首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
The possible involvement of protein kinase C and Ca2+ metabolism in the proteolytic enzyme release from schistosome cercariae was studied. Cercariae were placed in dechlorinated tap water containing 0.37 mM calcium in the small glass petri dish and exposed to the stimuli (linoleic acid, phorbol esters, and Ca2+ ionophore) with or without inhibitors of protein kinase C or Ca2+ metabolism. The proteolytic activity of incubation medium of cercariae thus treated was measured by the azocoll assay. The penetration response of cercariae induced by linoleic acid, a physiological stimulus, was mimicked by phorbol esters. When exposed to phorbol esters, 0.02 to 2 microM of 12-O-tetradecanoylphorbol-13-acetate (TPA) and 0.2 to 2 microM of phorbol-12,13-dibutyrate (PDBu), cercariae ceased the swimming movement, began a rhythmic thrusting of the anterior tip of the parasite, and released the proteolytic enzyme, but they did not shed the tails. Lowering Ca2+ in water by addition of 5 mM ethylene glycol-bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid (EGTA), phorbol ester-induced release of enzyme was completely inhibited. Phorbol ester-induced release of enzyme was partially inhibited by 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), an inhibitor of protein kinase C, at a concentration of 100 microM. H-7 alone, at a concentration of 100 microM, did not affect the swimming movement of cercariae. The cercariae were stimulated to release the enzyme by high concentrations (10 and 100 microM) of the Ca2+ ionophore, A23187, but enzyme was not released by low concentrations (0.5 and 1 microM) of this drug. Cercariae exposed to A23187 behaved differently from those exposed to phorbol esters. They ceased swimming, showed strong muscle contraction, and shed their tail. A23187 stimulated cercariae to release the enzyme in the water containing 5 mM EGTA. A23187-induced enzyme release was not inhibited by N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7), a calmodulin antagonist, trifluoperazine (TFP), a better calmodulin antagonist on schistosome, or by verapamil, a Ca2+ channel blocker. Linoleic acid-induced release of enzyme was partially inhibited by 0.5 and 5 mM of EGTA and by 1 to 100 microM of H-7. While it was not inhibited by N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) and N-(2-guanidinoethyl)-5-isoquinolinesulfonamide (HA-1004), inhibitors of cyclic nucleotide-dependent protein kinase which were used as negative controls of H-7, W-7, TFP, 8-(N,N-diethylamino)octyl 3,4,5-trimethoxybenzoate (TMB-8), an intracellular Ca2+ antagonist, and verapamil.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
3.
Artificial inducers have been used to study signal-transduction pathways involved in metamorphosis of some marine invertebrates. However, the transduction mechanisms for echinoderms have been less explored. In the present study, participation of protein kinase C (PKC), G-protein-coupled receptors (GPCRs), and calcium has been investigated during metamorphosis of the sea urchin Stronglylocentrotus purpuratus. Competent larvae were induced with different drugs that activate (PKC and GP activators, Ca2+ ionophores, and inhibitors of Ca2+ ATPase) or inhibit (PKC, G-protein, and Ca2+ flux inhibitors) metamorphosis. Six of the compounds were effective: the PKC activators TPA and indolactam; the G-protein inhibitors suramin and guanosine; the calcium ionophore A23187, and the calcium ATPase inhibitor thapsigargin. TPA was effective at 0.001 microM; indolactam was effective at 0.001 microM. In the presence of KCl as inducer, the G-protein inhibitor suramin was effective at 10 microM and guanosine at 0.001 microM. In the presence of a bacterial film as inducer, suramin was effective at 50 microM, and guanosine inhibited metamorphosis at 1 microM. A23187 was effective at 5 and 10 microM and thapsigargin at 50 and 100 microM. Our results indicate that GPCRs, protein kinase C, and calcium participate in the metamorphosis of S. purpuratus. These elements of the transduction pathways triggered during metamorphosis may be part of a cascade of signal transduction routes that interact from induction to the end of the morphogenetic events that shape the postlarval form. In addition, according to the results obtained with G-protein inhibitors, the GPCRs may be shared between the artificial (KCl) and natural (biofilm) inducers.  相似文献   

