present in the Ehu acetylcholinesterase (AChE) anchor. Cleavage of radiomethylated 70-kilodalton (kDa) DAF with papain released the labeled ethanolamine and glucosamine and generated 61- and 55-kDa DAF products that retained all labeled Lys and labeled N-terminal Asp. Incubation of intact Ehu with phosphatidylinositol-specific phospholipase C (PI-PLC), which cleaves the anchors in trypanosome membrane form variant surface glycoproteins (mfVSGs) and murine thymocyte Thy-1 antigen, released 15% of the cell-associated DAF antigen. The released 67-kDa PI-PLC DAF derivative retained its ability to decay the classical C3 convertase C4b2a but was unable to membrane-incorporate and displayed physicochemical properties similar to urine DAF, a hydrophilic DAF form that can be isolated from urine. Nitrous acid deamination cleavage of Ehu DAF at glucosamine following labeling with the lipophilic photoreagent 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID) released the [125I]TID label in a parallel fashion as from [125I]TID-labeled AChE. Biosynthetic labeling of HeLa cells with [3H]ethanolamine resulted in rapid 3H incorporation into both 48-kDa pro-DAF and 72-kDa mature epithelial cell DAF. Our findings indicate that DAF and AChE are anchored in Ehu by the same or a similar glycolipid structure and that, like VSGs, this structure is incorporated into DAF early in DAF biosynthesis prior to processing of pro-DAF in the Golgi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号