4.
Receptor mediated internalization of 125I-ANF (99-126) and the underlying mechanism was studied in PC12 cells. Phosphorylation of PC12 cell plasma membrane proteins at 0 degrees C or 37 degrees C was not altered in presence of ANF (99-126) or c-ANF (4-23). Exposure of cells to phorbol 12-myristate 13-acetate (PMA, 100 ng/ml) did not alter the endocytic rate or extent of 125I-ANF (99-126) internalization. When cells were treated with a combination of PMA and the calcium ionophore A23187, internalization was not stimulated. Incubation with A23187 (10 microM) alone decreased 125I-ANF (99-126) internalization by 22% in Ca2+ containing medium. Cell surface binding increased 10% in the presence of Ca2+ compared to Ca2+ free medium, irrespective of the presence of A23187. Ca2+ appears to play an important role in the binding of ANF to the receptor and initiation of ligand-receptor complex internalization. Activation of protein kinase C or receptor phosphorylation is not an essential step in initiating ANF receptor internalization.  相似文献   

5.
We investigated the combined effect of 5-hydroxytryptamine (5-HT, serotonin) and calcium ionophore (A23187) on human platelet aggregation. Aggregation, monitored at 37 degrees C using a Dual-channel Lumi-aggregometer, was recorded for 5 min after challenge by a change in light transmission as a function of time. 5-HT (2-200 microM) alone did not cause platelet aggregation, but markedly potentiated A23187 (low dose) induced aggregation. Inhibitory concentration (IC50) values for a number of compounds were calculated as means +/- SEM from dose-response determinations. Synergism between 5-HT (2-5 microM) and A23187 (0.5-2 microM) was inhibited by 5-HT receptor blockers, methysergide (IC50 = 18 microM) and cyproheptadine (IC50 = 20 microM), and calcium channel blockers (verapamil and diltiazem, IC50 = 20 microM and 40 microM respectively). Interpretation of the effects of these blockers is complicated by their lack of specificity. Similarly, U73122, an inhibitor of phospholipase C (PLC), blocked the synergistic effect at an IC50 value of 9.2 microM. Wortmannin, a phosphatidylinositide 3-kinase (PI 3-K) inhibitor, also blocked the response (IC50 = 2.6 microM). However, neither genistein, a tyrosine-specific protein kinase inhibitor, nor chelerythrine, a protein kinase C inhibitor, affected aggregation at concentrations up to 10 microM. We conclude that the synergistic interaction between 5-HT and ionophore may be mediated by activation of PLC/Ca2+ and PI 3-kinase signalling pathways, but definitive proof will require other enzyme inhibitors with greater specificity.  相似文献   

6.
The contribution of calmodulin and protein kinases A or C to the activation of membrane Ca-ATPase was studied on saponin-permeabilized rat erythrocytes. In the presence of all endogenous regulators, the dependence of the Ca-ATPase activity of Ca2+ concentration was described by a bell-shaped curve with a maximum at 2-5 microM Ca2+; K0.5 = 0.43 microM Ca2+. Washing of erythrocyte membranes with 5-10 microM Ca2+ maintained up to 75% of the ATPase activity, while washing with EGTA (2 mM) decreased the activity, on the average, 5-fold, and increased K0.5 up to 0.54-0.6 microM Ca2+. An addition of an EGTA extract to washed membranes restored up to 75% of the original ATPase activity, while calmodulin restored about 40% of the original Ca-ATPase activity and decreased K0.5 to 0.23-0.3 microM Ca2+. The calmodulin inhibitor R24571 failed to alter the Ca-ATPase activity in permeabilized erythrocytes but slightly diminished it in reconstituted membranes. The protein kinase C inhibitors H7 and polymyxin increased the Ca-ATPase activity in permeabilized red cells and suppressed it in reconstituted membranes. The data obtained suggest that in native red cell membranes Ca-ATPase is activated by regulator(s) dependent on Ca2+ and protein kinase which are other than calmodulin.  相似文献   

7.
The ability of exogenous sn-1,2-diacylglycerols and analogs to function as bioregulators of protein kinase C in human platelets was investigated. The activation of protein kinase C in platelets is indicated by specific phosphorylation of a 40,000-dalton protein. Dihexanoylglycerol, dioctanoylglycerol (diC8), didecanoylglycerol, and sn-1-oleoyl-2-acetylglycerol were active in stimulating 40,000-dalton protein phosphorylation. Only a trace of phosphorylation was elicited by dibutyrylglycerol. Phosphorylation was not induced by analogs of diC8 in which an -H, -SH, or -Cl group replaced the free -OH, nor by monoacylglycerols or long chain diacylglycerols. Maximum phosphorylation was induced by dihexanoylglycerol, diC8, and didecanoylglycerol at concentrations from 5 to 20 microM and between 5 and 30 S after exposure of platelets to these diacylglycerols. Under conditions of maximal phosphorylation of the 40,000-dalton protein, these diacylglycerols did not induce phosphatidylinositol turnover, or platelet aggregation, or stimulate release of ATP or serotonin. A small degree of aggregation was evident with platelets isolated in the absence of prostacyclin, and release of serotonin was observed when 1 mM Ca2+ or submaximal concentrations of ionophore A23187 were included. These results are consistent with a model in which platelet activation requires the simultaneous formation of two intracellular signals, diacylglycerols and Ca2+. These diacylglycerols and diacylglycerol analogs provide useful tools to investigate the function of diacylglycerols as bioregulators in intact cells.  相似文献   

8.
Many cytoplasmic proteins, including Ca2+- and phospholipid-dependent protein kinase (protein kinase C) of polymorphonuclear leukocytes (PMNs) associate in Ca2+-dependent manner with phospholipid liposomes containing cardiolipin (CL), as in the case of phosphatidylserine (PS)-containing liposomes. A crude protein kinase C fraction was purified by association of the enzyme with CL-containing liposomes (flotation method). The partially purified protein kinase C from rat brain or guinea pig PMN was activated by the CL-containing liposomes in the presence of dioleoylglycerol (DG) and Ca2+. This activation was analogous to that of PS. The half maximum activity was obtained with 20 microM CL in the presence of 1 microM Ca2+ and 5 microM DG. Many of the cytoplasmic proteins which associate with CL-containing liposomes were preferentially phosphorylated by membrane-associated protein kinase C in the presence of DG and Ca2+. These results suggest that the association of cytoplasmic protein kinase C with the membrane has an important role in regulation of protein kinase C activity in relation to the association of other cytoplasmic proteins to the membrane.  相似文献   

9.
The applicability of the potential-sensitive dye diS-C3-(5) for the study of A23187 + Ca2+ induced plasma membrane hyperpolarization was tested in rat brain synaptosomes. An appropriate dye synaptosome ratio was chosen for the fluorescence titration dye in Ca-free Krebs-Ringer solution. The fluorescence intensity of the probe was increased upon the addition of Ca2+ (1 microM) to the synaptosomes in the presence of A23187 (1 microM). The effect of Ca2+ + A23187 persisted in a Na+-free medium or when Na+ channels were inhibited by tetrodotoxin as well as in high K+-depolarized synaptosomes (75 microM KCl). In the presence of oligomycin or a protonophore (1 microM) the effect of Ca2+ + A23187 was suppressed. This suggests that the A23187-induced fluorescence increase is due to a depolarization of intrasynaptosomal mitochondria. Therefore, the use of the dye diS-C3-(5) for the study of Ca-induced hyperpolarization does not seem to be feasible unless a quantitative model of changes in fluorescence related to the plasma and mitochondrial membrane potentials is elaborated.  相似文献   

10.
The mobilization of internally sequestered stores of Ca2+ and activation of protein kinase C appear to be involved in neutrophil activation. We have examined the inter-relationship of these two pathways by investigating the effects of modulating Ca2+ activity on the binding of [3H]phorbol 12,13-dibutyrate (PDBU) to protein kinase C in intact phagocytes. Differentiated HL-60 cells were equilibrated with [3H]PDBU prior to stimulation with various agents known to alter Ca2+ homeostasis in cells. Agents that elevated cytosolic Ca2+, such as f-Met-Leu-Phe and A23187, up-regulated radioligand binding by increasing the affinity of the PDBU/protein kinase C interaction. These effects were time- and agonist concentration-dependent and temperature-sensitive. The kinetics of the up-regulation of binding by f-Met-Leu-Phe coincided with the kinetics of Ca2+ mobilization (by quin2 fluorescence measurements). The putative intracellular Ca2+ antagonist 8-(N,N-diethylamino)-octyl 3,4,5-trimethoxybenzoate alone down-regulated [3H]PDBU binding and inhibited the up-regulation of ligand binding by f-Met-Leu-Phe and A23187. Low concentrations of La3+ (0.1-10 microM) also inhibited up-regulation of radioligand binding to f-Met-Leu-Phe and A23187, whereas higher concentrations (0.1-1 mM) alone increased [3H] PDBU binding and supported further up-regulation of ligand binding by the Ca2+-mobilizing agents. These data suggest a role for Ca2+ in the regulation of phorbol diester binding to protein kinase C in intact cells.  相似文献   

11.
Release of eicosanoids is an important response of macrophages to inflammation and bacterial infection. At low concentrations, bacterial lipopolysaccharide (1-2 micrograms/ml) fails to stimulate eicosanoid release in resident peritoneal macrophages but primes the macrophages for a greatly enhanced release of eicosanoids on stimulation with the calcium ionophore A23187 (0.1 microM) or with phorbol 12-myristate 13-acetate (50 nM), an activator of protein kinase C. Incubation of macrophages with Bordetella pertussis toxin, prior to priming with lipopolysaccharide, inhibited the release of both cyclooxygenase and lipoxygenase products upon A23187 stimulation. Pertussis toxin treatment of macrophages had no effect on eicosanoid release when the stimulus was phorbol 12-myristate 13-acetate. The presence of 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7), an effective inhibitor of protein kinase C, during lipopolysaccharide priming and subsequent stimulation significantly inhibited eicosanoid release when phorbol 12-myristate 13-acetate was the stimulus, but did not affect eicosanoid release stimulated by A23187. Based on these results, at least two mechanisms, distinguished by apparent differences in sensitivity to pertussis-toxin-sensitive, guanine-nucleotide-binding proteins and protein kinase C, are involved in eicosanoid secretion by lipopolysaccharide-activated macrophages in response to A23187 and phorbol 12-myristate 13-acetate.  相似文献   

12.
Phorbol myristate acetate (PMA), a tumor-promoting phorbol ester, and the calcium ionophore A23187 synergistically induced the noncytotoxic release of leukotriene B4 (LTB4) and other 5-lipoxygenase products of arachidonic acid metabolism from human neutrophils. Whereas neutrophils incubated with either A23187 (0.4 microM) or PMA (1.6 microM) alone failed to release any 5-lipoxygenase arachidonate products, neutrophils incubated with both stimuli together for 5 min at 37 degrees C released LTB4 as well as 20-COOH-LTB4, 20-OH-LTB4, 5-(S),12-(R)-6-trans-LTB4, 5-(S),12-(S)-6-trans-LTB4, and 5-hydroxyeicosatetraenoic acid, as determined by high pressure liquid chromatography. This synergistic response exhibited concentration dependence on both PMA and A23187. PMA induced 5-lipoxygenase product release at a concentration causing a half-maximal effect of approximately 5 nM in the presence of A23187 (0.4 microM). Competition binding experiments showed that PMA inhibited the specific binding of [3H]phorbol dibutyrate ([3H]PDBu) to intact neutrophils with a 50% inhibitory concentration (IC50) of approximately 8 nM. 1-oleoyl-2-acetyl-glycerol (OAG) also acted synergistically with A23187 to induce the release of 5-lipoxygenase products. 4 alpha-phorbol didecanoate (PDD), an inactive phorbol ester, did not affect the amount of lipoxygenase products released in response to A23187 or compete for specific [3H]PDBu binding. PMA and A23187 acted synergistically to increase arachidonate release from neutrophils prelabeled with [3H]arachidonic acid but did not affect the release of the cyclooxygenase product prostaglandin E2. Both PMA and OAG, but not PDD, induced the redistribution of protein kinase C activity from the cytosol to the membrane fraction of neutrophils, a characteristic of protein kinase C activation. Thus, activation of protein kinase C may play a physiologic role in releasing free arachidonate substrate from membrane phospholipids and/or in modulating 5-lipoxygenase activity in stimulated human neutrophils.  相似文献   

13.
In order to study the signal transduction mechanism of human endothelial cells (EC), the regulation of superoxide anion (O2-)release in EC has been investigated using the calcium ionophore A23187 and phorbol myristate acetate (PMA), a potential activator of the Ca2+ activated, phospholipid-dependent protein kinase, designated "protein kinase C." PMA enhanced O2- release from EC, and this enhancement occurred regardless of the presence or absence of extracellular Ca2+. A similar increase was produced by A23187; omission of extracellular Ca2+ prevented this increase. Simultaneous stimulation with PMA and A23187 produced a large increase in O2- release at submaximal concentrations of these agents, which, when added separately, caused minimal effects. These findings indicate that the activation of protein kinase C and mobilization of Ca2+ evoked by PMA and A23187 respectively are synergistically effective for eliciting a full physiological response of EC in the generation and release of O2-.  相似文献   

14.
Protein kinases C and A probably play important roles in membrane signal transduction. To test the role of protein kinases in macrophage spreading, we have measured cell perimeters in the absence and presence of protein kinase C activators, inhibitors and a cAMP analog. Scanning electron microscopy indicated that macrophages spread extensively in the presence of protein kinase C activators. In contrast, protein kinase C inhibitor and dbcAMP (N6-2'-O-di-butyryladenosine 3':5'-cyclic monophosphate AMP) promote a round cell morphology with many surface folds. Quantitative optical microscopy experiments showed that the maximal effects of these reagents were achieved within 30 min. The protein kinase C activators dioctonylglycerol (3 microM), phenylephrine (1 microM), and phorbol myristate acetate (1 micrograms/ml) increased macrophage spreading. Similarly, the calcium ionophore A23187 (1 microgram) increased spreading. In contrast, the protein kinase C inhibitors chlorpromazine (30 microM), sphingosine (10 microM), trifluoroperazine (10 microM), and H-7 (10 microM) significantly reduce macrophage spreading. The analog dibutyryl cAMP (30 microM) abrogates the effects of protein kinase C activators. These data suggest that protein kinase C participates in the regulation of macrophage spreading. Furthermore, the protein kinase A activator dibutyryl cAMP can inhibit the effects of protein kinase C activators.  相似文献   

15.
In inflammatory cells, agonist-stimulated arachidonic acid (AA) release is thought to be induced by activation of group IV Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) through mitogen-activated protein kinase (MAP kinase)- and/or protein kinase C (PKC)-mediated phosphorylation and Ca(2+)-dependent translocation of the enzyme to the membrane. Here we investigated the role of phospholipases in N-formylmethionyl-l-leucyl-l-phenylalanine (fMLP; 1 nM-10 microM)-induced AA release from neutrophil-like db-cAMP-differentiated HL-60 cells. U 73122 (1 microM), an inhibitor of phosphatidyl-inositol-4,5-biphosphate-specific phospholipase C, or the membrane-permeant Ca(2+)-chelator 1, 2-bis?2-aminophenoxy?thane-N,N,N',N'-tetraacetic acid (10 microM) abolished fMLP-mediated Ca(2+) signaling, but had no effect on fMLP-induced AA release. The protein kinase C-inhibitor Ro 318220 (5 microM) or the inhibitor of cPLA(2) arachidonyl trifluoromethyl ketone (AACOCF(3); 10-30 microM) did not inhibit fMLP-induced AA release. In contrast, AA release was stimulated by the Ca(2+) ionophore A23187 (10 microM) plus the PKC activator phorbol myristate acetate (PMA) (0.2 microM). This effect was inhibited by either Ro 318220 or AACOCF(3). Accordingly, a translocation of cPLA(2) from the cytosol to the membrane fraction was observed with A23187 + PMA, but not with fMLP. fMLP-mediated AA release therefore appeared to be independent of Ca(2+) signaling and PKC and MAP kinase activation. However, fMLP-mediated AA release was reduced by approximately 45% by Clostridium difficile toxin B (10 ng/ml) or by 1-butanol; both block phospholipase D (PLD) activity. The inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), D609 (100 microM), decreased fMLP-mediated AA release by approximately 35%. The effect of D609 + 1-butanol on fMLP-induced AA release was additive and of a magnitude similar to that of propranolol (0.2 mM), an inhibitor of phosphatidic acid phosphohydrolase. This suggests that the bulk of AA generated by fMLP stimulation of db-cAMP-differentiated HL-60 cells is independent of the cPLA(2) pathway, but may originate from activation of PC-PLC and PLD.  相似文献   

16.
A Ca2+- and phospholipid-dependent protein kinase (protein kinase C) was partially purified from the media of bovine aortas by chromatography on DEAE-Sephacel and phenyl-Sepharose. Enzyme activity was characterized with both histone and a 47 kDa platelet protein (P47) as substrates, because the properties of protein kinase C can be modified by the choice of substrate. Both phosphatidylserine and Ca2+ were required for kinase activity. With P47 as substrate, protein kinase C had a Ka for Ca2+ of 5 microM. Addition of diolein to the enzyme assay caused a marked stimulation of activity, especially at low Ca2+ concentrations, but the Ka for Ca2+ was shifted only slightly, to 2.5 microM. With histone as substrate, the enzyme had a very high Ka (greater than 50 microM) for Ca2+, which was substantially decreased to 3 microM-Ca2+ by diolein. A Triton X-100 mixed-micelle preparation of lipids was also utilized to assay protein kinase C with histone as the substrate. Under these conditions kinase activity was almost totally dependent on the presence of diolein; again, diolein caused a large decrease in the Ka for Ca2+, from greater than 100 microM to 2.5 microM. The increased sensitivity of protein kinase C to Ca2+ with P47 rather than histone, and the ability of diacylglycerol to activate protein kinase C without shifting the Ka for Ca2+, when P47 is the substrate, illustrate that the mechanism of protein kinase C activation is influenced by the exogenous substrate used to assay the enzyme.  相似文献   

17.
Inositol 1,4,5-trisphosphate induces aggregation and the release of [3H]5-hydroxytryptamine from human platelets rendered permeable with saponin. This action of inositol 1,4,5-trisphosphate is associated with a significant formation of thromboxane B2, activation of phospholipase C, and phosphorylation of 20,000- and 40,000-dalton proteins, which are the substrates for myosin light chain kinase and protein kinase C, respectively. All of these responses are blocked by the cyclooxygenase inhibitors indomethacin and aspirin and the dual cyclooxygenase and lipoxygenase inhibitor 3-amino-1-[m-(trifluoromethyl)phenyl]-2-pyrazoline (BW 755C). These data indicate that platelet activation by inositol 1,4,5-trisphosphate is initiated by the mobilization of Ca2+, which leads to phospholipase A2 activation. The thromboxanes and endoperoxides that are subsequently generated then induce activation via cell surface receptors.  相似文献   

18.
The intracellular signal transduction mechanism leading to desmosome formation in low-calcium-grown keratinocytes after addition of calcium to the medium was studied by immunofluorescence using antibodies to desmoplakins I and II (cytoplasmic desmosomal proteins) and by electron microscopy before and after addition of calcium; protein kinase C (PKC) activators 12-O-tetradecanoylphorbol-13-acetate (TPA), phorbol-12,13-dibutyrate (PDBu), and 1,2-dioctanoylglycerol (DOG); calcium ionophore A23187; selective PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H-7) and staurosporine; and a Ca2+/calmodulin-dependent kinase inhibitor, N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7). In previous studies using a low-calcium-grown human epidermal squamous cell carcinoma, we have shown that an increase in extracellular Ca2+ caused a four-fold increase in PKC activity and addition of TPA (10 ng/ml) induced a transient increase in membrane-bound PKC activity in association with cell-cell contact formation. The present study showed that TPA (10 ng/ml). PDBu (10 ng/ml), and DOG (1 mg/ml) induced a rapid cell-cell contact and redistribution of desmoplakins from cytoplasm to the plasma membrane with desmosome formation within 60-120 min, which was similar, although less marked, to the effect of increased Ca2+. The TPA-induced desmosome formation was inhibited by selective PKC inhibitors, H-7 (20 microM) or staurosporine (100 nM). On the other hand, calcium ionophore A23187 induced only a temporary increase in the number of desmoplakin-containing fluorescent spots in the cytoplasm and a temporary cell-cell attachment without desmosome formation. The calcium-induced desmosome formation was partially inhibited by 20-100 microM H-7 or 100 nM staurosporine; however, it was not inhibited by W-7 at a concentration of 25 microM, at which this agent selectively inhibits calmodulin-dependent protein kinase. These results suggest that PKC activation plays an important role in desmoplakin translocation from the cytoplasm to the plasma membrane as one of the processes of calcium-induced desmosome formation.  相似文献   

19.
When human neutrophils, previously labeled in their phospholipids with [14C]arachidonate, were stimulated with the Ca2+-ionophore, A23187, plus Ca2+ in the presence of [3H]acetate, these cells released [14C]arachidonate from membrane phospholipids, produced 5-hydroxy-6,8,11,14-[14C]eicosatetraenoic acid (5-HETE) and 14C-labeled 5S,12R-dihydroxy-6-cis,8,10-trans, 14-cis-eicosatetraenoic acid ([14C]leukotriene B4), and incorporated [3H]acetate into platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine). Ionophore A23187-induced formation of these radiolabeled products was greatly augmented by submicromolar concentrations of exogenous 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE), 5-HETE, and leukotriene B4. In the absence of ionophore A23187, these arachidonic acid metabolites were virtually ineffective. Nordihydroguaiaretic acid (NDGA) and several other lipoxygenase/cyclooxygenase inhibitors (butylated hydroxyanisole, 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline and 1-phenyl-2-pyrazolidinone) caused parallel inhibition of [14C]arachidonate release and [3H]PAF formation in a dose-dependent manner. Specific cyclooxygenase inhibitors, such as indomethacin and naproxen, did not inhibit but rather slightly augmented the formation of these products. Furthermore, addition of 5-HPETE, 5-HETE, or leukotriene B4 (but not 8-HETE or 15-HETE) to neutrophils caused substantial relief of NDGA inhibition of [3H]PAF formation and [14C]arachidonate release. As opposed to [3H]acetate incorporation into PAF, [3H]lyso-PAF incorporation into PAF by activated neutrophils was little affected by NDGA. In addition, NDGA had no effect on lyso-PAF:acetyl-CoA acetyltransferase as measured in neutrophil homogenate preparations. It is concluded that in activated human neutrophils 5-lipoxygenase products can modulate PAF formation by enhancing the expression of phospholipase A2.  相似文献   

20.
Rat brain cortex slices, prelabelled with [3H]noradrenaline, were superfused and exposed to electrical biphasic block pulses (1 Hz; 12 mA, 4 ms) or to the Ca2+ ionophore A 23187 (10 microM) in the presence of 1.2 mM Ca2+. Forskolin (10 microM), 8-bromo-cyclic AMP (300 microM), and dibutyryl-cyclic AMP (300 microM) facilitated both the electrically evoked and A 23187-induced [3H]noradrenaline release, whereas the phosphodiesterase inhibitors 3-isobutyl-1-methylxanthine (IBMX, 300 microM) and 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62771, 30 microM) enhanced the electrically evoked release only. The inhibitory effects of clonidine (1 nM-1 microM) and the facilitatory effect of phentolamine (0.01-10 microM) on the electrically evoked [3H]noradrenaline release were strongly reduced in the presence of 8-bromo-cyclic AMP. Clonidine (1 microM) reduced and phentolamine (3 microM) enhanced A 23187-induced [3H]noradrenaline release, provided that the slices were simultaneously exposed to forskolin. The inhibitory effects of morphine (1 microM) and [D-Ala2-D-Leu5]enkephalin (DADLE, 0.3 microM), like that of the Ca2+ antagonist Cd2+ (15 microM), on the electrically evoked release of [3H]noradrenaline were not affected by 8-bromo-cyclic AMP. Moreover, morphine and DADLE did not inhibit A 23187-induced release in the absence or presence of forskolin. These data strongly suggest that in contrast to presynaptic mu-opioid receptors, alpha 2-adrenoceptors on noradrenergic nerve terminals are negatively coupled to adenylate cyclase and may thus reduce neurotransmitter release by inhibiting the feed-forward action of cyclic AMP on the secretion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号